跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 23:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王雅貞
研究生(外文):Ya-Jean Wang
論文名稱:點帶石斑魚(Epinepheluscoioides)重組活化蛋白基因1及2(rag1andrag2)之選殖及其在魚苗發育時期的表現分析
論文名稱(外文):Cloning recombination activating gene 1 and 2 ( rag1 and rag2 ) and analyzing of the genes expression in adaptive immunity ontogenesis of Orange-Spotted Grouper (Epinephelus coioides)
指導教授:陳世輝陳世輝引用關係林翰佑
指導教授(外文):Shih-hui ChenJohn Han-you Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生物學系碩博士班
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:73
中文關鍵詞:魚苗發育點帶石斑魚免疫系統重組活化蛋白基因1及2
外文關鍵詞:rag2rag1Adaptive immune systemFish larvaeEpinephelus coioides
相關次數:
  • 被引用被引用:0
  • 點閱點閱:427
  • 評分評分:
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:0
點帶石斑魚 (Epinephelus coioides) 為臺灣養殖漁業當中相當重要的養殖魚種之一,但其養殖過程中,幼苗時期常因疾病,如病毒性神經壞死症 (viral nervous necrosis, VNN) 感染的關係,造成高達百分之百的死亡率。而生物體用來對抗疾病發生主要為靠自身的免疫作用來進行。硬骨魚類是目前被發現為最古老具有適應性免疫反應的物種,意即魚類也如同高等脊椎動物一般,可針對不同的病原發展出專一性的免疫物質,也如同脊椎動物一般可以應用疫苗或免疫促進劑來進行疾病的防治。但在胚胎或幼兒時期,由於免疫系統仍屬於發育階段,若太早接受外來抗原,則將容易形成免疫耐受性 (immune tolerance) 的產生而造成無法免疫的現象。故為瞭解魚苗階段何時可以接受外來抗原以引起免疫反應,為在魚苗階段使用疫苗或免疫促進劑等產品重要的資訊。免疫相關細胞在進行特異性分化時,基因重組為一種重要的現象,重組的目的在於造成基因的多樣性,以因應不同的抗原。在執行這個重組現象時有兩個重組活化蛋白 (recombination activating gene 1 and 2 proteins, RAG1 及 RAG2 ) 扮演重要的角色。本研究的目的即為選殖點帶石斑魚重組活化蛋白基因 rag1 及 rag2 ,並探討此這些基因在點帶石斑魚魚苗階段與免疫球蛋白基因之表現情形,以了解特異性免疫反應在點帶石斑魚魚苗階段可能發育的情形。在這兩個基因的full-length cDNA的研究中,利用 RT-PCR 及 RACE 的方式,成功從胸腺中選殖出點帶石斑魚 rag1 及 rag2 全長,以及從頭腎中選殖出 IgM 之部分序列,所穫得之 rag1 cDNA全長為 3653 bp,內含轉譯讀窗 (open reading frame, ORF) 為 3216 bp,可轉譯為1071個胺基酸。rag2 cDNA全長為 1875 bp,ORF 為 1602 bp,可轉譯為533個胺基酸。偵測魚苗發育時期,在 rag1 的部分,在第二週時表現量開始上升,在第三週時表現量達到最大之後,在第四週時表現量較第三週為低;在 rag2 的部分,則第二週時表現量開始上升,在第三週時表現量達到最大,在第四週結束後表現量降低;在 IgM 的部分,到第22天時才有穩定且大量的表現。在偵測不同組織部分,在 rag1 的部分可以偵測到其在胸腺、頭腎及體腎有表現;在 rag2 的部分可以偵測到其在胸腺及頭腎有表現;在 IgM 的部分可以偵測到其在胸腺、頭腎、體腎、脾臟、腸及胰臟有表現,但在腦及肝臟則不表現。因此,本篇論文除了證實胸腺及頭腎在點帶石斑魚為重要的免疫器官之外,更提供了給予疫苗或是免疫促進劑在時間上的參考點。
Orange-spotted grouper (Epinephelus coioides) is a fish species with a high economic importance in the aquaculture industry in Taiwan. The high mortalities observed throughout early development such as viral nervous necrosis (VNN) causes the highest mortalities up to 100% always occur among 1-month-old larvae with total body lengths of 2.0 cm. Teleost is the oldest species has the adaptive immune system. However, there is a risk of inducing immunological tolerance if fish that are immunised at a very early age before they are immunocompetent. Thus, it is important to establish the earliest time that grouper can be vaccinated or give immunopotentiating agent. Recombination activating genes, rag1 and rag2, encode components of the recombinase involved in V(D)J recombination. During B lymphocyte development, the variable region of Ig gene is assembled by the recombination of multiple V, D, J