跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/13 02:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳向宸
研究生(外文):Siang-Chen Wu
論文名稱:以功能性菌株探討薄膜生物反應槽中SMP與生物膜積垢之形成機制並評估二級訊號物質c-di-GMP與污泥生物膜積垢潛力之相關性
論文名稱(外文):Exploring the membrane biofouling mechanisms of soluble microbial product (SMP) and biofilm by functional bacteria investigation and the relevance between c-di-GMP concentration and biofilm-fouling propensity in membrane bioreactor (MBR).
指導教授:李季眉李季眉引用關係
指導教授(外文):Chi-Mei Lee
口試委員:黃志彬李篤中盧至人童國倫張家源
口試委員(外文):Chih-Ping HuangDuu-Jong LeeChih-Jen LuKuo-Lun TungChia-Yuan Chang
口試日期:2013-06-26
學位類別:博士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:215
中文關鍵詞:薄膜生物反應器薄膜生物積垢溶解性微生物產物生物膜二級訊號物質食微比
外文關鍵詞:Membrane BioreactorBiofoulingSoluble Microbial ProductsBiofilmc-di-GMPF/M ratio
相關次數:
  • 被引用被引用:0
  • 點閱點閱:569
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
本研究共分為兩個階段,第一階段為探討細菌分泌SMP所造成的薄膜積垢情形,先分離僅具有SMP分泌但並非具有生物膜生成能力之菌株以簡化其探討的複雜性,待暸解菌株SMP的分泌現象後將不同的SMP溶液以批次式的薄膜反應槽進行積垢測試,最終以SBR活性污泥系統進行不同食微比的操作,以暸解基質對活性污泥SMP分泌的影響。第二階段之實驗目的與第一階段雷同,探討對象改為生物膜所引起的薄膜積垢。針對三株生物膜標準菌株進行生理特性之探討,並以實驗室規模MBR搭配具時序採樣特性之薄膜組件,探討不同食微比下各類薄膜積垢物所貢獻的含量與變化情形。另外,也試圖探討c-di-GMP二級訊號傳遞物質與活性污泥生物膜積垢含量間的相關性,以期建立可適用於MBR生物膜積垢潛力的新式評估方法。
於第一階段SMP積垢探討方面,以RCV與CR雙重選擇性培養基篩選分離出僅具有SMP分泌能力之菌株Microbacterium trichotecenolyticum B4-1,根據試驗結果發現,菌株B4-1之SMP分泌種類包含UAP與BAP,於UAP部分其分泌含量與基質含量成正比,於10X之合成廢水中其蛋白質UAP分泌含量可達到846.1 mg/L。另外,菌株B4-1於細胞衰敗過程會釋放BAP物質,其每毫克的細胞瓦解量會釋出約0.4毫克之蛋白質BAP物質。比較兩種SMP物質之積垢潛力發現,由BAP物質具有最高的薄膜積垢潛力,批次式薄膜積垢試驗中經20小時過濾後其薄膜總阻抗上升至89.3 x 1011 m-1,其餘UAP組別之薄膜總阻抗最高僅上升至33.7 x 1011 m-1。而EEM分析結果指出,菌株B4-1分泌之UAP與BAP物質含有酪胺酸或色胺酸之蛋白質物質,另外還包含部份棕黃酸、疏水性酸性物質與腐植酸等物質。在SBR活性污泥SMP積垢試驗方面,不同食微比之操作條件下可發現,食微比0.2 mg-COD/mg-MLSS-day (後續以day-1為單位)組別溶液中,聚醣類SMP含量約累積至23.2 ± 2.0 mg/L,而蛋白質SMP含量約累積至13.7 ± 0.4 mg/L,將SBR換至食微比0.05 day-1組別時,聚醣類與蛋白質含量分別下降至11.3 ± 1.5與3.0 ± 0.7 mg/L,將兩組SMP溶液與廢棄污泥組別進行積垢試驗發現,仍是以廢棄污泥所收集之BAP溶液具有最高的薄膜積垢潛力,於過濾試程31小時後達到40.7 ± 2.2 x 1011 m-1。由此可知細胞衰敗所釋出的BAP物質其溶液對薄膜會造成嚴重的積垢情形。
於第二階段方面,本階段亦分離具有生物膜生成能力之菌株B2-1與B2-10。經生理特性探討發現,其生物膜生成受到基質濃度突然轉變而誘發,且其他三株生物膜標準菌株中也觀察到相同現象,由此可推論生物膜的形成與基質含量也具有直接的相關性。利用實驗室規模MBR進行不同食微比之操作結果可知,於食微比0.5 day-1組別時,其薄膜組件之TMP由0.03 bar (3 kPa)經20天後上升至0.28 bar (28 kPa),其中污泥顆粒為薄膜生物積垢主要的貢獻來源,其最終造成的薄膜阻抗為67.0 x 1011 m-1且貢獻百分比為85.6%,其他生物膜與孔洞阻塞的貢獻度則不顯著。於食微比0.05 day-1組別方面,於操作前9天中薄膜組件的TMP變化穩定,TMP由0.03 bar上升至0.06 bar,當試程繼續操作時,薄膜阻件的TMP急速上升並於試驗20天後達到0.52 bar,其薄膜積垢情形較為嚴重,於試驗前期即觀察到生物膜所造成的積垢,且其上升的趨勢與薄膜組件的TMP上升趨勢相符,於最終的阻抗貢獻百分比中,污泥顆粒、生物膜、與孔洞阻塞分別佔了59.6%、30.7%與7.7%,此結果顯示低食微比操作條件下容易促使生物膜生長,附著於薄膜表面造成嚴重的生物膜積垢。綜合本研究兩階段試驗之成果可知,污泥代謝活性與其基質利用情形對各類薄膜生物積垢的變動上具有重要的影響性,因此MBR操作過程應額外增加污泥諸類特性之監控與最佳化,以達到薄膜最少量之生物積垢情形。
於c-di-GMP與生物膜積垢相關性方面,於生物膜標準菌株中可發現,其生物膜生成含量與細胞體內c-di-GMP含量成正相關之趨勢,菌株P. putida於生物膜累積的過程中,其體內的c-di-GMP含量由1.82 pmole/mg-cell上升至3.45 pmole/mg-cell,同樣地,菌株S. enterica體內之c-di-GMP含量也從0.01 pmole/mg-cell上升至8.21 pmole/mg-cell,由此可知,c-di-GMP於不同的生物膜生成菌株中,其與生物膜之生成含量確實具有其相關性。然而,於MBR活性污泥之評估結果卻發現,污泥細胞之c-di-GMP含量與薄膜生物膜積垢之情形相悖,於污泥細胞中,當MBR之操作食微比為0.5 day-1時,此時污泥細胞c-di-GMP之平均含量高達22.62 pmole/mg-sludge,但此時薄膜之生物積垢中生物膜所佔比例為11.0%,相對地,當MBR之操作食微比為0.05 day-1時,其污泥細胞c-di-GMP之平均含量降至2.79 pmole/mg-sludge,但此時薄膜生物積垢中生物膜所佔比例卻提升至30.7%,由此可推論,於混合族群中c-di-GMP訊號物質所調控之生理特性仍需要進一步地研究。
Membrane bioreactor (MBR) is a key technology for wastewater reuse because of the high-quality effluent, low sludge yield, and small reactor footprint. However, membrane biofouling in MBRs is a major obstacle that reduces the filtration efficiency, increases the cost-effectiveness, as well as discourages for wide applications. The aims of this study were focused on the mechanism of membrane biofouling attributed to soluble microbial product (SMP) or biofilm attachment by means of investigation of functional bacterial strains. In addition, the relevance between cyclic-di-GMP (c-di-GMP) amount, an second messenger compound, and biofilm fouling of sludge was also evaluated, tried to develop an novel method to predict the propensity of membrane biofilm fouling in an real MBR process.
The SMP-secreted strain Microbacterium trichotecenolyticum B4-1 was isolated by selective RCV and CR mediums from acclimated wastewater slugde. From the results, the strain B4-1 contained two SMP secreting types. One is the type of substrate-utilization-associated product (UAP), which revealed a direct proportional to substrate concentrations (R2 = 0.988). The strain B4-1 could produce soluble proteins at the concentration of approximately 846.1 mg/L while cultivating with F/M ratio of 8.1. On the other hand, the intercellular polymer proteins of strain B4-1 was released as biomass-associated product (BAP) in the content of 0.4 mg-proteins/mg-cell during the status of cell decay. Comparing the membrane fouling propensity between these two types of SMP solutions, the results showed that the BAP solution had the highest membrane fouling propensity and raised the membrane resistance to 89.3 x 1011 m-1 after 20-hrs filtration. Moreover, the order of fouling propensity was identical in terms of activated sludge in a sequencing batch reactor (SBR). BAP solution from waste sludge storage tank also revealed the highest fouling propensity with the membrane resisitance of 40.7 ± 2.2 x 1011 m-1 for 31-hr filtration.
With respect of biofilm fouling, the results of biofilm formation assay using 96-wells plate with two self-isolated and three widly studied biofilm-forming strains indicated that switching the substrate loadings in a short time could trigger their biofilm-forming state. In addition, it is observed that the intercellular c-di-GMP levels of P. putida and S. enterica were both direct proportional to their bioiflm biomass. In order to understand the correlation between membrane biofilm fouling and substrate loading, a lab-scale MBR under two food to microorganism (F/M) ratios was carried out. The observing results showed that cake layer was the dominant contributor (85.6%) to the membrane biofouling under F/M ratio of 0.5 day-1. The contributions from biofilm as well as pore blocking were only 11.0% and 7.1% respectively ,which were relatively lower than that of cake layer. Combined with microscopic observation, particle size of the sludge flocs was considerably below 20 μm and most of microorganisms grew in the planktonic state. Otherwise, the membrane biofouling distribution was totally distinct and the membrane resistance was almost twice as high as that under F/M ratio of 0.5 day-1 when the lab-scale MBR was operated under F/M ratio of 0.05 day-1. Although cake layer was still the dominant contributor causing 59.6% of total membrane resistance, the portion coming from biofilm was dramatically increased to 30.7% of total membrane resisitance and the particle size of sludge flocs also expanded over 150 μm. Those results elucidated that the biofilm-forming state of sludge was more active under the low F/M ratio condition and the biofilm attachment on the membrane surface caused serious membrane fouling. However, comparing with P. putida and S. enterica strains, the intercellular c-di-GMP level extracted from sludge cells exhibited an opposite tendency toward the propensity of membrane biofilm fouling. The average c-di-GMP level under F/M ratio of 0.5 day-1 achieved 22.62 pmole/mg-sludge, which was nearly 10-fold higher than that under F/M ratio of 0.05 day-1 (2.79 pmole/mg-sludge). Although it showed the opposite tendency, the intercellular c-diGMP level of sludge cell under each operating condtion was stable and the correlation efficiency between operating F/M ratio and intercellular c-di-GMP level was 0.942. These results indicated that using intercellular c-di-GMP level in activated sludge as an novel technique to predict the biofilm fouling propensity should need more investigation in terms of sludge characteristics such as microbial community or substrate affinity.
