跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/04 11:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:杜柏憲
研究生(外文):Po-Hsien Tu
論文名稱:光伏系統在遮陰情況下利用改良式粒子群優化演算技術 之最大功率點追蹤
論文名稱(外文):Maximum Power Point Tracking of Photovoltaic Systems with Modified Particle Swarm Optimization Technique Under Partial-Shading Conditions
指導教授:林容杉
指導教授(外文):Jung-Shan Lin
口試委員:黃秋杰洪志偉
口試委員(外文):Chiou-Jye HuangJeih-weih Hung
口試日期:2016-07-21
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:50
中文關鍵詞:光伏系統最大功率點追蹤粒子群優化算法
外文關鍵詞:Photovoltaic systemsMaximum power point trackingParticle swarm optimization
相關次數:
  • 被引用被引用:1
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本論文的主要目的是開發光伏系統在局部遮陰條件下的最大功率追蹤器。由
於天氣是不可預測的,所以系統有可能存在局部和全局的最大功率點。因此,我
們必須在遮陰條件下追蹤到全局最大功率點,為了使我們的光伏系統能提供有效
的最大功率輸出。
首先,我們建立光伏陣列系統數學模型,並且調查分析在部分遮陰以及沒有
遮陰條件下的電壓和功率的輸出。然而,在遮陰條件下的光伏陣列輸出會產生多
個最大功率點,所以我們必須找出合適的全局最大功率點追蹤技術。
我們提出一個新的概念來改良傳統的粒子群優化法並加強算法開發能力和提
高系統的性能。我們除了使用線性遞減慣性權重外,還應用非線性適應學習因子
增強追蹤能力。它能夠避免陷入局部最佳解,並提供系統具有更精確的收斂。實
驗結果表明,改良後的粒子群算法在遮陰條件下的全局最大功率點追蹤具有較高
的精確度與收斂性。
The major target of this thesis is to develop the maximum power tracker of
photovoltaic (PV) systems under the partial-shading conditions. Since the weather is
unpredictable, there might exist local and global maximum power points (MPP) in the
systems. Therefore, we must be able to track the global MPP under the partial-shading
conditions in order to make our PV systems offer effective maximum power output for
obtaining optimal system performance.
First of all, the mathematical model is established for a PV array system to
investigate and analyze the voltage and power output under partial-shade and
non-partial-shade conditioning. However, the output power of PV systems could have
various MPP under partial-shading conditions, so we have to determine an appropriate
technology for the tracking control of global MPP.
A novel concept is presented to modify the traditional particle swarm optimization
method for strengthening algorithm capability and improving the system performance.
In addition to using linear decreasing inertia weight, we apply nonlinear adapting
learning factors for enhancing the tracking ability. It can avoid falling into local
maximum solutions and provide the system to have more accurate convergence. As a
result, the simulation results show that the modified particle swarm optimization has the
potentials to track the global MPP with accurate rate of convergence under
partial-shading conditions.
致謝辭. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III
Table of Contents .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII
Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Objective and background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Control method and research status of MPPT . . . . . . . . . . . . . . . . . . . . . 3
1.3 Organization of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Chapter 2 Solar Photovoltaic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Principle of the PV cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 PV cell model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 PV module and array model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Chapter 3 Maximum Power Point Tracking. . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Output characteristics of partial-shading conditions . . . . . . . . . . . . . . . . . 13
3.2 MPPT control method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1 Perturbation and observation method . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Incremental conductance algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Fuzzy logic control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Comparison of MPPT methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Chapter 4 Particle Swarm Optimization Algorithm. . . . . . . . . . . . . . . . . . . . 25
4.1 The principle of particle swarm optimization . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Advantages and disadvantages of particle swarm optimization . . . . . . . . 28
4.3 Parameter design of particle swarm optimization . . . . . . . . . . . . . . . . . . . 29
4.4 Initial parameters of particle swarm optimization . . . . . . . . . . . . . . . . . . . 30
4.5 Linear decreasing inertia weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.6 Linear learning factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.7 Nonlinear adapting learning factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Chapter 5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Chapter 6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
List of Figures
2.1 Operation of PV cell . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 PV cell equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 The composition of the PV array . . . . . . . . . . . . . . . . . . . . 9
2.4 Equivalent circuit models of generalized PV module . . . . . . . . . . 10
2.5 P-V characteristics of PV cell model . . . . . . . . . . . . . . . . . . 11
2.6 P-V characteristics of PV module model . . . . . . . . . . . . . . . . 12
2.7 P-V characteristics of PV array model . . . . . . . . . . . . . . . . . 12