segments, which can generate a vast array of immunoglobulin M (IgM) to against numerous antigen. IgM produced by B lymphocytes is also an important gene that can be used in the study of the ontogenesis of the immune system, as it is the first formed antibody of the primary humoral component of the acquired immune system in fish species. These genes are expressed together in this study in order to understand the expression profile of them. The genes, rag1 and rag2, of E. coioides were cloned and sequenced the open reading frames. The full-length cDNA of rag1 and rag2 were 3653 and 1875 base pairs (bp) long respectively. The lengths of rag1 and rag2 open reading frame were 3216 and 1602 bp encoding 1071 and 533 amino acids with the molecular weight of putative protein were about 117 and 58 kDa. Subsequently, the rag1, rag2 and IgM mRNA expression level in ontogeny of fish and different organs was evaluated by reverse transcriptase PCR (RT-PCR). The result showed the expression level of rag1, rag2 and IgM mRNA raised after 13, 13 and 22 dpf of fries respectively. This data was suggested that orange-spotted grouper at this stage might possess mature immunity and is able to produce immunoglobulin. The expression of rag1 was observed in thymus, head kidney and trunk kidney. The expression of rag2 was observed in thymus and head kidney. The expression of IgM was observed in thymus, head kidney, trunk kidney, spleen, intestines and pancreas. This data forms the basis for a proposal that the thymus and head kidney of teleost species play an essential developmental role in lymphopoiesis and thus can be regarded as a primary lymphoid organ.
摘要 III
Abstract V
目錄 VIII
表目錄 XI
圖目錄 XII
縮寫表 XIV
第一部分、研究背景 1
1.1 水產養殖的重要性 1
1.2 水產養殖在臺灣 1
1.3 台灣的石斑魚養殖--點帶石斑魚 (Epinephelus coioides) 2
1.4 魚類的免疫系統 4
1.4.1 免疫系統 4
1.4.2 魚類的免疫系統 5
1.5 免疫球蛋白 (immunoglobulin, Ig) 和重組活化蛋白基因 6
1.6 魚苗發育 10
研究目標 11
第二部分、材料方法 12
2.1 生物材料 12
2.1.1 實驗動物部分 12
2.1.2 菌種部分及質體部分 12
2.2 退化性及專一性引子部分 12
2.3 反應試劑組 13
2.4 其他藥品與試劑 13
2.5 使用物品 14
2.6 製備瓊脂膠體 14
2.7 樣本採集 14
2.8 抽取組織total RNA 15
2.9 選殖點帶石斑魚的 rag1 及 rag2 基因片段 15
2.9.1 引子的設計 15
2.9.2 藉由電泳膠分析聚合��鏈鎖反應之產物 16
2.9.3 利用膠體抽出 (Gel-extraction) 的方式純化PCR產物 16
2.9.4 在pGEM��- TEasy質體上藉由黏合反應 (ligation) 建構含有 rag1 及 rag2 基因的質體 17
2.9.5 培養、保存大腸桿菌 (E. coli) 及製備大腸桿菌之勝任細胞 (competent cell) 17
2.9.6 轉型已建構 rag1 及 rag2 基因的質體到大腸桿菌之勝任細胞 18
2.9.7 定序 18
2.10 藉由 RACE (rapid amplification of cDNA ends) 取得 rag1 及 rag2 mRNA全部序列 19
2.10.1 試驗材料的準備及 total RNA 的萃取 19
2.10.2 特異性引子的聚合�○s鎖反應 20
2.10.3 建構含 rag1 及 rag2 mRNA 全長之質體 20
2.11 分析在石斑魚魚苗不同發育階段及不同臟器 rag1 , rag2 及 IgM 基因的表現 21
2.11.1 點帶石斑魚(E. coioides) 魚苗收集 21
2.11.2 mRNA 從點帶石斑魚(E. coioides)不同時期魚苗及不同臟器抽出 22
2.11.3 以RT-PCR偵測 rag1 、 rag2 及 IgM 在不同魚苗時期及不同臟器各基因的表現 22
第三部分、研究結果 23
3.1 有關點帶石斑魚 rag1 及 rag2 基因選殖的結果 23
3.2 點帶石斑魚魚苗時期不同時間點基因表現部分 25
3.3 點帶石斑魚不同組織中基因表現部分 25
第四部分、討論 27