目錄 I
表目錄 IV
圖目錄 VI
摘要 1
Abstract 5
中英文縮寫對照表 9
第 1 章 、前言與研究目的 11
第 2 章 、文獻回顧 13
2.1全球水資源危機概況 13
2.1.1全球水資源現況與各類用途 13
2.1.2全球水資源危機概況與影響層面 17
2.1.3台灣水資源現況與危機 21
2.2薄膜生物反應槽 23
2.2.1薄膜過濾分類與薄膜種類 24
2.2.2 MBR基本介紹 29
2.2.3 MBR薄膜生物積垢與影響因子 32
2.2.3.1 薄膜積垢機制介紹 33
2.2.3.2 薄膜物理特性之影響 36
2.2.3.3 薄膜化學特性 38
2.2.3.4 活性污泥性質 39
2.2.3.5 活性污泥MLSS濃度 40
2.2.3.6 活性污泥黏滯度與MBR操作溫度 41
2.2.3.7 系統溶氧與污泥膨化 42
2.2.3.8 污泥膠羽粒徑、親疏水性與表面電荷 43
2.2.3.9 MBR曝氣系統 44
2.2.3.10 污泥停留時間 46
2.2.3.11 EPS與SMP的影響 47
2.3生物膜(Biofilm) 53
2.3.1. 生物膜生成影響因子 53
2.3.2. MBR中的生物膜 56
2.3.3. 二級訊號傳遞物質c-di-GMP 58
第 3 章 、材料與方法 61
3.1研究架構 61
3.2第一階段–SMP積垢 63
3.2.1 EPS分泌菌株分離純化與分泌能力測試 63
3.2.2 EPS不同培養方式下之分泌能力測試 66
3.2.3 不同營養程度之菌株SMP分泌情形 66
3.2.4 菌株SMP之薄膜積垢潛力 67
3.2.5菌株SMP之特性探討 69
3.2.6兩階段SBR反應槽薄膜積垢試驗 73
3.2.7菌株FISH分析 75
3.3第二階段–生物膜積垢 77
3.3.1 生物膜菌株選購與生理特性測試 78
3.3.2 菌株生成生物膜與體內c-di-GMP含量之關係 79
3.3.3 薄膜生物反應槽薄膜生物積垢測試 80
3.4 分析方法 86
3.4.1 EPS與SMP聚糖類、蛋白質、腐植質分析 86
3.4.2 細胞密度與乾重分析 88
3.4.3污泥MLSS與COD濃度 88
3.4.4 c-di-GMP之LC/MS/MS分析方法 89
3.4.5 重複試驗 90
第 4 章 、結果與討論 91
4.1 薄膜SMP積垢之探討 91
4.1.1 SMP分泌菌株分離純化與篩選 91
4.1.2菌株B4-1之生理特性 98
4.1.3菌株B4-1之SMP分泌物質特性與積垢潛力 104
4.1.4 SBR反應槽操作與其SMP之積垢潛力 111
4.1.5菌株B4-1之SMP物質特性與螢光原位雜合 121
4.2薄膜生物膜積垢之探討 134
4.2.1生物膜生成菌株篩選 134
4.2.2 生物膜菌株B2-10之生理特性 138
4.2.3生物膜標準菌株之生理特性 143
4.2.4生物膜標準菌株生物膜生成與體內c-di-GMP含量關係 148
4.2.5實驗室規模MBR之生物膜積垢探討 157
4.2.6 活性污泥生物膜積垢與c-di-GMP之關係 174
第 5 章 、結論與建議 181
5.1結論 181
5.2建議 184
參考文獻 186
Adham, S., Gagliardo, P., Boulos, L., Oppenheimer, J., Trussell, R. (2001). Feasibility of the membrane bioreactor process for water reclamation. Water Sci. Technol. Vol. 43. p203-209.
Ahmad, I., Lamprokostopoulou, A., Le Guyon, S., Streck, E., and Barthel, M., Peters V., Hardt, W.D., and Romling, U. (2011). Complex c-di-GMP signaling networks mediate transition between virulence properties and biofilm formation in Salmonella entericaserovar Typhimurium. PLoS ONE. doi:10.1371/journal.pone. 0028351.
Ahmed, Z., Cho, J.W., Lim, B.R., Song, K.G., Ahn, K.H., (2007). Effects of sludge retention time on membrane fouling and microbial community structure in a membrane bioreactor. J. Membr. Sci. Vol. 287. p211-218.
Ahn Y.T., Kang, S.T., Chae, S.R., Lim, J.L., Lee, S.H., and Shin, H.S. (2005). Effect of internal recycle rate on the high-strength nitrogen wastewater treatment in the combined UBF/MBR system. Water Sci. Technol. Vol. 51. p241-247.
Ali, A., Rashid, M.H., and Karaolis, D.K. (2002). High-frequency rugose exopolysaccharide production by Vibrio cholerae. Appl. Environ. Microbiol. Vol. 68. p5773-5778.
Amann, R., Snaidr, J., Wagner, M., Ludwig, W., and Schleifer, K.H. (1996). In situ visualization of high genetic diversity in a natural microbial community. J. Bacteriol. Vol. 178. p3496-3500.
Anderl, J.N., Zahller, J., Roe, F., and Stewart, P.S. (2003). Role of nutrient limitation and stationary-phase existencein Klebsiella pneumonia biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother. Vol. 47. p1251-1256.
Aquino, S.F., Stuckey, D.C., (2008). Integrated model of the production of soluble microbial products (SMP) and extracellular polymeric substances (EPS) in anaerobic chemostats during transient conditions. Biochem. Eng. J. Vol. 38. p138-146.
Arabi, S. and Nakhla, G. (2008). Impact of protein/carbohydrate ratio in the feed wastewater on the membrane fouling in membrane bioreactors. J. Membr. Sci. Vol. 324. p142-150.
Arabi, S. and Nakhla, G. (2010). Impact of molecular weight distribution of soluble microbial products on fouling in membrane bioreactors. Sep. Purif. Technol. Vol. 73. p391-396.

Azami, H., Sarrafzadeh, M.H., and Mehrnia, M.R. (2011). Fouling in membrane bioreactors with various concentrations of dead cells. Desalination. Vol. 278. p373-380.
Badani, Z., Ait-Amar, H., Si-Salah, A., Brik, M., and Fushs, W. (2005). Treatment of textile waste water by membrane bioreactor and reuse. Desalination. Vol. 185. p411-417.
Bae, T.H. and Tak, T.M. (2005). Interpretation of fouling characteristics of ultrafiltration membranes during the filtration of membrane bioreactor mixed liquor. J. Membr. Sci. Vol. 264. p151-160.
Balestrino, D., Haagensen, J.A.J., Rich, C., and Forestier, C. (2005). Characterization of type 2 quorum sensing in Klebsiella pneumonia and relationship with biofilm formation. J. Bacteriol. Vol. 187. p2870-2880.
Ballesteros Martin, M.M., Garrido, L., Casas Lopez, J.L., Sanchez, O., Mas, J., Maldonado, M.I., and Sanchez Perez, J.A. (2011). An analysis of the bacterial community in a membrane bioreactor fed with photo-Fenton pre-treated toxic water. J. Ind. Microbiol. Biotechnol. Vol. 38. p1171-1178.
Barker, D.J. and Stuckey, D.C. (1999). A review of soluble microbial products (SMP) in wastewater treatment systems. Water Res. Vol. 33. p3063-3082.
Barker, D.J., Mannucchi, G.A., Salvi, S.M.L., and Stuckey, D.C. (1999). Characterisation of soluble residual chemical oxygen demand (COD) in anaerobic wastewater treatment effluents. Water Res. Vol. 33. p2499-2510.
Beyenal, H. and Lewandowski, Z. (2000). Combined effect of substrate concentration and flow velocity on effective diffusivity in biofilms. Water Res. Vol. 34. p528-538.
Bin, C., Xiaochang, W., and Enrang, W. (2004). Effects of TMP, MLSS concentration and intermittent membrane permeation on a hybrid submerged MBR fouling, Proceedings of Water Environment – Membrane Technology Conference, Seoul, Korea.
Boehm, A., Kaiser, M., Li, H., Spangler, C., Kasper, C.A., Ackermann, M., Kaever, V., Sourjik, V., Roth, V., and Jenal, U. (2010). Second messenger-mediated adjustment of bacterial swimming velocity. Cell. Vol. 141. p107-116.
Boero, V.J., Eckenfelder, Jr. W.W., and Bowers, A.R. (1996). Molecular weight distribution of soluble microbial products in biological systems. Water Sci. Technol. Vol. 34. p241-248.
Boles, B.R. and McCarter, L.L. (2002). Vibrio parahaemolyticusscr ABC, a novel operon affecting swarming and capsular polysaccharide regulation. J. Bacteriol. Vol. 184. p5946-5954.
Bougdour, A., Lelong, C., and Geiselmann, J. (2004). Crl, a low temperature-induced protein in Escherichia coli that binds directly to the stationary phase σ subunit of RNA polymerase. J. Biol. Chem. Vol. 279. p19540-19550.
Bouhabia, E.H., Aim, R.B., and Buisson, H. (2001). Fouling characterization in membrane bioreactors. Sep. Purif. Technol.Vol. 22-23. p123-132.
Bouju, H., Ricken, B., Beffa, T., Corvini, P.F.X., and Kolvenbach, B.A. (2012). Isolation of bacterial strains capable of sulfamethoxazole mineralization from an acclimated membrane bioreactor. Appl. Environ. Microbiol. Vol. 78. p277-279.
Bowen, W.R., Doneva, A.D., and Yin, H.B. (2001). Separation of humic acid from a model surface water with PSU/SPEEK blend UF/NF membranes. J. Membr. Sci. Vol. 206. p471-429.
Brindle, K. and Stephenson, T. (1996). The application of membrane biological reactors for the treatment of wastewaters. Biotechnol. Bioeng.Vol. 49. p601-610.
Brookes, A., Jefferson, B., Le-Clech, P., and Judd, S. (2003). Fouling of membrane bioreactors during treatment of produced water. Proceedings of International Membrane Science and Technology Conference (IMSTEC). Sydney, Australia.
Bullock, A. and Acreman, M. (2003). The role of wetlands in the hydrologic cycle. Hydrol. Earth Syst. Sci.Vol. 7. p358-389.
Cabassud, C., Laborie, S., and Laine, J.M. (1997). How slug flow can improve ultrafiltration flux in organic hollow fibres. J. Membr. Sci. Vol. 128. p93-101.
Cabassud, C., Masse, A., Espinosa-Bouchot, M., and Sperandio, M. (2004). Submerged membrane bioreactors: Interactions between membrane filtration and biological activity. Proceedings of Water Envrionment – Membrane Technology Conference, Seoul, Korea.
Carlson, G. and Silverstein, J. (1998). Effect of molecular size and charge on biofilm sorption of organic matter. Water Res. Vol. 32. p1580-1592.
Chaize, S. and Huyard, A. (1991). Membrane bioreactor on domestic wastewater treatment sludge production and modeling approach. Water Sci. Technol. Vol. 23. p1591-1600.
Chang, I.S. and Kim, S.N. (2005). Wastewater treatment using membrane filtration - effect of biosolids concentration on cake resistance. Proc. Biochem. Vol. 40. p1307-1314.
Chang, I.S. and Lee, C.H. (1998). Membrane filtration characteristics in membrane-coupled activated sludge system - the effect of physiological states of activated sludge on membrane fouling. Desalination. Vol. 120. p221-233.
Chang, I.S., Bag, S.O., and Lee, C.H. (2001). Effects of membrane fouling on solute rejection during membrane filtration of activated sludge. Process Biochem. Vol. 36. p855-860.