3.1 PV array without shading conditions . . . . . . . . . . . . . . . . . . 15
3.2 P-V characteristics of PV array in Fig 3.1 . . . . . . . . . . . . . . . 15
3.3 PV array under partial-shading conditions . . . . . . . . . . . . . . . 16
3.4 P-V characteristics of PV array in Fig 3.3 . . . . . . . . . . . . . . . 16
3.5 Moving of perturbation and observation . . . . . . . . . . . . . . . . 17
3.6 Flow chart of perturbation and observation . . . . . . . . . . . . . . . 18
3.7 Flow chart of incremental conductance algorithm . . . . . . . . . . . 20
3.8 Flow chart of fuzzy logic control . . . . . . . . . . . . . . . . . . . . . 21
3.9 No partial-shading conditions with perturbation and observation . . . 23
3.10 Partial-shading conditions with perturbation and observation . . . . . 23
3.11 Persistent disturbances . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1 Moving of particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Moving schematic view . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Procedure of tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Nonlinear adapting learning factors of c1(k) . . . . . . . . . . . . . . 35
4.5 Nonlinear adapting learning factors of c2(k) . . . . . . . . . . . . . . 35
5.1 Global MPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Local MPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Fixed !, c1; c2 PSO algorithm . . . . . . . . . . . . . . . . . . . . . . 39
5.4 Using linear decreasing inertia weight and xed c1; c2 . . . . . . . . . 39
5.5 Using linear learning factors and xed ! . . . . . . . . . . . . . . . . 40
5.6 Using nonlinear adapting learning factors and xed ! . . . . . . . . . 40
5.7 Using linear decreasing inertia weight and nonlinear adapting learning
factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.8 Successful rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
List of Tables
3.1 Comparison of various MPPT methods . . . . . . . . . . . . . . . . . 22
5.1 Parameters of PV module . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Parameters for simulation . . . . . . . . . . . . . . . . . . . . . . . . 37
[1] Y.-H. Liu, J.-H. Chen and J.-W. Huang, “A review of maximum power point
tracking techniques for use in partially shaded conditions,” Renewable and
Sustainable Energy Review, pp. 436-453, 2015.
[2] S. Saravanan and N. B. Ramesh, “Maximum power point tracking algorithm for
photovoltaic system a review,” Renewable and Sustainable Energy Review, pp.
192-204, 2016.
[3] J. Wang and S. Li, “Research on PV maximum power point tracking based on
improved perturbation and observation method,” Proceedings of Chinese
Automation Congress, pp. 1344-1348, 2015.
[4] C. X. Liu and L. Q. Liu, “An improved perturbation and observation MPPT
method of photovoltaic generate system,” Proceedings of the 3rd International
Congress on Image and Signal Processing, vol. 1, pp. 290-293, 2010.
[5] N. Femia, G. Petrone, G. Spagnuolo and M. Vitelli, “Optimization of perturb and
observe maximum power point tracking method,” IEEE Transactions on Power
Electronics, pp. 963-973.
[6] C. Huynh and W. Matthew, “Development and comparison of an improved
incremental conductance algorithm for tracking the MPP of a solar PV panel,”
IEEE Transactions on Sustainable Energy, pp. 1, 2016.
[7] K. S. Tey and S. Mekhilef, “Modified incremental conductance algorithm for
photovoltaic system under partial shading conditions and load variation,” IEEE
Transactions on Industrial Electronics, pp. 5384-5392, 2014.
[8] D. Snehamoy, R. Sridhar and M. Geraldine, “Implementation of PV cell based
standalone solar power system employing incremental conductance MPPT
algorithm,” Proceedings of Power and Computing Technologies, pp. 356-361,
2013.
[9] E. Koutroulis and F. Blaabjerg, “A new technique for tracking the global maximum
power point of PV arrays operating under partial-shading conditions,” IEEE
Journal of Photovoltaics, pp. 184-190, April, 2012.
[10] A. Moreno, J. Julve, S. Silvestre and L. Castaner, “A fuzzy logic controller for
standalone PV systems,” Proceedings of the IEEE Photovoltaic Specialists
Conference, pp. 1618-1621, September, 2000.
[11] B. N. Alajmi, K. H. Ahmed, S. J. Finney, and B. W. Williams, “Fuzzy-logic-control
approach of a modified hill-climbing method for maximum power point in
microgrid standalone photovoltaic system,” Proceedings of the IEEE Power
Electron, pp. 1022-1030, April, 2011.
[12] S. Subiyanto, A. Mohamed and M. Hannan, “Intelligent maximum power point
tracking for PV system using Hopfield neural network optimized fuzzy logic
controller,” Energy and Buildings, pp. 29-38, 2013.
[13] H. C. Ming, O. T. Chia and L. K. Hung, “Development of intelligent MPPT
(maximum power point tracking) control for a grid-connected hybrid power
generation system,” Energy, pp. 270-279, 2013.
[14] G.-W. Hong, K.-Y. Lum, and J.-S. Lin, “Fuzzy grey sliding mode control for
maximum power point tracking of photovoltaic systems,” Proceedings of the 10th
IEEE International Conference on Control and Automation, pp. 1190-1195, June,
2013.