4.1 比對找到之基因部分 27
4.2 基因表現的部分 31
參考文獻 33
圖十一、以點帶石斑魚與不同物種之 RAG1 (胺基酸序列) 所繪出之演化樹圖。 54
圖十二、以點帶石斑魚與不同物種之 RAG2 (胺基酸序列) 所繪出之演化樹圖。 55
附錄 67
附錄一、常用溶液配方。 67
附錄二、設計的IgM引子所夾出之胺基酸相對位置。 69
附錄三、 V(D)J 重組基本機制。 70
附錄四、 RAG1 及 RAG2 蛋白質結構基本圖示。 71
附錄五、 B細胞與T細胞發育過程。 72
附錄六、 pGEM��-T Easy Vector 圖譜。 73
周凱雯 (2007),重組免疫球蛋白IgM重鏈恆定區之表現、純化及其抗體之製造,國立臺灣海洋大學水產養殖學系碩士論文。
林翰佐 (2005),馬拉巴石班魚免疫器官組織暨rag1, ikaros基因選殖之研究,國防醫學院生命科學研究所博士論文。
邱盈綺 (2007),台灣石斑魚養殖業的分工,台灣社會學年會。
陳歷歷 (2007),簡介蝦類白點症病毒,國立臺灣海洋大學生命科學院電子報3期。
曾文陽 (1988),石斑魚養殖學,水產出版社出版。
漁業署 (2007),漁業種類別魚類別生產量值,漁業署漁業年報。
蘇偉成 劉富光 (2005),台灣水產養殖的永續經營,科學發展期刊 385期,行政院國家科學委員會。
Adams J., Kelso R. and Cooley L. (2000) The kelch repeat superfamily of proteins: propellers of cell function. Trends Cell Biol 10, 17-24.
Akamatsu Y. and Oettinger M. A. (1998) Distinct roles of RAG1 and RAG2 in binding the V(D)J recombination signal sequences. Mol Cell Biol 18, 4670-8.
Alt F. W., Oltz E. M., Young F., Gorman J., Taccioli G. and Chen J. (1992a) VDJ recombination. Immunol Today 13, 306-14.
Alt F. W., Rathbun G., Oltz E., Taccioli G. and Shinkai Y. (1992b) Function and control of recombination-activating gene activity. Ann N Y Acad Sci 651, 277-94.
Bernstein R. M., Schluter S. F., Bernstein H. and Marchalonis J. J. (1996) Primordial emergence of the recombination activating gene 1 (RAG1): sequence of the complete shark gene indicates homology to microbial integrases. Proc Natl Acad Sci U S A 93, 9454-9.
Breitbart M., Salamon P., Andresen B., Mahaffy J. M., Segall A. M., Mead D., Azam F. and Rohwer F. (2002) Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci U S A 99, 14250-5.
Callebaut I. and Mornon J. P. (1998) The V(D)J recombination activating protein RAG2 consists of a six-bladed propeller and a PHD fingerlike domain, as revealed by sequence analysis. Cell Mol Life Sci 54, 880-91.
Carlson L. M., Oettinger M. A., Schatz D. G., Masteller E. L., Hurley E. A., McCormack W. T., Baltimore D. and Thompson C. B. (1991) Selective expression of RAG-2 in chicken B cells undergoing immunoglobulin gene conversion. Cell 64, 201-8.
Castri J., Thiery R., Jeffroy J., de Kinkelin P. and Raymond J. C. (2001) Sea bream Sparus aurata, an asymptomatic contagious fish host for nodavirus. Dis Aquat Organ 47, 33-8.
Cheng C. A., John J. A., Wu M. S., Lee C. Y., Lin C. H. and Chang C. Y. (2006) Characterization of serum immunoglobulin M of grouper and cDNA cloning of its heavy chain. Vet Immunol Immunopathol 109, 255-65.
Chi S. C., Shieh J. R. and Lin S. J. (2003) Genetic and antigenic analysis of betanodaviruses isolated from aquatic organisms in Taiwan. Dis Aquat Organ 55, 221-8.
Corripio-Miyar Y., Bird S., Treasurer J. W. and Secombes C. J. (2007) RAG-1 and IgM genes, markers for early development of the immune system in the gadoid haddock, Melanogrammus aeglefinus, L. Fish Shellfish Immunol 23, 71-85.