Chang, I.S., Le-Clech, P., Jefferson, B., and Judd, S. (2002). Membrane fouling in membrane bioreactors for wastewater treatment. J. Environ. Eng. Vol. 128. p1018-1029.
Chang, I.S., Lee, C.H., and Ahn, K.H. (1999). Membrane filtration characteristics in membrane-coupled activated sludge system: The effect of flocstructure on membrane fouling. Separ. Sci. Technol. Vol. 34. p1743-1758.
Chang, S., Fane, A.G., and Waite, T.D. (2005). Analysis of constant permeate flow filtration using dead-end hollow fiber membranes. J. Membr. Sci. Vol. 268. p132-141.
Chen, W., Westerhoff, P., Leenheer, J.A., and Booksh, K., (2003). Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. Vol. 37. p5701-5710.
Cho J., Song, K.G., and Ahn, K.H. (2005a). The activated sludge and microbial substances influences on membrane fouling in submerged membrane bioreactor: Unstirred batch cell test. Desalination. Vol. 183. p425-429.
Cho, B.D. and Fane, A.G. (2002). Fouling transients in nominally sub-critical flux operation of a membrane bioreactor. J. Membr. Sci. Vol. 209. p391-403.
Cho, J.W., Song, K.G., Lee, S.H., and Ahn, K.H. (2005b). Sequencing anoxic/anaerobic membrane bioreactor (SAM) pilot plant for advanced wastewater treatment. Desalination. Vol. 178. p219-225.
Choi, H., Zhang, K., Dionysiou, D.D, Oerther, D.B., and Sorial, G.A. (2005a). Effect of permeate flux and tangential flow on membrane fouling for wastewater treatment. Sep. Purif. Technol. Vol. 45. p68-78.
Choi, H., Zhang, K., Dionysiou, D.D., Oerther, D.B., and Sorial, G.A. (2005b). Influence of cross-flow velocity on membrane performance during filtration of biological suspension. J. Membr. Sci. Vol. 248. p189-199.
Choi, J.H., Park, S.K., and Ng, H.Y. (2009). Membrane fouling in a submerged membrane bioreactor using track-etched and phase-inversed porous membranes. Sep. Purif. Technol. Vol. 65. p184-192.
Choo, K.H. and Lee, C.H. (1996a). Membrane fouling mechanisms in the membrane-coupled anaerobic bioreactor. Water Res. Vol. 30. p1771-1780.
Choo, K.H. and Lee, C.H. (1996b). Effect of anaerobic digestion broth composition on membrane permeability. Water Sci. Technol. Vol. 34. p173-179.
Choo, K.H. and Lee, C.H. (1998). Hydrodynamic behavior of anaerobic biosolids during crossflow filtration in the membrane anaerobic bioreactor. Water Res. Vol. 32. p3387-3397.
Chu, W.H., Gao, N.Y., Deng, Y., and Krasner, S.W. (2010). Precursors of dichloroacetamide, an emerging nitrogenous DBP formed during chlorination or chloramination. Environ. Sci. Technol. Vol.44. p3908-3912.
Chua, H.C., Arnot, T.C., and Howell, J.A. (2002). Controlling fouling in membrane bioreactors operated with a variable throughput. Desalination. Vol. 149. p225-229.
Cicek, N., Dionysiou, D., Suidan, M.T., Ginestet, P., and Audic, J.M. (1999). Performance deterioration and structural changes of a ceramic membrane bioreactor due to inorganic abrasion. J. Membr. Sci. Vol. 163.p19-28.
Conlon, K.M., Humphreys, H., and O’Gara, J.P. (2002). icaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis. J. Bacteriol. Vol. 184. p4400-4408.
Costerton, J.W. (1999). Introduction to biofilm. Int. J. Antimicrob. Agents. Vol. 11. p217-221; discussion, p237-239.
Cote, P., Buisson, H., and Praderie, M. (1998). Immersed membranes activated sludge process applied to the treatment of municipal wastewater. Water Sci. Technol. Vol. 38. p437-442.
Cotter, P.A. and Stibitz, S. (2007). c-di-GMP-mediated regulation of virulence and biofilm formation. Curr.Opin. Microbiol. Vol. 10. p17-23
Cui, Z.F., Chang, S., and Fane, A.G. (2003). The use of gas bubbling to enhance membrane processes. J. Membr. Sci. Vol. 221. p1-35.
D’Argenio, D.A., Calfee, M.W., Rainey, P.B., and Pesci, E.C. (2002).Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J. Bacteriol. Vol. 184. p6481-6489.
D’Onofrio, A., Crawford, J.M., Stewart, E.J., Witt, K., Gavrish, E., Epstein, S., Clardy, J., and Lewis, K. (2010). Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem. Biol. Vol. 17. p254-264.
De Araujo, C., Balestrino, D., Roth, L., Charbonnel, N., and Forestier, C. (2010). Quorum sensing affects biofilm formation through lipopolysaccharide synthesis in Klebsiella pneumoniae. Res. Microbiol. Vol. 161. p595-603.
De Jonge, N., Fillie, Y.E., and Deelder, A.M. (1987). A simple and rapid treatment (trichloroacetic acid precipitation) of serum samples to prevent non-specific reactions in the immunoassay of a proteoglycan. J. Immunol. Methods. Vol. 99. p195-197.
de Silva, D.G.V. and Rittmann, B.E. (2000). Nonsteady-state modeling of multispecies activated-sludge processes. Water Environ. Res. Vol. 72. p554-565.
Defrance, L. and Jaffrin, M.Y. (1999). Reversibility of fouling formed in activated sludge filtration. J. Membr. Sci. Vol. 157. p73-84.
Dennison, C., (2002). A guide to protein isolation. Kluwer Academic Publishers. New York. 1st ed.
Dong, B. and Jiang, S.Y. (2009). Characteristics and behaviors of soluble microbial products in sequencing batch membrane bioreactors at various sludge retention times. Desalination. Vol. 243. p240-250.
Dow, J.M., Fouhy, Y., Lucey, J.F., and Ryan, R.P. (2006). The HD-GYP domain, cyclic di-GMP signaling, and bacterial virulence to plants. Mol. Plant Microbe. Interact. Vol. 19. p1378-1384.
Drenkard, E. and Ausubel, F.M. (2002). Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature. Vol. 416. p740-743.
Drews, A., Vocks, M., Iversen, V., Lesjean, B., and Kraume, M. (2006). Influence of unsteady membrane bioreactor operation on EPS formation and filtration resistance. Desalination. Vol. 192. p1-9.
Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., and Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Anal. Chem. Vol. 28. p350-356.
Dufresne, R., Lebrun, R.E., and Lavallee, H.C. (1997). Etude comparative de flux et de performances lors du traitement d'effluent papetiers par bioreacteur a membranes. (Comparative study on fluxes and performances during papermill wastewater treatment with membrane bioreactor.) Can. J. Chem. Engng. Vol. 75. p95-103.
EC (2004). The European pollutant emissions register (EPER). Luxemburg, Office for Official Publications of the European Communities.
Espinosa-Urgel, M., Salido, A., and Ramos, J.L. (2000). Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J. Bacteriol. Vol. 182. p2363-2369.
Evenblij, H. and van der Graaf, J. (2004). Occurrence of EPS in activated sludge from a membrane bioreactor treating municipal wastewater. Water Sci. Technol. Vol. 50. p293-300.
Evenblij, H., Geilvoet, S., van der Graaf, J., and van der Bruggen, B. (2005). Filtration characterisation for assessing MBR performance: three cases compared. Desalination. Vol. 178. p115-124.
Fakhrul-Razi, A. (1994). Ultrafiltration membrane separation for anaerobic wastewater treatment. Water Sci. Technol. Vol. 30. p321-327.
Fakhrul-Razi, A. and Noor, M.J.M.M. (1999). Treatment of palm oil mill effluent (POME) with the membrane anaerobic system (MAS). Water Sci. Technol. Vol. 39. p159-163.
Fan, F., Zhou, H., and Husain, H. (2006). Identification of wastewater sludge characteristics to predict critical flux for membrane bioreactor processes. Water Res. Vol. 40. p205-212.
Fang, H.H.P. and Shi, X. (2005). Pore fouling of microfiltration membranes by activated sludge. J. Membr. Sci. Vol. 264. p161-166.
FAO (1998). Integrating fisheries and agriculture to enhancefish production and food security. The State of Food andAgriculture, No. 31. p85-99.
Fekete, B.M., Vorosmarty, C.J., and Grabs, W. (2002). High resolution fields of global runoff combining observed river discharge and simulated water balances. Global. Biogeochem. Cy. Vol. 16. p15.1-15.10.
Flemming, H.C. and Wingender, J. (2001). Relevance of microbial extracellular polymeric substances (EPSs) – part I: Structural and ecological aspects. Water Sci. Technol. Vol. 43. p1-8.
Flemming, H.C., Neu, T.R., and Wozniak, D.J. (2007). The EPS matrix: the "house of biofilm cells". J. Bacteriol. Vol. 189. p7945-7947.
Flemming, H.C., Schaule, G., Griebe, T., Schmitt, J., and Tamachkiarowa, A. (1997). Biofouling – the Achilles heel of membrane processes. Desalination. Vol. 113. p215-225.
Foweraker, J.E., Laughton, C.R., Brown, D.F., and Bilton, D. (2005). Phenotypic variability of Pseudomonas aeruginosa in sputa from patients with acute infective exacerbation of cystic fibrosis and its impact on the validity of antimicrobial susceptibility testing. J. Antimicrob. Chemother. Vol. 55. p921-927.
Freeman, D.J., Falkiner, F.R., and Keane, C.T. (1989). New method for detecting slime production by coagulase negative staphylococci. J. Clin. Pathol. Vol. 42. p872-874.
Friedman, L. and Kolter, R. (2004). Genes involved inmatrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol. Microbiol. Vol. 51. p675-690.
Frolund, B., Griebe, T., and Nielsen, P.H. (1995). Enzymatic activity in the activated-sludge floc matrix. Appl. Microbiol. Biotechnol. Vol. 43. p755-761.
Frolund, B., Palmgren, R., Keiding, K., and Nielsen, P.H. (1996). Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res. Vol. 30. p1749-1758.
Fuchs, B.M., Wallner, G., Beisker, W., Schwippl, I., Ludwig, W., and Amann, R. (1998). Flow cytometric analysis of the in situ accessibility of Escherichia coli 16S rRNA for fluorescently labeled oligonucleotide probes. Appl. Environ. Microbiol. Vol. 64. p4973-4982.
Fuchs, W., Theiss, M., and Braun, R. (2006). Influence of standard wastewater parameters and pre-flocculation on the fouling capacity during dead end membrane filtration of wastewater treatment effluents. Sep. Purif. Technol. Vol. 52. p46-52.
Furukawa, K., Gu, H., Sudarsan, N., Hayakawa, Y., Hyodo, M., and Breaker, R.R. (2012). Identification of ligand analogues that control c-di-GMP riboswitches. ACS Chem Biol. Vol. 7. p1436-1443.
Gaffney P. E. and Heukelekian H. (1961) Biochemical oxidation of the lower fatty acids. J. WPCF Vol. 11. p1169-1184.
Gally, D.L., Bogan, J.A., Eisenstein, B.I., and Blomfield, I.C. (1993). Environmental regulation of the fim switch controlling type 1 fimbrial phase variation in Escherichia coli K-12: effects of temperature and media. J. Bacteriol. Vol. 175. p6186-6193.