[15] J.-S. Lin, K.-Y. Lum, and G.-W. Hong, “Fuzzy-grey reaching law sliding mode
control for photovoltaic maximum power point tracking,” Control and Intelligent
Systems, vol. 42, no. 2, pp. 159-166, 2014.
[16] M. Sameeullah and A. Swarup, “Modeling of PV module to study the performance
of MPPT controller under partial shading condition,” Proceedings of the IEEE
Conference on Power Electronics, pp. 1-6, 2014.
[17] E. Karatepe, T. Hiyama, and M. Colak, “Power controller design for photovoltaic
generation system under partially shaded insolation conditions,” Proceedings of the
IEEE International Conference on Intelligent System Applications to Power
Systems, pp. 1-6, 2007.
[18] H. Patel and V. Agarwal, “Maximum power point tracking scheme for PV systems
operating under partially shaded conditions,” IEEE Transactions on Industrial
Electronics, pp. 1689-1698, April, 2008.
[19] Y. H. Ji, D. Y. Jung and J. G. Kim, “A real maximum power point tracking method
for mismatching compensation in PV array under partially shaded conditions,”
Proceedings of the IEEE Power Electron, pp. 1001-1009, April, 2011.
[20] S. S. Yang, C. S. Chin, and H. P. Yoong, “Maximum power point tracking for PV
array under partially shaded conditions,” Proceedings of the IEEE International
Conference on Communication Systems and Networks, pp. 72-77, 2011.
[21] R. Ramaprabha, B. Mathur, M. Murthy and S. Madhumitha, “New configuration of
solar photovoltaic array to address partial shaded conditions,” Proceedings of the
IEEE International Conference on Emerging Trends in Engineering and
Technology, pp. 328-333, 2010.
[22] Z. Cheng, Z. Pang, Y. Liu and P. Xue, “An adaptive solar photovoltaic array
reconfiguration method based on fuzzy control,” Proceedings of the IEEE
International Conference of Control and Automation, pp. 176-181, 2010.
[23] I. Kashif, S. Zainal, T. Hamed and S. Amir, “Maximum power point tracking for
PV system under partial shading condition via particle swarm optimization,”
Proceedings of the IEEE Applied Power Electronics Colloquium, pp. 5-9, 2011.
[24] N. Taywin, W. Kaweepoj and P. Kittapas, “Improved particle swarm optimization
algorithm using average model on MPPT for partial shading in PV array,”
Proceedings of the Electrical Engineering Congress, pp. 1-4, 2014.
[25] P. Lim, H. Goh and B. Chua, “Maximum power point tracking of partially shaded
photovoltaic arrays using particle swarm optimization,” Proceedings of 2014 4th
International Conference on Artificial Intelligence with Applications in
Engineering and Technology, pp. 245-252, 2014.
[26] Y. Hu, J. Liu and B. Liu, “A MPPT control method of PV system based on fuzzy
logic and particle swarm optimization,” Proceedings of the 2012 Second
International Conference on Intelligent System Design and Engineering
Application, pp. 73-75, 2012.
[27] M. Azab, “Optimal power point tracking for stand-alone PV system using particle
swarm optimization,” Proceedings of the IEEE International Symposium on
Industrial Electronics, pp. 969-973, July, 2010.
[28] H. Song, J. Koh and K. Kim, “A rule-based expert system for the optimal problem
of PV systems using particle swarm optimization,” Proceedings of the 2012 IEEE
Conference on Industrial Electronics and Applications, pp. 126-130, July, 2012.
[29] M. Xu and J. P. Gu, “Parameter selection for particle swarm optimization based on
stochastic multi-objective optimization,” Proceedings of Chinese Automation
Congress, pp. 2074-2079, 2015.
[30] X. Yuan, D. Yang and H. Liu, “MPPT of PV system under partial shading
condition based on adaptive inertia weight particle swarm optimization algorithm,”
Proceedings of the IEEE Conference on Cyber Technology in Automation, Control,
and Intelligent Systems, pp. 729-733, 2015.
[31] X. Hu, L. Wang and Y. Zhong, “An improved particle swarm optimization
algorithm for site index curve model,” Proceedings of the 2011 International
Conference on Business Management and Electronic Information, pp. 838-842,
2011.
[32] M. Rang and Q. Wang, “A dynamic search space particle swarm optimization
algorithm based on population entropy,” Proceedings of the 26th Chinese Control
and Decision Conference, pp. 4292-4296, June, 2014.
[33] Y.-H. Liu, S.-C. Huang and J.-W. Huang, “A particle swarm optimization-based
maximum power point tracking algorithm for PV systems operating under partially
shaded conditions,” IEEE Transactions on Energy Conversion, pp. 1027-1035,
2012.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