Cuomo C. A., Mundy C. L. and Oettinger M. A. (1996) DNA sequence and structure requirements for cleavage of V(D)J recombination signal sequences. Mol Cell Biol 16, 5683-90.
Danilova N., Bussmann J., Jekosch K. and Steiner L. A. (2005) The immunoglobulin heavy-chain locus in zebrafish: identification and expression of a previously unknown isotype, immunoglobulin Z. Nat Immunol 6, 295-302.
De P. and Rodgers K. K. (2004) Putting the pieces together: identification and characterization of structural domains in the V(D)J recombination protein RAG1. Immunol Rev 200, 70-82.
Eastman Q. M., Villey I. J. and Schatz D. G. (1999) Detection of RAG protein-V(D)J recombination signal interactions near the site of DNA cleavage by UV cross-linking. Mol Cell Biol 19, 3788-97.
Fugmann S. D. and Schatz D. G. (2001) Identification of basic residues in RAG2 critical for DNA binding by the RAG1-RAG2 complex. Mol Cell 8, 899-910.
Fugmann S. D., Villey I. J., Ptaszek L. M. and Schatz D. G. (2000) Identification of two catalytic residues in RAG1 that define a single active site within the RAG1/RAG2 protein complex. Mol Cell 5, 97-107.
Fuschiotti P., Harindranath N., Mage R. G., McCormack W. T., Dhanarajan P. and Roux K. H. (1993) Recombination activating genes-1 and -2 of the rabbit: cloning and characterization of germline and expressed genes. Mol Immunol 30, 1021-32.
Godderz L. J., Rahman N. S., Risinger G. M., Arbuckle J. L. and Rodgers K. K. (2003) Self-association and conformational properties of RAG1: implications for formation of the V(D)J recombinase. Nucleic Acids Res 31, 2014-23.
Grace M. F. and Manning M. J. (1980) Histogenesis of the lymphoid organs in rainbow trout, Salmo gairdneri Rich. 1836. Dev Comp Immunol 4, 255-64.
Grawunder U., Leu T. M., Schatz D. G., Werner A., Rolink A. G., Melchers F. and Winkler T. H. (1995) Down-regulation of RAG1 and RAG2 gene expression in preB cells after functional immunoglobulin heavy chain rearrangement. Immunity 3, 601-8.
Greenhalgh P., Olesen C. E. and Steiner L. A. (1993) Characterization and expression of recombination activating genes (RAG-1 and RAG-2) in Xenopus laevis. J Immunol 151, 3100-10.
Grotmol S. and Totland G. K. (2000) Surface disinfection of Atlantic halibut Hippoglossus hippoglossus eggs with ozonated sea-water inactivates nodavirus and increases survival of the larvae. Dis Aquat Organ 39, 89-96.
Guo Y. X., Dallmann K. and Kwang J. (2003) Identification of nucleolus localization signal of betanodavirus GGNNV protein alpha. Virology 306, 225-235.
Hanif A., Bakopoulos V., Leonardos I. and Dimitriadis G. J. (2005) The effect of sea bream (Sparus aurata) broodstock and larval vaccination on the susceptibility by Photobacterium damsela subsp. piscicida and on the humoral immune parameters. Fish Shellfish Immunol 19, 345-61.
Hansen J. D. and Kaattari S. L. (1995) The recombination activation gene 1 (RAG1) of rainbow trout (Oncorhynchus mykiss): cloning, expression, and phylogenetic analysis. Immunogenetics 42, 188-95.
Hansen J. D. and Kaattari S. L. (1996) The recombination activating gene 2 (RAG2) of the rainbow trout Oncorhynchus mykiss. Immunogenetics 44, 203-11.
Hansen J. D., Landis E. D. and Phillips R. B. (2005) Discovery of a unique Ig heavy-chain isotype (IgT) in rainbow trout: Implications for a distinctive B cell developmental pathway in teleost fish. Proc Natl Acad Sci U S A 102, 6919-24.
Hiom K. and Gellert M. (1998) Assembly of a 12/23 paired signal complex: a critical control point in V(D)J recombination. Mol Cell 1, 1011-9.
Hirono I., Nam B.-H., Enomoto J., Uchino K. and Aoki T. (2003) Cloning and characterisation of a cDNA encoding Japanese flounder Paralichthys olivaceus IgD. Fish & Shellfish Immunology 15, 63-70.