Gander, M.A., Jefferson, B., and Judd, S.J. (2000). Membrane bioreactor for use in small wastewater treatment plants: Membrane materials and effluent quality. Water Sci. Technol. Vol. 41. p205-211.
Gao, M., Yang, M., Li, H., Yang, Q., and Zhang, Y. (2004). Comparison between a submerged membrane bioreactor and a conventional activated sludge system on treating ammonia-bearing inorganic wastewater. J. Biotechnol. Vol. 108. p265-269.
Gardner-Outlaw, T. and Engelman, R. (1997). Sustaining water, easing scarcity: A second update. Washington, D.C., Population Action International.
Gender, M., Jefferson, B., and Judd, S. (2000). Aerobic MBRs for domestic wastewater treatment a review with cost considerations. Sep. Purif. Technol. Vol. 18. p119-130.
Gerke, C., Kraft, A., Sussmuth, R., Schweitzer, O., and Gotz, F. (1998). Characterization of the N-acetylglucosaminyl transferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. J. Biol. Chem. Vol. 273. p18586-18593.
Gerstel, U., Park, C., and Romling, U. (2003). Complex regulation of csgD promoter activity by global regulatory proteins. Mol. Microbiol. Vol. 49. p639-654.
Gertman, I. and Hecht, A. (2002). The Dead Sea hydrography from 1992 to 2000. J. Mar. Syst.Vol. 39. p169-181.
Ghosh, R. and Cui, Z.F. (1999). Mass transfer in gas-sparged ultrafiltration: upward slug flow in tubular membranes. J. Membr. Sci. Vol. 162. p91-102.
Gjermansen, M., Nilsson, M., Yang, L., and Tolker-Nielsen, T. (2010). Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: genetic elements and molecular mechanisms. Mol Microbiol. Vol. 75. p1365-2958.
Gjermansen, M., Ragas, P., and Tolker-Nielen, T. (2006). Proteins with GGDEF and EAL domains regulate Pseudomonas putida biofilm formation and dispersal. FEMS Microbiol. Lett. Vol. 265. p215-224.
Gjermansen, M., Ragas, P., Sternberg, C., Molin, S., and Tolker-Nielsen, T. (2005). Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environ. Microbiol. Vol. 7. p894-904.
Gleick, P.H. (1993). Water in crisis: A guide to the world’s fresh water resources. New York, Oxford University Press.
Golin, J., Kon, Z.N., Wu, C.P., Martello, J., Hanson, L., Supernavage, S., Ambudkar, S.V., and Sauna, Z.E. (2007). Complete inhibition of the Pdr5p multidrug efflux pump ATPase activity by its transport substrate clotrimazole suggests that GTP as well as ATP may be used as an energy source. Biochemistry. Vol. 46. p13109-13119.
Goller, C., Wang, X., Itoh, Y., and Romeo, T. (2006). The cation-responsive protein NhaR of Escherichia coli activates pgaABCD transcription, required for production of the biofilm adhesin poly-β-1,6-N-acetyl-D-glucosamine. J. Bacteriol. Vol. 188. p8022-8032.
Goller, C.C. and Romeo, T. (2008). Environmental influences on biofilm development. Curr. Top. Microbiol. Immunol. Vol. 322. p37-66.
Gorner, T., de Donato, P., Ameil, M.H., Montarges-Pelletier, E., and Lartiges, B.S. (2003). Activated sludge exopolymers: Separation and identification using size exclusion chromatography and infrared micro-spectroscopy. Water Res. Vol. 37. p2388-2393.
Greenberg, A., Trussel, R.R., and Clesseeri, L.S. (1985). Standard methods for the examination of water and wastewater. American Public Health Association. Washington. D.C. 16th ed. p1268.
Grelier, P., Rosenberger, S., and Tazi-Pain, A. (2006). Influence of sludge retention time on membrane bioreactor hydraulic performance. Desalination. Vol. 192. p10-17.
Gu, H., Furukawa, K., Breaker, R.R. (2012). Engineered allosteric ribozymes that sense the bacterial second messenger cyclic-diguanosyl-5'-monophosphate. Anal Chem. Vol. 84. p4935-4941.
Gunder, B. and Krauth, K. (1998). Replacement of secondary clarification by membrane separation – results with plate and hollow fiber modules. Water Sci. Technol. Vol. 40. p311-320.
Hai, F.I., Yamamoto, K., and Fukushi, K. (2005). Different fouling modes of submerged hollow-fiber and flat-sheet membranes induced by high strength wastewater with concurrent biofouling. Desalination. Vol. 180. p89-97.
Han, S.S., Bae, T.H., Jang, G.G., and Tak, T.M. (2005). Influence of sludge retention time on membrane fouling and bioactivities in membrane bioreactor system. Process Biochem. Vol. 40. p2393-2400.
Hashino, M., Katagiri, T., Kubota, N., Ohmukai, Y., Maruyama, T., and Matsuyama, H. (2011). Effect of surface roughness of hollow fiber membranes with gear-shaped structure on membrane fouling by sodium alginate. J. Membr. Sci. Vol. 366. p389-397.
Hassett, D.J., Sutton, M.D., Schurr, M.J., Herr, A.B., Caldwell, C.C., and Matu, J.O. (2009). Pseudomonas aeruginosa hypoxic or anaerobic biofilm infections within cystic fibrosis airways. Trends Microbiol. Vol. 17. p130-138.
He, Y., Xu, P., Li, C., and Zhang, B. (2005). High-concentration food wastewater treatment by an anaerobic membrane bioreactor. Water Res. Vol. 39. p4110-4118.
Henderson, R.K., Baker, A., Parsons, S.A., and Jefferson, B. (2008). Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms. Water Res. Vol. 42. p3435-3445.
Hengge, R. (2009). Principles of c-di-GMP signaling in bacteria. Nat. Rev. Microbiol. Vol. 7. p263-273.
Her, N., Amy, G., Park, H.R., and Song, M. (2004). Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling. Water Res. Vol. 38. p1427-1438.
Hermanowicz, S.W. (2004). Membrane filtration of biological solids: a unified framework and its applications to membrane bioreactors. Proceedings of Water Environment – Membrane Technology Conference, Seoul, Korea.
Hernandez Rojas, M.E., Van Kaam, R., Schetrite, S., and Albasi, C. (2005). Role and variations of supernatant compounds in submerged membrane bioreactor fouling. Desalination. Vol. 179. p95-107.
Hickman, J.W. and Harwood, C.S. (2008). Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol. Vol. 69. p376-389.
Hobley, L., Fung, R.K.Y., Lambert, C., Harris, M.A.T.S., Dabhi, J.M., King, S.S., Basford, S.M., Uchida, K., Till, R., Ahmed, R., Aizawa, S.I., Gomelsky, M., and Sockett, R.E. (2012). Discrete cyclic di-GMP-dependent control of bacterial predation versus axenic growth in Bdellovibrio bacteriovorus. PLoS Pathog Vol. 8. doi:10.1371/journal.ppat.1002493
Hock, R., Jansson, P., and Braun, L.N.(2005). Modelling the response of mountain glacier discharge to climate warming. In book “Global Change and Mountain Regions: An Overview of Current Knowledge” by Huber, U.M., Bugmann, H.K.M., and Reasoner, M.A. Advances in Global Change Research. Vol. 23. p243-252.
Honey, M. (1999). Ecotourism and sustainable development: Who owns paradise? Washington, D.C., Island Press.
Hong, S.P., Bae, T.H., Tak, T.M., Hong, S., and Randall, A. (2002). Fouling control in activated sludge submerged hollow fiber membrane bioreactors. Desalination. Vol. 143. p219-228.
Huang L.N., Wever H.D., and Diels, L. (2008). Diverse and distinct bacterial communities induced biofilm fouling in membrane bioreactors operated under different conditions. Environ. Sci. Technol. Vol. 42. p8360-8366.
Huang, X., Gui, P., and Qian, Y. (2001). Effect of sludge retention time on microbial behaviour in asubmerged membrane bioreactor. Process Biochem. Vol. 36. p1001-1006.
Hwang, B.K., Lee, W.N., Park, P.K., Lee, C.H., and Chang, I.S. (2007). Effect of membrane fouling reducer on cake structure and membrane permeability in membrane bioreactor. J. Membr. Sci. Vol. 288. p149-156.
Ishiguro, K., Imai, K., and Sawada, S. (1994). Effects of biological treatment conditions on permeate flux of UF membrane in a membrane/activated-sludge wastewater treatment system. Desalination. Vol. 98. p119-126.
Itonaga, T., Kumura, K., and Watanabe, Y. (2004). Influence of suspension viscosity and colloidal particles on permeability of membrane used in membrane bioreactor (MBR). Water Sci. Technol. Vol. 50. p301-309.
Ivanovic, I. and Leiknes, T. (2011). Membrane reactor design as a tool for better membrane performancein a biofilm MBR (BF-MBR). Desalin. Water. Treat. Vol. 25. p259-267.
Ivnitsky, H., Katz, I., Minz, D., Shimoni, E., Chen, Y., Tarchitzky, J., Semiat, R., and Dosoretz, C.G. (2005). Characterization of membrane biofouling in nanofiltration processes of wastewater treatment. Desalination. Vol. 185. p255-268.
Ivnitsky, H., Katz, I., Minz, D., Volvovic, G., Shimoni, E., Kesselman, E., Semiat, R., and Dosoretz, C.G. (2007). Bacterial community composition and structure of biofilms developing on nanofiltration membranes applied to wastewater treatment. Water Res.Vol. 41. p3924-3935.
Jackson, D.W., Suzuki, K., Oakford, L., Simecka, J.W., Hart, M.E., and Romeo, T. (2002). Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. J. Bacteriol. Vol. 184. p290-301.
Jacob, M., Guigui, C., Cabassud, C., Darras, H., Lavison, G., and Moulin, L. (2010). Performances of RO and NF processes for wastewater reuse: Tertiary treatment after a conventional activated sludge or a membrane bioreactor. Desalination. Vol. 250. p833-839.
Jang, N., Ren, X., Choi, K., and Kim, I.S. (2006). Comparison of membrane biofouling in nitrification and denitrification for the membrane bioreactor (MBR). Water Sci. Technol. Vol. 53. p43-49.
Jang, N.J., Trussell, R.S., Merlo, R.P., Jenkins, D., Hermanowicz, S.W., and Kim, I.S. (2005). Exocellular polymeric substances molecular weight distribution and filtration resistance as a function of food to microorganism ratio in the submerged membrane bioreactor. Proceedings of International Congress on Membrane and Membrane Processes (ICOM), Seoul, Korea.
Jarusutthirak, C. and Amy, G. (2006). Role of soluble microbial products (SMP) in membrane fouling and flux decline. Environ. Sci. Technol. Vol. 40. p969-974.
Jefferson, B., Brookes, A., Le-Clech, P., and Judd, S.J. (2004). Methods for understanding organic fouling in MBRs. Water Sci. Technol. Vol. 49. p237-244.
Jenal, U. and Malone, J. (2006). Mechanisms of cyclic-di-GMP signaling in bacteria. Annu. Rev. Genet. Vol. 40. p385-407.
Jermann, D., Pronk, W., Meylan, S., and Boller, M. (2007). Interplay of different NOM fouling mechanisms during ultrafiltration for drinking water production. Water Res. Vol. 41. p1713-1722.
