跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/03 07:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王志文
研究生(外文):Wang Chin-Wen
論文名稱:合成2-芐氧基苯甲酸類衍生物做為神經節糖苷GM1接受體抑制劑
論文名稱(外文):Synthesis of 2-(benzyloxy)benzoic acid derivatives as the inhibitor of ganglioside GM1 receptor .
指導教授:黃麗嬌黃麗嬌引用關係侯庭鏞郭盛助郭盛助引用關係
指導教授(外文):Huang Li-JiauHo Tin-YunKuo Sheng-Chu
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:藥物化學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:666
中文關鍵詞:下痢2-芐氧基苯甲酸接受體抑制劑神經節糖苷毒素霍亂腹瀉水瀉環狀腺核苷單磷酸忌熱型腸毒素非抗生素忌熱型腸吸附法刺激型化合物相似性氯離子王志文忌熱型腸吸附法刺激型化合物相似性
外文關鍵詞:diarrheaADPRibosylationgangliosideGM1receptorbenzyloxybenzoic acidisophthalic acidmethoxynaphthoic acidcAMPLTCTenterotoxincholera toxinELISAheat-labileAB5toxinwangdesign
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1063
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
在生化結構研究上發現由產毒性大腸桿菌(ETEC)所分泌的忌熱型腸毒素(LT)與霍亂弧菌所分泌的霍亂毒素(CT)結構有非常大的相似性,對於毒素的作用機轉之闡明已經可以達到分子甚至原子如此細微的等級。毒素五元的次單元B會辨認人類小腸上皮細胞GM1接受器,並引發細胞的內吞作用(endocytosis)而將毒素帶入細胞內,毒素的A1蛋白片段可使α刺激型G蛋白(Gsα)與鳥嘌呤核苷三磷酸(GTP)持續維持在結合狀態,此複合物會活化腺核甘環狀酶(adenyl cyclase) 造成環狀腺核苷單磷酸(cAMP)不斷的被製造,使cAMP濃度上升,造成細胞內離子及水份大量流出至腸腔,引起水瀉症狀產生。
對於抑制毒素次單元B接受體的化學結構設計上,延續先前的研究成果,以2-[(4-methoxybenzyl)oxy]benzoic acid (31)為先導化合物,合成了一系列2 (or 3 or 4)-substituted benzyloxy benzoic acids、4 (or 5 or 6)-methoxy-2-substituted benzyloxy benzoic acids、4-substituted benzyloxy isophthalic acids、1 or 3-substituted benzyloxy -2-naphthoic acids、 2-substituted benzyloxy-1-naphthoic acids以及針對benzoic acid羧基延長的化合物。
在生物活性篩選上我們藉由GM1-酵素結合免疫吸附法(GM1-ELISA)測定活性,並以老鼠做毒素下痢分析的動物實驗,其結果顯示4 or 6-methoxy-2- substituted benzyloxy benzoic acids及3-substituted benzyloxy benzoic acids 具有明
顯的抗下痢活性,值得更進一步研究。
Structural biology studies on heat-labile enterotoxin (LT) from enterotoxigenic Escherichia coli. and the closely related cholera toxin (CT), shed light on the action mechanism of toxin at molecular and atomic levels. The B pentamer protein of the toxins recognized the receptor ganglioside GM1 presented on the gastrointestinal tract of human host and triggers endocytosis . The enzymatic A1 fragment of the toxin enters the cytosol it modifies the alpha subunit of stimulatory G protein (Gsα) and locks the G protein in its GTP-bound form, which continually stimulates adenylate cyclase to produce cAMP. The resulting elevate levels of cAMP cause dramatic efflux of ions and water from the host, leading to watery diarrhea.
Structure-based design has led to various classes of compounds targeting toxin B subunit bonding site in our Laboratory. Following the previous results, 2-[(4-methoxybenzyl)oxy]benzoic acid (31) was used as a lead compound, a series of 2 (or 3 or 4)-substituted benzyloxy benzoic acids, 4 (or 5 or 6)-methoxy-2-substituted benzyloxy benzoic acids, 4-substituted benzyloxy isophthalic acids, 1 or 3-substituted benzyloxy-2-naphthoic acids, 2-Substituted benzyloxy-1-naphthoic acids and carboxyl group extend of benzoic acids were synthesized.
The biological activities of these syntheted compound were examined by GM1 Enzyme-linked Immunosorbent Assay (GM1-ELISA) and Patent Mouse Gut Assay, the result showed 4 or 6-methoxy-2-substituted benzyloxy benzoic acids and 3-substituted benzyloxy benzoic acids have significant anti-diarrhea activities and worthy for further investigation.