Ji, L. and Zhou, J. (2006). Influence of aeration on microbial polymers and membrane fouling in submerged membrane bioreactors. J. Membr. Sci. Vol. 276. p168-177.
Jiang, T., kennedy, M.D., Guinzbourg, B.F., Vanrolleghem, P.A., and Schippers, J.C. (2005). Optimising the operation of a MBR pilot plant by quantitative analysis of the membrane fouling mechanism. Water Sci. Technol. Vol. 51. p19-25.
Jinhua, P., Fukushi, K., and Yamamoto, K. (2006). Bacterial community structure on membrane surface and characteristics of strains isolated from membrane surface in submerged membrane bioreactor. Sep. Sci. Technol. Vol. 41. p1572-1549.
Jones, K., Bradshaw, S.B. (1996). Biofilm formation by the enterobacteriaceae: a comparison between Salmonella enteritidis, Escherichia coli and a nitrogen-fixing strain of Klebsiella pneumoniae. J. Appl. Bacteriol. Vol. 80. p458-464.
Juang Y.C., Adav S.S., Lee D.J., and Lai, J.Y. (2010). Influence of internal biofilm growthon residual permeability loss in aerobic granular membrane bioreactors. Environ. Sci. Technol. Vol. 44. p1267-1273.
Judd, S. 2004. A review of fouling of membrane bioreactors in sewage treatment. Water Sci. Technol. Vol. 49.p229-235.
Judd, S. 2006. The MBR book: Principles and Applications of Membrane Bioreactors in Water and Wastewater Treatment. Oxford, U.K., Elsevier.
Judd, S. and Jefferson, B. (2003). Membranes for Industrial Wastewater Recovery and Reuse. Oxford, U.K., Elsevier.
Judd, S.J., Le-Clech, P., Taha, T., and Cui, Z.F. (2001). Theoretical and experimental representation of a submerged membrane bio-reactor system. Membrane Technology. Vol. 135. p4-9.
Jun, W., Kim, M.S., Lee, K.J., Millner, P., and Chao, K.L. (2009). Assessment of bacterial biofilm on stainless steel by hyperspectral fluorescence imaging. Sens. & Instrumen. Food Qual. Vol. 3. p41-48.
Juretschko, S., Loy, A., Lehner, A., and Wagner, M. (2002). The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Syst Appl Microbiol. Vol. 25. p84-99.
Juretschko, S., Timmermann,G., Schmid, M., Schleifer, K.H., Pommerening-Roser, A., Koops, H.P., and Wagner, M. (1998). Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl. Environ. Microbiol. Vol. 64. p3042-3051.
Kaci, Y., Heyraud, A., Barakat, M., and Heulin, T. (2005). Isolation and identification of an EPS-producing Rhizobium strain from arid soil (Algeria): characterization of its EPS and the effect of inoculation on wheat rhizosphere soil structure. Res. Microbiol. Vol. 156. p522-531.
Kader, A., Simm, R., Gerstel, U., Morr, M., and Romling, U. (2006). Hierarchical involvement of various GGDEF domain proteins in rdar morphotype development of Salmonella enterica serovar Typhimurium. Mol Microbiol. Vol. 60. p602-616.
Kang, I.J., Lee, C.H., and Kim, K.J. (2003). Characteristics of microfiltration membranes in a membrane coupled sequencing batch reactor system. Water Res. Vol. 37. p1192-1197.
Kaplan, J.B. and Mulks, M.H. (2005). Biofilm formation is prevalent among field isolates of Actinobacillus pleuropneumoniae. Vet. Microbiol. Vol. 108. p89-94.
Kayawake, E., Narukami, Y., and Yamagata, M. (1991). Anaerobic digestion by a ceramic membrane enclosed reactor. J. Ferment. Bioeng. Vol. 71. p122-125.
Keevil, C.W., Dowestt, A.B., and Rogers, J. (1993). Legionella biofilms and their control. In: Microbial biofilms: formation and control edited by Denyer, S.P., Gorman, S.P., and Sussman, M. Society for Applied Bacteriology technical series. p201-215.
Khan, S.J., Hyas, S., Javid, S., Visvanathan, C., and Jegatheesan, V. (2010). Performance of suspended and attached growth MBR systems in treating high strength synthetic wastewater. Bioresour.Technol. Vol. 102. p5331-5336.
Khor, S.L., Sun, D.D., Liu, Y.J., and Leckie, J.O. (2007). Biofouling development and rejection enhancement in long SRT MF membrane bioreactor. Process Biochem. Vol. 42. p1641-1648.
Kim, J., Jang, M., Chio, H., and Kim, S. (2004). Characteristics of membrane and module affecting membrane fouling, Proceedings of Water Environment – Membrane Technology Conference, Seoul, Korea.
Kimura, K., Naruse, T., and Watanabe, Y. (2009). Changes in characteristics of soluble microbial products in membrane bioreactors associated with different solid retention times: Relation to membrane fouling. Water Res. Vol. 43. p1033-1039.
Kimura, K., Yamato, N., Yamamura, H., and Watanabe, Y. (2005). Membrane fouling in pilot-scale membrane bioreactors (MBRs) treating municipal wastewater. Environ. Sci. Technol. Vol. 39. p6293-6299.
Klausen, M., Gjermansen, M., Kreft, J.U., and Tolker-Nielsen, T. (2006). Dynamics of development and dispersal in sessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms. FEMS Microbiol Lett. Vol. 261. p1-11.
Klemm, P., Vejborg, R.M., and Sherlock, O. (2006). Self-associating autotransporters, SAATs: functional and structural similarities. Int. J. Med. Microbiol.Vol. 296. p187-195.
Knobloch, J.K., Bartscht, K., Sabottke, A., Rohde, H., Feucht, H.H., and Mack, D. (2001). Biofilm formation by Staphylococcus epidermidis depends on functional RsbU, an activator of the sigB operon: differential activation mechanisms due to ethanol and salt stress. J. Bacteriol. Vol. 183. p2624-2633.
Knoell, T., Safarik, J., Cormack, T., Riley, R., Lin, S.W., and Ridgeway, H. (1999). Biofouling potentials of microporous polysulfone membranes containing a sulfonated polyether-ethersulfone/polyethersuplfone block copolymer: correlation of membrane surface properties with bacterial attachment. J. Membrane Sci. Vol. 157. p117-138.
Komlos, J., Cunningham, A.B., Camper, A.K., and Sharp, R.R. (2005). Interaction of Klebsiella oxytoca and Burkholderia cepacia in dual-species batch cultures and biofilms as a function of growth rate and substrate concentration. Microb. Ecol. Vol. 49. p114-125.
Krauth, K. and Staab, K.F. (1993). Pressurized bioreactor with membrane filtration for wastewater treatment. Water Res. Vol. 27. p405-411.
Kuiper, I., Lagendijk, E.L., Pickford, R., Derrick, J.P., Lamers, G.E., Thomas-Oates, J.E., Lugtenberg, B.J., and Bloemberg, G.V. (2004). Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol. Microbiol. Vol. 51. p97-113.
Kumar, M. and Chatterji, D. (2008). Cyclic di-GMP: a second messenger required for long-term survival, but not for biofilm formation, in Mycobacterium smegmatis. Microbiology. Vol. 154. p2942-2955.
Kuo W. C. (1993) Production of soluble microbial chelators and their impact on anaerobic treatment, Ph.D. thesis, University of Iowa, Iowa City.
Kuo, W.C. and Parkin, G.F. (1996). Characterization of soluble microbial products from anaerobic treatment by molecular weight distribution and nickel-chelating properties. Water Res. Vol. 30. p915-922.
Lamprokostopoulou, A., Monteiro, C., Rhen, M., and Romling, U. (2010). Cyclic di-GMP signalling controls virulence properties of Salmonella enterica serovar Typhimurium at the mucosal lining. Environ. Microbiol. Vol. 12. p40-53.
Laspidou, C.S. and Rittmann, B.E. (2002b). A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res. Vol. 36. p2711-2720.
Laspidou, C.S.and Rittmann, B.E. (2002a). Non-steady state modeling of extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res. Vol. 36.p1983-1992.
Lata, S., Sharma, C., and Singh, A.K. (2012). Microbial influenced corrosion by thermophilic bacteria. Cent. Eur. J. Eng. Vol. 2. p113-122.
Le-Clech, P., Jefferson, B., and Judd, S.J. (2003b). Impact of aeration, solids concentration and membrane characteristics on the hydraulic performance of a membrane bioreactor. J. Membr. Sci. Vol. 218. p117-129.
Le-Clech, P., Jefferson, B., and Judd, S.J. (2005). A comparison of submerged and sidestream tubular membrane bioreactor configurations. Desalination. Vol. 173. p113-122.
Le-Clech, P., Jefferson, B., Chang, I.S., and Judd, S.J. (2003a). Critical flux determination by the flux-step method in a submerged membrane bioreactor. J. Membr. Sci. Vol. 227. p81-93.
Lee, J., Ahn, W.Y., and Lee, C.H. (2001). Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreactor. Water Res. Vol. 35. p2435-2445.
Lee, J.W. and Kim, I.S. (2011). Microbial community in seawater reverse osmosis and rapid diagnosis of membrane biofouling. Desalination. Vol. 273. p118-126.
Lee, K.R. and Yeom, I.T. (2007). Evaluation of a membrane bioreactor system coupled with sludge pretreatment for aerobic sludge digestion. Environ. Technol. Vol. 28. p723-730.
Lee, S.M., Jung, J.Y., and Chung, Y.C. (2001). Novel method for enhancing permeate flux of submerged membrane system in two-phase anaerobic reactor. Water Res. Vol. 35. p471-477.
Lee, W., Joen, J.H., Cho, Y., Chung K.Y., and Min, B.R. (2005). Behavior of TMP according to membrane pore size, Proceedings of International Congress on Membranes and Membrane Processes (ICOM), Seoul, Korea.
Lee, W., Kang, S., and Shin, H. (2003). Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors. J. Membr. Sci. Vol. 216. p217-227.
Lee, W.N., Chang, I.S., Hwang , B.K., Park, P.K., Lee, C.H., and Huang, X. (2007). Changes in biofilm architecture with addition of membrane fouling reducer in a membrane bioreactor. Process Biochem. Vol. 42. p655-661.
Lehner, B. and Doll, P. (2004). Development and validation of aglobal database of lakes, reservoirs and wetlands. J. Hydrol. Vol. 296. p1-22.
Lesjean, B., Rosenberger, S., Laabs, C., Jekel, M., Gnirss, R., and Amy, G. (2005). Correlation between membrane fouling and soluble/colloidal organic substances in membrane bioreactors for municipal wastewater treatment. Water Sci. Technol. Vol. 51. p1-8.
Lewis, K. (2001). Riddle of biofilm resistance. Antimicrob. Agents. Chemother. Vol. 45. p999-1007.
Li, H., Yang, M., Zhang, Y., Liu, X., Gao, M., and Kamagata, Y. (2005). Comparison of nitrification performance and microbial community between submerged membrane bioreactor and conventional activated sludge system. Water Sci. Technol. Vol. 51. p193-200.
Li, Y., Li, A.M., Xu, J., Liu, B., Fu, L.C., Li, W.W., and Yu, H.Q. (2012). SMP production by activated sludge in the presence of a metabolic uncoupler, 3,3',4',5-tetrachlorosalicylanilide (TCS). Appl. Microbiol. Biotechnol.Vol. 95. p1313-1321.
Liang, S., Liu, C., and Song, L. (2007). Soluble microbial products in membrane bioreactor operation: Behaviors, characteristics, and fouling potential. Water Res. Vol. 41. p95-101.
Liang, Z., Das, A., Beerman, D., and Hu, Z. (2010). Biomass characteristics of two types of submerged membrane bioreactor for nitrogen removal. Water Res. Vol.44. p3319-3320.
Lim, S.Y., Kim, S., Yeon, K.M., Sang, B.I., Chun, J., Lee, C.H. (2012). Correlation between microbial community structure and biofouling in a laboratory scale membrane bioreactor with synthetic wastewater. Desalination. Vol. 287. p209-215.
Lim, Y., Jana, M., Luong, T.T., and Lee, C.Y. (2004). Control of glucose- and NaCl-induced biofilm formation by rbf in Staphylococcus aureus. J. Bacteriol. Vol. 186. p722-729.
Liu, Q., Wang, Z.C., Liu, Y., Yuan, H., and Du, Y. (2010). Performance of a hybrid membrane bioreactor in municipal wastewater treatment. Desalination. Vol. 258. p143-147.
Liu, R., Huang, X., Sun, Y.F., and Qian, Y. (2003). Hydrodynamic effect on sludge accumulation over membrane surfaces in a submerged membrane bioreactor. Proc. Biochem. Vol. 39. p157-163.
Liu, R., Huang, X., Xi, J.Y., and Qian, Y. (2005). Microbial behaviour in a membrane bioreactor with complete sludge retention. Process Biochem. Vol. 40. p3165-3170.
Liu, Y. and Fang, H.H.P. (2003). Influences of extracellular polymeric substances (EPS) on flocculation, settling, and dewatering of activated sludge. Crit. Rev. Env. Sci. Technol. Vol. 33. p237-273.
Liu, Y. and Li, J. (2008). Role of Pseudomonas aeruginosa biofilm in the initial adhesion, growth and detachment of Escherichia coli in porous media. Environ. Sci. Technol. Vol. 42. p443-449.
Liu, Y., Yang, C.H., and Li, J. (2008). Adhesion and retention of a bacterial phytopathogen Erwinia chrysanthemi in biofilm-coated porous media. Environ. Sci. Technol. Vol. 42. p159-165.
Loewus, F.A. (1952). Improvement in anthrone method for determination of carbohydrates. Anal. Chem.Vol. 24. p219-219.
Ma, L., Li, X., Du, G., Chen, J., and Shen, Z. (2005). Influence of the filtration modes on colloid adsorption on the membrane in submerged membrane bioreactor. Colloid. Surface. A: Physicochem. Eng. Aspect. Vol. 264. p120-125.
Mack, D., Davies, A.P., Harris, L.G., Rohde, H., Horstkotte, M.A., and Knobloch, J.K. (2007). Microbial interactions in Staphylococcus epidermidis biofilms. Anal. Bioanal. Chem. Vol. 387. p399-408.
Madaeni, S.S., Fane, A.G., and Wiley, D.E. (1999). Factors influencing critical flux in membrane filtration of activated sludge. J. Chem. Technol. Biotechnol. Vol. 74. p539-543.
Malone, J.G.,Williams, R., Christen, M., Jenal, U., Spiers, A.J., and Rainey, P.B. (2007). The structure–function relationship of WspR, a Pseudomonas fluorescens response regulatorwith a GGDEF output domain. Microbiology. Vol. 153. p980-994.
Manem, J. and Sanderson, R. (1996). Membrane bioreactors: In Water Treatment Membrane Processes. edited by Mallevialle, J., Odendaal, P.E., and Wiesner, M.R. McGraw Hill, New York, p17.1-17.31.
Marhuenda-Egea, F.C., Martinez-Sabater, E., Jorda, J., Moral, R., Bustamante, M.A., Paredes, C., and Perez-Murcia, M.D. (2007). Dissolved organic matter fractions formed during composting of winery and distillery residues: evaluation of the process by fluorescence excitation-emission matrix. Chemosphere. Vol. 68. p301-309.
Martinez-Gil, M., Yousef-Coronado, F., and Espinosa-Urgel,M. (2010). LapF, the second largest Pseudomonas putida protein, contributes to plant root colonization and determines biofilm architecture. Mol. Microbiol. Vol. 77 p549-561.
Mastny, L. (2002a). Travelling light: New paths for international tourism. Washington, D.C., Worldwatch Paper 159.
Mastny, L. (2002b). Redirecting International Tourism. in: State of theWorld 2002 edited by Starke, L. New York, Norton
Matilla, M.A., Travieso, M.L., Ramos, J.L., and Ramos-Gonzalez, M.I. (2011). Cyclic diguanylate turnover mediated by the sole GGDEF/EAL response regulator in Pseudomonas putida: its role in the rhizosphere and an analysis of its target processes. Environ. Microbiol. Vol. 13. p1745-1766.
Matsuyama, H., Kawasaki, K., Yumoto, I., and Shida, O. (1999). Microbacterium kitamiense sp. nov., a new polysaccharide-producing bacterium isolated from the wastewater of a sugar-beet factory. Int. J. Syst. Bacteriol. Vol 49. p1353-1357.
Matz, C., Bergfeld, T., Rice, S.A., and Kjelleberg, S. (2004). Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoan grazing. Environ. Microbiol. Vol. 6. p218-226.
Maurer, J.J., Brown, T.P., Steffens, W.L., and Thayer, S.G. (1998). The occurrence of ambient temperature-regulated adhesins, curli, and the temperature-sensitive hemagglutinin tsh among avian Escherichia coli. Avian. Dis. Vol. 42. p106-118.
Meissner, A., Wild, V., Simm, R., Rohde, M., Erck, C., Bredenbruch, F., Morr, M., Romling, U., and Haussler, S. (2007). Pseudomonas aeruginosa cupA-encoded fimbriae expression is regulated by a GGDEF and EAL domain-dependent modulation of the intracellular level of cyclic diguanylate. Environ. Microbiol. Vol. 9. p2475-2485.
Meng, F., Chae, S.R., Drews, A., Kraume, M., Shin, H.S., and Yang, F. (2009). Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material. Water Res. Vol. 43. p1489-1512.
Meng, F., Zhang, H., Yang, F., Li, Y., Xiao, J., and Zhang, X. (2006). Effect of filamentous bacteria on membrane fouling in submerged membrane bioreactor. J. Membrane Sci. Vol. 272. p161-168.
Mercier-Bonin, M., Fonade, C., and Lafforgue-Delmorme, C. (1997). How slug flow can enhance the ultrafiltration flux in mineral tubular membranes. J. Membrane Sci. Vol. 128. p103-113.
Mindham, M.A. and Mayes, P.A. (1992). A simple and rapid method for the preparation of apolipoproteins for electrophoresis. J. Lipid. Res. Vol. 33. p1084-1088.
Mitchell, T. D., Hulme, M., and New, M. (2002). Climate data for political areas. Area.Vol. 34. p109-12.
Mondragon, V., Franco, B., Jonas, K., Suzuki, K., Romeo, T., Melefors, O., and Georgellis, D. (2006). pH-dependent activation of the BarA-UvrY two-component system in Escherichia coli. J. Bacteriol. Vol. 188. p8303-8306.
Morgan, J.W., Forster, C.F., and Evison, L. (1990). A comparative study of the nature of biopolymers extracted from anaerobic and activated sludges. Water Res. Vol. 24. p743-750.
Morpurgo, M., Hofstetter, H., Bayer, E.A., and Wilchek, M. (1998). A chemical approach to illustrate the principle of signal transduction cascades using the avidin-biotin system. J. Am. Chem. Soc. Vol. 120. p12734-12739.
Morris, B.L., Lawrence, A.R.L., Chilton, P.J.C., Adams, B.,Calow, R.C., and Klinck, B.A. (2003). Groundwater and its susceptibility to degradation: aglobal assessment of the problem and options for management. Early Warning and Assessment Report Series, RS. 03-3. United Nations Environment Programme/ DEWA, Nairobi, Kenya.
Mulder, M. (2000). Basic principles of membrane technology. Kluwer Academic Publishers, Dordrecht.
Nagaoka, H. and Nemoto, H. (2005). Influence of extracellular polymeric substances on nitrogen removal in an intermittently-aerated membrane bioreactor. Water Sci. Technol. Vol. 51. p151-158.
Nagaoka, H. Uede, S., and Miya, A. (1996). Influence of bacterial extracellular polymers on the membrane separation activated sludge process. Water Sci. Technol. Vol. 34. p165-172.
Nagaoka, H., Yamanishi, S., and Miya, A. (1998). Modeling of biofouling by extracellular polymers in a membrane separation activated sludge system. Water Sci. Technol. Vol. 38. p497-504.
Nakajima, J. and Mishima, I. (2005) Measurement of foam quality of activated sludge in MBR process. Acta. Hydroch. Hydrob. Vol. 33.p232-239.
Namkung, E. and Rittmann, B.E. (1986). Soluble microbial products (SMP) formation kinetics by biofilms. Water Res. Vol.20. p795-806.
Ng, H.Y., Tan, T.W., and Ong, S.L. (2006). Membrane fouling of submerged membrane bioreactors: impact of mean cell residence time and the contributing factors. Environ. Sci. Technol. Vol. 40. p2706-2713.
Ng, T.C.A. and Ng, H.Y. (2010). Characterisation of initial fouling in aerobic submerged membrane bioreactors in relation to physico-chemical characteristics under different flux conditions. Water Res. Vol. 44. p2336-2348.
Ng. A.N.L. and Kim, A.S. (2007). A mini-review of modeling studies on membrane bioreactor (MBR) treatment for municipal wastewaters. Desalination. Vol. 212. p261-281.
Ng. C.A., Sun, D., Zhang, J., Chua, H.C., Bing, W., Tay, S., and Fane. A. (2005). Strategies to improve the sustainable operation of membrane bioreactors. Proceedings of International Desalination Association Conference, Singapore.
O’Toole, G.A. and Kolter, R. (1998). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol. Microbiol. Vol. 28. p449-461.
Ognier, S., Wisniewski, C., and Grasmick, A. (2002). Influence of macromolecule adsorption during filtration of a membrane bioreactor mixed liquor suspension. J. Membr. Sci. Vol. 209. p27-37.
Ognier, S., Wisniewski, C., and Grasmick, A. (2004). Membrane bioreactor fouling in sub-critical filtration conditions: a local critical flux concept. J. Membr. Sci. Vol. 229. p171-177.
Okabe, S., Kindaichi, T., and Ito, T. (2005). Fate of 14C-labeled microbial products derived from nitrifying bacteria in autotrophic nitrifying biofilms. Appl. Environ. Microbiol. Vol. 71. p3987-3994.
Olsen, A., Arnqvist, A., Hammar, M., and Normark, S. (1993). Environmental regulation of curli production in Escherichia coli. Infect. Agents. Dis. Vol. 2. p272-274.
Olsen, A., Jonsson, A., and Normark, S. (1989). Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature.Vol. 338. p652-655.
Ortega-Morales, B.O., Santiago-Garcia, J.L., Chan-Bacab, M.J., Moppert, X., Miranda-Tello, E., Fardeau, M.L., Carrero, J.C., Bartolo-Perez, P., Valadez-Gonzalez, A., and Guezennec, J. (2007). Characterization of extracellular polymers synthesized by tropical intertidal biofilm bacteria. J. Appl. Microbiol. Vol. 102. p254-264.