中文摘要
英文摘要
第一章 緒論
第一節 背景資料 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1
第二節 小腸上皮細胞氯離子分泌之調控機轉 ‥‥‥‥‥‥‥‥ 3
第三節 目前治療嚴重細菌性腹瀉的方法 ‥‥‥‥‥‥‥‥‥‥ 5
第四節 忌熱型腸毒素(heat-labile enterotoxin; LT)結構解析 ‥‥‥ 7
第五節 忌熱型腸毒素致病機轉 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 10
第六節 相關研究現今概況 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 17
第七節 如何看出立體圖形? ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 21
第八節 研究動機與目的 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 23
第二章 標的化合物之設計與化學合成
第一節 化合物之設計 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 26
第二節 產物構造決定
一、2-Substituted Benzoic acids 類化合物構造決定 ‥‥‥‥‥‥ 35
二、3-Substituted Benzoic acids 類化合物構造決定 ‥‥‥‥‥‥ 41
三、4-Substituted Benzoic acids 類化合物構造決定 ‥‥‥‥‥‥ 46
四、4-Methoxy-2-Substituted Benzoic acids 類化合物構造決定 ‥ 49
五、5-Methoxy-2-Substituted Benzoic acids 類化合物構造決定 ‥ 54
六、6-Methoxy-2-Substituted Benzoic acids 類化合物構造決定 ‥ 59
七、4-Substituted isophthalic acids 類化合物構造決定 ‥‥‥‥‥ 64
八、1-substituted-2-naphthoic acids 類化合物構造決定 ‥‥‥‥ 67
九、3- substituted-2-naphthoic acids 類化合物構造決定 ‥‥‥‥ 73
十、2-Substituted-1-naphthoic acids 類化合物構造決定 ‥‥‥‥ 79
十一、(3E)-4-{2-[(substituted)oxy]-phenyl}but-3-en-2-ones 類化合物構造決定 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 85
十二、3-{2-[(substituted)oxy]-phenyl}propanoic acids 類化合物構造決定 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 91
第三節 試藥、溶媒及材料 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 97
第四節 重要儀器 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 101
第五節 化合物之製備
一、實驗方法改良及注意事項 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 103
二、Methyl substituted benzoate 類化合物之合成 ‥‥‥‥‥‥ 113
三、Substituted benzoic acid 類化合物之合成 ‥‥‥‥‥‥‥ 134
四、Methyl methoxy substituted benzoate 類化合物之合成 ‥‥ 155
五、Dimethyl 4-substituted isophthalate 類化合物之合成 ‥‥‥ 176
六、Methyl substituted naphthoat 類化合物之合成 ‥‥‥‥‥‥ 183
七、Methoxy substituted benzoic acid 類化合物之合成 ‥‥‥‥ 204
八、4-Substituted isophthalic acid 類化合物之合成 ‥‥‥‥‥‥ 222
九、Naphthoic acid substituted 類化合物之合成 ‥‥‥‥‥‥‥ 228
十、(3E)-4-{2-[(substituted)oxy]-phenyl}but-3-en-2-ones類化合物之合成 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 253
十一、(2E)-3-{2-[(substituted)oxy]-phenyl}acrylic acids類化合物之合成 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 259
十二、3-{2-[(substituted)oxy]-phenyl}propanoic acid類化合物之合成 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 271
十三、Nicotinic acid類化合物之合成 ‥‥‥‥‥‥‥‥‥‥‥ 284
第三章 藥理活性試驗
第一節 抗下痢活性試驗方法 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 287
第二節 藥理活性試驗結果
一、GM1 – LTB ELISA ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 289
二、劑量與活性間關係(Dose Responsive)‥‥‥‥‥‥‥‥‥ 292
三、Patent Mouse Gut Assay ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 295
第四章 結論
結構與活性關聯性之探討 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 296
參考文獻 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 300
圖譜解析 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 306
索引表 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 658
1. Murray P. R., Rosenthal K. S. & Kobayashi G. S. (1998). Medical microbiology. 3rd Ed. St. Louis. 232-44.
2. http://www.nics.org.tw/magazine/11/11-3-6.htm
3. http://lib.shsmu.edu.cn/micro/bacteria/enterobacteriaceae/escherichia.htm
4. Baldini M. M., Kaper J. B. & Levine M. M. (1983). Plasmid-mediated adhesion in enteropathogenic Escherichia coli. J. Pediatr. Gastroenterol. Nutr. 2, 534-8.
5. Sixma T. K., Kalk K. H. & Zanten B. A. V. (1993). Refined structure of Escherichia coli heat labile enterotoxin, a close relative of cholera toxin. J. Mol. Biol. 230, 890-918.
6. Thiagarajah J. R. & Verkman A. S. (2003). CFTR pharmacology and its role in intestinal fluid secretion. Curr. Opin. Pharmacol. 3, 594-599.