Osterberg, S., Aberg, A., Seitz, M.K.H., Wolf-Watz, M., and Shingler, V. (2013). Genetic dissection of a motility-associated c-di-GMP signalling protein of Pseudomonas putida. Environ. Microbiol. Rep.doi: 10.1111/1758-2229.12045.
Pang, C.M., Hong, P.Y., Guo, H.L., and Liu, W.T. (2005). Biofilm formation characteristics of bacterial isolates retrieved from areverse osmosis membrane. Environ. Sci. Technol. Vol. 39. p7541-7550.
Park, J.S., Yeon, K.M., and Lee, C.H. (2005). Hydrodynamics and microbial physiology affecting performance of a new MBR, membrane-coupled high-performance compact reactor. Desalination. Vol. 172. p181-188.
Pernthaler, J., Glockner, F.O., Schonhuber, W., and Amann, R. (2001). Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes. Method Microbiol. Vol. 30. p207-210.
Pollice, A., Brookes, A., Jefferson, B., and Judd. S. (2005). Sub-critical flux fouling in membrane bioreactors – a review of recent literature. Desalination. Vol. 174. p221-230.
Pribyl, M., Tucek, F., Wilderer, P.A., and Wanner, J. (1997). Amount and nature of soluble refractory organics produced by activated sludge micro-organisms in sequencing batch and continuous flow reactors. Water Sci. Technol. Vol. 35. p27-34.
Prigent-Combaret, C., Brombacher, E., Vidal, O., Ambert, A., Lejeune, P., Landini, P., and Dorel, C. (2001). Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene. J. Bacteriol. Vol. 183. p7213-7223.
Psoch, C. and Schiewer, S. (2005). Long-term study of an intermittent air sparged MBR for synthetic wastewater treatment. J. Membr. Sci. Vol. 260. p56-65.
Reisner, A., Haagensen, J.A., Schembri, M.A., Zechner, E.L., and Molin, S. (2003). Development and maturation of Escherichia coli K-12 biofilms. Mol. Microbiol. Vol. 48. p933-946.
Reva, O.N., Weinel, C., Weinel, M., Bohm, K., Stjepandic, D., Hohesel, J.D., and Tummler, B. (2006). Functional genomics of stress responsein Pseudomonas putida KT2440. J. Bacteriol.Vol. 188. p4079-4092.
Rinaudi, L., Fujishige, N.A., Hirsch, A.M., Banchio, E., Zorreguieta, A., and Giordano, W. (2006). Effects of nutritional and environmental conditions on Sinorhizobium meliloti biofilm formation. Res. Microbiol. Vol. 157. p867-875.
Ringersma, J., Batjes, N., and Dent, D. (2003). Green Water:Definitions and Data for Assessment.Report 2003/2, Wageningen, International Soil Reference and Information Centre (ISRIC).
Rittmann, B.E. and McCarty, P.L. (2001). Environmental Biotechnology: Principles and Applications. McGraw Hill. New York.
Rivas, R., Trujillo, M.E., Sanchez, M., Mateos, P.F., Martinez-Molina, E., and Velazquez, E. (2004). Microbacterium ulmi sp. nov., a xylanolytic, phosphate-solubilizing bacterium isolated from sawdust of Ulmus nigra. Int. J. Syst. Evol. Microbiol. Vol. 54. p513-517.
Robledo-Ortiz, J.R., Ramirez-Arreola, D.E., Gomez, C., Gonzalez-Reynoso, O., and Gonzalez-Nunez, R. (2010). Bacterial immobilization by adhesion onto agave-fiber/polymer foamed composites. Bioresour. Technol. Vol. 101. p1293-1299.
Romling, U. and Amikam, D. (2006). Cyclic di-GMP as a second messenger. Curr. Opin. Microbiol. Vol. 9. p1-11.
Romling, U., Rohde, M., Olsen, A., Normark, S., and Reinkoster, J. (2000). AgfD, the check point of multicellular and aggregative behaviour in Salmonella typhimurium, regulates at least two independent pathways. Mol. Microbiol. Vol. 36. p10-23.
Rosenberger, S. and Kraume, M. (2002). Filterability of activated sludge in membrane bioreactors. Desalination. Vol. 146. p373-379.
Rosenberger, S., Evenblij, H., te Poele, S., Wintgens, T., and Laabs, C. (2005). The importance of liquid phase analyses to understand fouling in membrane assisted activated sludge processes – six case studies of different European research groups. J. Membr. Sci. Vol. 263. p113-126.
Rosenberger, S., Laabs, C., Lesjean, B., Gnirss, R., Amy, G., Jekel, M., and Schrotter, J.C. (2006). Impact of colloidal and soluble organic material on membrane performance in membrane bioreactors for municipal wastewater treatment. Water Res. Vol. 40. p710-720.
Rosenberger, S., Witzig, R., Manz, W., Szewzyk, U., and Kraume, M. (2000). Operation of different membrane bioreactors: experimental results and physiological state of the microorganisms. Water Sci. Technol. Vol. 41. p269-277.
Ross, P., Weinhouse, H., Aloni, Y., Michaeli, D., Weinberger-Ohana, P., Mayer, R., Braun, S., de Vroom, E., van der Marel, G.A., van Boom, J.H., and Benziman, M. (1987). Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature. Vol. 325. p279-281.
Ryan, K.J., Ray, C.G., and Sherris, J.C. (2004). Sherris Medical Microbiology : an introduction to infectious diseases (4th ed.). McGraw Hill. New York.
Ryan, R.P., Fouhy, Y., Lucey, F., and Dow, J.M. (2006). Cyclicdi-GMP signaling in bacteria: recent advances and newpuzzles. J. Bacteriol. Vol. 188. p8327-8334.
Sauer, K. (2003). The genomics and proteomics of biofilm formation. Genome. Biol. Vol. 4. p219.1-219.5.
Schagger, H. (2006). Tricine-SDS-PAGE. Nat. Protoc. Vol. 1. p16-22.
Schiener, P., Nachaiyasit, S., and Stuckey, D.C. (1998). Production of soluble microbial products (SMP) in anaerobic baffled reactor: composition, biodegradability, and the effect of process parameters. Environ. Technol. Vol. 19. p391-399.
Schiener, P., Nachaiyasit, S., and Stuckey, D.C. (1998). Production of soluble microbial products (SMP) in an anaerobic baffled reactor: composition, biodegradability and the effect of process parameters. Environ. Technol. Vol. 19. p391-400.
Schrader, G.A., Zwijnenburg, A., andWessling, M. (2005). The effect of WWTP effluent zeta-potential on direct nanofiltration performance. J. Membr. Sci. Vol. 266. p80-93.
Schwan, W.R., Lee, J.L., Lenard, F.A., Matthews, B.T., and Beck, M.T. (2002). Osmolarity and pH growth conditions regulate fim gene transcription and type 1 pilus expression in uropathogenic Escherichia coli. Infect. Immun.Vol. 70. p1391-1402.
Seo, G.T., Lee, T.S., Moon, B.H., Choi, K.S., and Lee, H.D. (1997). Membrane separation activated sludge for residual organic removal in oil wastewater. Water Sci. Technol. Vol. 36.p275-282.
Shi, W., Zhou, Y., Wild, J., Adler, J., and Gross,C.A. (1992). DnaK, DnaJ, GrpE are required for flagellum synthesis in Escherichia coli. J. Bacteriol. Vol. 174. p6256-6263.
Shiklomanov, I. A., and Rodda, J. C. (2003). World water resources at the beginning of the twenty-firstcentury. Cambridge, UK, Cambridge University Press.
Shiklomanov, I.A. (1999). World water resources and their use. Paris, UNESCO and the State Hydrological Institute, St Petersburg.
Shimizu, Y., Okuno, Y.I., Uryu, K., Ohtsubo, S., and Watanabe, A., (1996). Filtration characteristics of hollow fiber microfiltration membranes used in membrane bioreactor for domestic wastewater treatment. Water Res. Vol. 30. p2385-2392.
Shin.S. and Park, C. (1995). Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J. Bacteriol. Vol. 177. p4696-4702.
Sim, L.N., Ye, Y., Chen, V., and Fane, A.G., (2010). Crossflow sampler modified fouling index ultrafiltration (CFS-MFIUF)–An alternative fouling index. J. Membr. Sci. Vol. 360. p174-184.
Simm, R., Morr, M., Kader, A., Nimtz, M., and Romling, U. (2004). GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol. Microbiol. Vol. 53. p1123-1134.
Simm, R., Morr, M., Remminghorst, U., Andersson, M., and Romling, U. (2009). Quantitative determination of cyclic diguanosine monophosphate concentrations in nucleotide extracts of bacteria by matrix-assisted laser desorption/ ionization-time-of-flight mass spectrometry. Anal Biochem. Vol. 386. p53-58.
Singh, K.S. and Viraraghavan, T. (2003). Impact of temperature on performance, microbiological, and hydrodynamic aspects of UASB reactors treating municipal wastewater. Water Sci. Technol. Vol. 48. p211-217.
Smith, C.W., Gregorio, D.D., and Taleott, R.M. (1969). The use of ultrafiltration membrane for activated sludge separation. In: Proceeding of the 24th Annual Purdue Industrial Waste Conference. Purdue University, West Lafayette, Indiana. p1300-1310.
Snaidr, J., Amann, R., Huber, I., Ludwig, W., Schleifer, K.H. (1997). Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl. Environ. Microbiol. Vol. 63. p2884-2896.
Sombatsompop, K., Visvanathan C., and Aim, R.B. (2006). Evaluation of biofouling phenomenon in suspended and attached growth membrane bioreactor systems. Desalination. Vol. 201. p138-149.
Soriano, G.A., Erb, M., Garel, C., and Audic, J.M. (2003). A comparative pilot-scale study of the performance of conventional activated sludge and membrane bioreactors under limiting operating conditions. Water Environ. Res. Vol. 75. p225-231.
Sozen,S. Cokgor,E.U., Orhon,D., and Henze, M. (1998). Respirometric analysis of activated sludge behaviour—II. Heterotrophic growth under aerobic and anoxic conditions. Water Res. Vol. 32. p476-488.
Spangler, C., Bohm, A., Jenal, U., Seifert, R., and Kaever, V. (2010). A liquid chromatography-coupled tandem mass spectrometry method for quantitation of cyclic di-guanosine monophosphate. J. Microbiol. Methods. Vol. 81. p226-231.
Stanley, N.R. and Lazazzera, B.A. (2004). Environmental signals and regulatory pathways that influence biofilm formation. Mol. Microbiol. Vol. 52. p917-924.
Stauffer, J. (1998). The water crisis: constructing solutions to freshwater pollution. London, UK, Earthscan Publications.
Stepanović, S.,Vuković, D.,Hola, V., Bonaventura, G.D.,Djukić, S.,Ćirković, I., andRuzicka, F. (2007). Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS. Vol. 115. p891-899.
Sun, D.D., Hay, C.T., and Khor, S.L. (2006). Effects of hydraulic retention time on behavior of start-upsubmerged membrane bioreactor with prolonged sludge retention time. Desalination. Vol. 195. p209-225.
Takahashi, H. and Shimizu, T. (2006). Phosphodiesterase activity of Ec DOS, a heme-regulated enzyme from Escherichia coli, toward 3',5'-cyclic diguanylic acid is obviously enhanced by O2 and CO binding. Chem. Lett. Vol. 35. p970-971.
Takeuchi, M. and Hatano, K. (1998). Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium. Int. J. Syst. Bacteriol. Vol. 48. p739-747.
Tarnacki, K., Lyko, S., Wintgens, T., Melin, T., and Natau, F. (2005). Impact of extra-cellular polymeric substances on the filterability of activated sludge in membrane bioreactors for landfill leachate treatment. Desalination. Vol. 179. p181-190.
Tewari,P.K., Singh,R.K., Batra,V.S., Balakrishnan, M. (2010). Membrane bioreactor (MBR) for wastewater treatment: Filtration performance evaluation of low cost polymeric and ceramic membranes. Sep. Purif. Technol. Vol. 71. p200-204.
Thormann, K.M., Duttler, S., Saville, R.M., Hyodo, M., Shukla, S., Hayakawa, Y., and Spormann, A.M. (2006). Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilms by cyclic di-GMP. J. Bacteriol. Vol. 188. p2681-2691.
Tian, Y., Chen, L., Zhang, S., Cao, C., and Zhang, S. (2011). Correlating membrane fouling with sludge characteristics in membrane bioreactors: an especial interest in EPS and sludge morphology analysis. Bioresour. Technol. Vol. 102. p8820-8827.
Trehy,M.L., Yost, R.A., and Miles, C.J. (1986). Chlorination byproducts of amino acids in natural waters. Environ. Sci. Technol. Vol. 20. p1117-1122.
Trouve, E., Urbain, V., and Manem, J. (1994). Treatment of municipal wastewater by a membrane bioreactor: Results of a semi-industrial pilot-scale study. Water Sci. Technol. Vol. 30. p151-157.
Trussell, R.S., Merlo, R.P., Hermanowicz, S.W., and Jenkins, D. (2006). The effect of organic loading on process performance and membrane fouling in a submerged membrane bioreactor treating municipal wastewater. Water Res. Vol. 40. p2675-2683.
Ueda, T., Hata, L., Kikuoka, Y., and Seino, O. (1997). Effects of aeration on suction pressure in a submerged membrane bioreactor. Water Res. Vol. 31. p489-494.
UN (United Nations). 2008. World urbanization prospects: The 2007 revision. New York.
UNFPA (United Nations Population Fund). (2002). Footprints and milestones: population and environmental change. The State of the World Population 2001. New York.
Vallet, I., Olson, J.W., Lory, S., Lazdunski, A., and Filloux, A. (2001). The chaperone/usher pathways of Pseudomonas aeruginosa: identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc. Natl. Acad. Sci. USA. Vol. 98. p6911-6916.
Vidal, O., Longin, R., Prigent-Combaret, C., Dorel, C., Hooreman, M., and Lejeune, P. (1998). Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J. Bacteriol. Vol. 180. p2442-2449.
Visvanathan, C., Aim, R.B., and Parameshwaran, K. (2000). Membrane separation bioreactors for wastewater treatment. Crit. Rev. Environ. Sci. Technol. Vol. 30. p1-44.
Vuong, C., Kidder, J.B., Jacobson, E.R., Otto, M., Proctor, R.A., and Somerville, G.A. (2005). Staphylococcus epidermidis polysaccharide intercellular adhesin production significantly increases during tricarboxylic acid cycle stress. J. Bacteriol. Vol. 187. p2967-2973.
Wagner, M., Amann, R., Lemmer, H., and Schleifer, K.H. (1993). Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl. Environ. Microbiol. Vol. 59. p1520-1525.
Wang, C.C., Yang, F.L., and Zhang, H.M. (2010). Fabrication of non-woven composite membrane by chitosan coating for resisting the adsorption of proteins and the adhesion of bacteria. Sep. Purif. Technol. Vol. 75. p358-365.
Wang, X., Dubey, A.K., Suzuki, K., Baker, C.S., Babitzke, P., and Romeo, T. (2005). CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli. Mol. Microbiol. Vol. 56. p1648-1663.
Wang, X., Preston III, J.F., and Romeo, T. (2004). The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J. Bacteriol. Vol. 186. p2724-2734.
Wang, X.C., Liu, Q., and Liu, Y.J. (2010). Membrane fouling control of hybrid membrane bioreactor: Effect of extracellular polymeric substances. Sep. Sci. Technol. Vol. 45. p928-934.
Wang, Z.P. and Zhang, T. (2010). Characterization of soluble microbial products (SMP) under stressful conditions. Water Res. Vol. 44. p5499-5509.
Watanabe, Y., Kimura, K., and Itonaga, T. (2007). Influence of dissolved organic carbon and suspension viscosity on membrane fouling in submerged membrane bioreactor. Sep. Sci. Technol. Vol. 41. p1371-1382.
Weaver, P.F., Wall, J.D., and Gest, H. (1975). Characterization of Rhodopseudomonas capsulata. Arch. Microbiol. Vol. 105. p207-216.
Wen, X., Ding, H., Huang, X., and Lui, R. (2004). Treatment of hospital wastewater using a submerged membrane bioreactor. Process Biochem.Vol. 39. p1427-1431.
WHO/UNICEF (World Health Organization/United Nations Children’s Fund). (2000). Global water supply and sanitation assessment 2000 report. Geneva.
Wicaksana, F., Fane, A.G., and Chen, V. (2006). Fiber movement induced by bubbling using submerged hollow fiber membranes. J. Membr. Sci. Vol. 271. p186-195.
Wilkes, D.M., Wang, C., Aristimuno, P.C., Castro, A.F., and Altenberg, G.A. (2002). Nucleotide triphosphatase activity of the N-terminal nucleotide-binding domains of the multidrug resistance proteins P-glycoprotein and MRP1. Biochem Biophys Res Commun. Vol. 296. p388-394.
Wimpenny, J.W.T. and Colasanti, R. (1997). A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models. FEMS. Microbiol. Ecol. Vol. 22. p1-16.
Wisniewski, C. and Grasmick, A. (1998). Floc size distribution in a membrane bioreactor and consequences for membrane fouling. Colloids Surf. A. Vol. 138. p403-411.
Wolfe, A.J. and Visick, K.L. (2008). Get the message out: cyclic-di-GMP regulates multiple levels of flagellum-based motility. J. Bacteriol. Vol. 190. p463-475.
Xiao, P., Xiao, F., Wang, D.S., Qin, T., and He, S.P. (2012). Investigation of organic foulants behavior on hollow-fiber UF membranesin a drinking water treatment plant. Sep. Purif. Technol. Vol. 95. p109-117.
Yamamoto, K. and Win, K.M. (1991). Tannery wastewater treatment using sequencing batch membrane reactor. Water Sci. Technol. Vol. 23. p1639-1648.
Yang, Q.Y., Yang, T., Wang, H.J., and Liu, K.Q. (2009). Filtration characteristicsof activated sludge in hybrid membrane bioreactor with porous suspended carriers. Desalination. Vol. 249. p507-514.
Yang, S., Yang, F., Fu, Z., Wang, T., and Lei, R. (2010). Simultaneous nitrogen and phosphorus removal by a novel sequencing batch moving bed membrane bioreactor for wastewater treatment. J. Hazard Mater. Vol. 175. p551-557.
Ye, Y., Le-Clech, P., Chen, V., and Fane, A.G. (2005). Evolution of fouling during crossflow filtration of model EPS solutions. J. Membr. Sci. Vol. 264. p190-199.
Yeo, A. and Fane, A.G. (2005). Performance of individual fibers in a submerged hollow fiber bundle. Water Sci. Technol. Vol. 51. p165-172.
Yoon, S.H. (2003). Important operational parameters of membrane bioreactor-sludge disintegration (MBR-SD) system for zero excess sludge production. Water Res.Vol. 37. p1921-1931.
Yoon, S.H., Kang, I.J., and Lee, C.H., (1999). Fouling of inorganic membrane and flux enhancement in membrane-coupled anaerobic bioreactor. Sep. Sci. Technol. Vol. 34. p709-724.
Yoshida, N. and Hiraishi, A. (2004). An improved redox dye-staining method using 5-cyano-2,3-ditoryl tetrazolium chloride for detection of metabolically active bacteria in activated sludge. Microbes. Environ. Vol. 19. p61-70.
You, S.J., Tseng, D.H., Ou, S.H., and Chang, W.K. (2007). Performance and microbial diversity of a membrane bioreactor treating real textile dyeing wastewater. Environ. Technol. Vol. 28. p935-941.
Yu, H.Y., Hu, M.X., Xu, Z.K., Wang, J.L., and Wang, S.Y. (2005b). Surface modification of polypropylene microporous membranes to improve their antifouling property in MBR: NH3 plasma treatment. Sep. Purif. Technol. Vol. 45. p8-15.
Yu, H.Y., Xie, Y.J., Hu, M.X., Wang, J.L., Wang S.Y., and Xu, Z.K. (2005a). Surface modification of polypropylene microporous membrane to improve its antifouling property in MBR: CO2 plasma treatment. J. Membr. Sci. Vol. 254. p219-227.
Zahller, J. and Stewart, P.S. (2002). Transmission electron microscopic study of antibiotic action on Klebsiella pneumonia biofilm. Antimicrob. Agents Chemother. Vol. 46. p2679-2683.
Zakikhany, K., Harrington, C.R., Nimtz, M., Hinton, J.C., and Romling, U. (2010). Unphosphorylated CsgD controls biofilm formation in Salmonella enterica serovar Typhimurium. Mol. Microbiol. Vol. 77. p771-786.
Zhang, J., Chua, H.C., Zhou, J., and Fane, A.G. (2006). Factors affecting the membrane performance in submerged membrane bioreactors. J. Membr. Sci. Vol. 284. p54-66.
Zhang, K., Choi, H., Dionysiou, D.D., and Oerther, D.B. (2008). Application of membrane bioreactors in the preliminary treatment of early planetary base wastewater for long-duration space missions. Water Environ. Res. Vol. 80. p2209-2218.
Zhang, X. and Bishop, P.L. (2003). Biodegradability of biofilm extracellular polymeric substances. Chemosphere. Vol. 50. p63-69.
Zhang, X.Q., Bishop, P.L., and Kindle, B.K. (1999). Comparison of extraction methods for quantifying extracellular polymers in biofilms. Water Sci. Technol. Vol. 39. p211-218.
Zhang, Y., Bu, D., Liu, C.G., Luo, X., and Gu, P. (2004). Study on retarding membrane fouling by ferric salts dosing in membrane bioreactors. Proceedings of Water Environment – Membrane Technology Conference, Seoul, Korea.
Zhou, Z., Meng, F.G., Liang, S., Ni, B.J., Jia, X.S., Li, S., Song, Y.U., and Huang, G.C. (2012). Role of microorganism growth phase in the accumulation and characteristicsof biomacromolecules (BMM) in a membrane bioreactor. RSC Adcances. Vol. 2. p453-460.
Zogaj, X., Nimtz, M., Rohde, M., Bokranz, W., and Romling, U. (2001).The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol. Microbiol. Vol. 39. p1452-1463.
俞孟序。(2012). 以c-di-GMP評估生物膜之生成潛力並探討MBR操作參數對生物膜積垢之影響。碩士論文。
鍾朝恭,簡振源,盧瑞興。(2010). 台灣水資源安全與政策評估。水利期刊。20期。377-383頁。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top