7. Gadsby D. C., Nagel G. & Hwang T.C. (1995). The CFTR chloride channel of mammalian heart. Annu. Rev. Physiol. 57, 387-416.
8. Theodore M. B., Joseph L. & Kenneth P. M. (2000). Human Pharmacology Molecular to Clincal. 834.
9. Arthur C. G. & John E. H. (2000). Textbook of medical physiology, 9th Ed. 84, 796, 807, 841.
10. Hsu Y. H. & Shaw C. K. (2002). Immunohistochemical detection of deleted-in- colon-cancer (DCC) protein in human normal enterochromaffin cells and gastrointestinal carcinoid tumors. Tzu Chi Medical Journal. 14, 133-138.
11. O'NealC. M. (1997). Roravirus virus-like particles administered mucosally induce protective immunity. J. Virol. 71, 8707-17.
12. http://life.nthu.edu.tw/~scwu/ls5642/rotavirus/rotavirus.htm
13. DuPont H. L. & Ericsson C. D. (1993). Prevention and treatment of travelers diarrhea. N. Engl. J. Med. 328, 1281-1287.
14. Gorbach S. L. (1987). Bacterial diarrhea and its treatment. Lancet. 2, 1387-1382.
15. Sherwood L. G. (1987). Bacterial diarrhoea and its treatment. The Lancet. 330, 1378-1382 .
16. Rang H. P., Ritter J. M., Dale M. M. & Gardner P. (1998). Pharmacology. 361.
17. Okeke I. N., Fayinka S. T. & Lamikanra A. (2000). Antibiotic resistance in Escherichia coli. from Nigerian students 1986-1998. Emerg. Infect. Dis. 6, 393-396.
18. Mary J. M., Pichard A. H. & Pamela C. C. (2001). Lippincott’s illustrated reviews pharmacology 2nd edition. 244.
19. Holmgren J. & Svennerholm A. M. (1992). Bacterial enteric infections and vaccine development. Gastroenterol. Clin. North. Am. 21, 283-302.
20. http://www.cdc.gov/ncidod/dbmd/diseaseinfo/travelersdiarrhea_g.htm
21. http://textbookofbacteriology.net/cholera.html
22. http://textbookofbacteriology.net/e.coli.html
23. Merritt E. A. & Hol G. J. (1995). AB5 toxins. Curr. Opin. Struct. Biol. 5, 165-171.
24. Erkang F., Merritt E. A., Christophe L. M. J. & Hol G. J. (2000). AB5 toxins: structures and inhibitor design. Curr. Opin. Struct. Biol. 10, 680-686.
25. Erkang F., O'Neal C. J. & Daniel D. M. (2004) Structural biology and structure-based inhibitor design of cholera toxin and heat-labile enterotoxin. Int. J. Med. Microbiol. 294, 217-223.
26. Maria S. (2001). Type II secretion and pathogenesis. Am. Soc. Microbiol. 69, 3523-3535.
27. Titia K. S., Sylvia E. P. & Kor H. K. (1991). Crystal structure of a cholera toxin-related heat-labile entertoxin form E. coli. Nature 351, 371-377.
28. Ethan A M., Steve S., Lngeborg K F. & Hol. G. J. (1997). Structural foundation for the design of receptor antagonists targeting Eschericaia coli heat-labile enterotoxin. Research Article. 5, 1485-1499.
29. http://www.rcsb.org/pdb/ Crystal structure of the B subunit of human heat-labile enterotoxin from E. Coli carrying a peptide with anti-Hsv activity X-ray diffraction. resolution: 3.04 Å PDB ID : 1LTR
30. Holmgren J., Fredman P., Lindblad M., Svennerholm A. M. & Svennerholm L. (1982). Rabbit intestinal glycoprotein receptor for Escherichia coli heat-labile enterotoxin lacking affinity for cholera toxin. Infect. Immun. 38, 424-433.
31. Jason C. P., Ethan A. M. & Misol A. (2002). Anchor-based design of improved cholera toxin and E. Coli heat-labile enterotoxin receptor binding antagonists that display multiple binding modes. Chemistry & Biology. 9, 215-224.
32. Ethan A. M., Steve S. & Focco A. (1994). Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Protein Science. 3, 166-175.
33. http://www.rcsb.org/pdb/ PDB ID: 3CHB B-pentamer complexed with GM1 pentasaccharide. resolution: 1.25 Å
34. Williams N.A., Hirst T.R. & Nashar T.O. (1999). Immune modulation by the cholera-like enterotoxins: from adjuvant to therapeutic. Immunol Today. 20, 95-101.
35. Robert J. S., Jeffrey A. L. & Neil A. W. (2002). Immune modulation by the cholera-like enterotoxins. Cambridge University Press. 1462-3994.
36. Richard A. K., Haian F. & Craig R. R. (2002). Cellular hijacking: a common strategy for microbial infection. Biochemical Sciences. 27, 308-314.
37. Wayne I. L. & Billy T. (2003). The intracellular voyage of cholera toxin: going reto. Biochemical Sciences. 28, 639-645.
38. O'Neal C. J., Edward I. A. & Michael G. J. (2004). Crystal structures of an intrinsically active cholera toxin mutant yield insight into the toxin activation mechanism. Biochemistry. 43, 3772-3782.
39. Akker F., Merritt E. A., Pizza M. G., Domenighini M., Rappuoli R. and Hol G. J. (1995). The Arg7Lys mutant of heat-labile enterotoxin exhibits great flexibility of active sited loop 47-56 of the A subunit. Biochemistry. 34, 10996-11004.
40. http://textbookofbacteriology.net/cholera.html Todar's Online Textbook of Bacteriology Vibrio cholerae and Asiatic Cholera, 2005 Kenneth Todar University of Wisconsin-Madison Department of Bacteriology.
41. Hovey B. T., Verlinde C. L. M. J., Merritt E. A., Hol W. G. J. (1999). Structure- based discovery of a pore-binding ligand: towards assembly inhibitors of cholera and related AB5 toxins. J. Mol. Biol. 285, 1169-1178.
42. Tinker J. K., Erbe J. L., Hol W. G. J. and Holmes R. K. (2003). Cholera holotoxin assembly requires a hydrophobic domain at the AB5 interface: mutational analysis and development of an in vitro assembly system. Infection and Immunity. 71, 4093-4101.
43. Mark A. R., Brian E. K., Maria S. & Hol. G. J. (2003). Crystal structure of the extracellular protein secretion NTPase EpsE of Vibrio cholerae. J. Mol. Biol. 333, 657-674.
44. Fan E., Zhang Z., Minke W. E., Hou Z., Verlinde C. L. M. J., Hol W. G. J. (2000). High-Affinity pentavalent ligands of Escherichia coli heat-labile enterotoxin by modular structure-based design. J. Am. Chem. Soc. 122, 2663-2664.
45. Merritt E. A., Zhang Z., Pickens J. C., Ahn M., Hol W. G. J. (2002). Characterization and crystal structure of a high-affinity pentavalent receptor- binding inhibitor for cholera toxin and E. coli heat-labile enterotoxin. J. Am. Chem. Soc. 124, 8818-8824.
46. Zhang Z., Merritt E. A., Ahn M., Roach C., Hou Z., Verlinde C. L. M. J., Hol W. G. J. (2002). Solution and crystallographic studies of branched multivalent ligands that inhibit the receptor-binding of choler toxin. J. Am. Chem. Soc. 124, 12991-12998.
47. Chen J. C., Chang. Y. S., Hsiang C. Y., Ho T. Y. (2005). Anti-diarrheal effect of Galla Chinensis on the E. coli heat-labile enterotoxin and ganglioside interaction. Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan. Unpublished.
48. 許書維. (2003). 2-取代芐氧基苯甲酸衍生物之合成與生理活性,中國醫藥大學藥物化學研究所碩士論文.
49. Chang C. Y., Kuo S. C., Lin Y. L., Wang J. P., Huang L. J. (2001) . Benzyloxy- benzaldehyde analogs as novel adenylyl cyclase activators. Bioorg. Med. Chem. Lett. 11, 1971-1974.
50. 賴玉琪. (2003). (2E)-3-[2(取代芐氧基)-4(或5)甲氧基苯基]丙烯醛及其衍生物之合成及生物活性,中國醫藥大學藥物化學研究所碩士論文.
51. 張瓊云. (2001),6,7,4’-取代異黃烷苯醌及其相關化合物之合成與生理活性,中國醫藥大學藥物化學研究所博士論文.
52. Wendy E. M., Claudia R., Hol W. G. J. & Christophe L. M. J. (1999). Structure-based exploration of the ganaglioside GM1 bindieng Site of Escherichia coli heat-labile enterotoxin and cholera toxin for the discovery of receptor antagonists. Biochemistry. 28, 5684-5692.
53. Jesse J. G., Lucia C., Elly C. & John D. C. (1997). Role of receptor binding in toxicity, immunogenicity, and adjuvanticity of Escherichia coli. heat-labile enterotoxin. Infection and Immunity. 65, 4943-4950.
54. Oi H., Matsuura D., Miyake M., Ueno M., Takai I., Yamamoto T., Kubo M., Moss J. & Noda M. (2002) Identificatin in traditional herbal medications and confirmation by synthesis of factors that inhibit cholera toxin-induced fluid accumulation. PNAS. 99, 3042-3046.
55. http://www.iosh.gov.tw/msds.htm
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top