Honjo T., Shimizu A. and Yaoita Y. (1989) Constant-region genes of the immunoglobulin heavy chain and molecular mechanism of class switching. Immunoglobulin Genes, 123-149.
Hordvik I., Thevarajan J., Samdal I., Bastani N. and Krossoy B. (1999) Molecular cloning and phylogenetic analysis of the Atlantic salmon immunoglobulin D gene. Scand J Immunol 50, 202-10.
Kai Y. H. and Chi S. C. (2008) Efficacies of inactivated vaccines against betanodavirus in grouper larvae (Epinephelus coioides) by bath immunization. Vaccine 26, 1450-7.
Kim D. R., Dai Y., Mundy C. L., Yang W. and Oettinger M. A. (1999) Mutations of acidic residues in RAG1 define the active site of the V(D)J recombinase. Genes Dev 13, 3070-80.
Kokubu F., Litman R., Shamblott M. J., Hinds K. and Litman G. W. (1988) Diverse organization of immunoglobulin VH gene loci in a primitive vertebrate. EMBO J 7, 3413-22.
Landree M. A., Wibbenmeyer J. A. and Roth D. B. (1999) Mutational analysis of RAG1 and RAG2 identifies three catalytic amino acids in RAG1 critical for both cleavage steps of V(D)J recombination. Genes Dev 13, 3059-69.
Lieber M. R., Ma Y., Pannicke U. and Schwarz K. (2003) Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 4, 712-20.
Lin C. C., Lin J. H. Y., Chena M. S. and Yang H. L. (2007) An oral nervous necrosis virus vaccine that induces protective immunity in larvae of grouper (Epinephelus coioides) Aquaculture 268, 265-273.
Lin W. C. and Desiderio S. (1995) V(D)J recombination and the cell cycle. Immunol Today 16, 279-89.
Litman G. W., Anderson M. K. and Rast J. P. (1999) Evolution of antigen binding receptors. Annu Rev Immunol 17, 109-47.
Liu Y., Zhang S., Jiang G., Yang D., Lian J. and Yang Y. (2004) The development of the lymphoid organs of flounder, Paralichthys olivaceus, from hatching to 13 months. Fish Shellfish Immunol 16, 621-32.
Magnadottir B., Lange S., Gudmundsdottir S., Bogwald J. and Dalmo R. A. (2005) Ontogeny of humoral immune parameters in fish. Fish Shellfish Immunol 19, 429-39.
McBlane J. F., van Gent D. C., Ramsden D. A., Romeo C., Cuomo C. A., Gellert M. and Oettinger M. A. (1995) Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell 83, 387-95.
Mo X., Bailin T. and Sadofsky M. J. (1999) RAG1 and RAG2 cooperate in specific binding to the recombination signal sequence in vitro. J Biol Chem 274, 7025-31.
Mombaerts P., Iacomini J., Johnson R. S., Herrup K., Tonegawa S. and Papaioannou V. E. (1992) RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869-77.
Mori K., Nakai T., Muroga K., Arimoto M., Mushiake K. and Furusawa I. (1992) Properties of a new virus belonging to nodaviridae found in larval striped jack (Pseudocaranx dentex) with nervous necrosis. Virology 187, 368-371.
Munday B., Kwang J. and Moody N. (2002) Betanodavirus infections of teleost fish: a review. J Fish Dis 25, 127-142.
Oettinger M. A., Schatz D. G., Gorka C. and Baltimore D. (1990) RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248, 1517-23.
Peducasse S., Castric J., Thiery R., Jeffroy J., Le Ven A. and Baudin Laurencin F. (1999) Comparative study of viral encephalopathy and retinopathy in juvenile sea bass Dicentrarchus labrax infected in different ways. Dis Aquat Organ 36, 11-20.
Roth D. B. (2003) Restraining the V(D)J recombinase. Nat Rev Immunol 3, 656-66.
Sadofsky M. J., Hesse J. E. and Gellert M. (1994) Definition of a core region of RAG-2 that is functional in V(D)J recombination. Nucleic Acids Res 22, 1805-9.
Schatz D. G., Oettinger M. A. and Baltimore D. (1989) The V(D)J recombination activating gene, RAG-1. Cell 59, 1035-48.
Schatz D. G., Oettinger M. A. and Baltimore D. (2008) Pillars article: the V(D)J recombination activating gene, RAG-1. 1989. J Immunol 180, 5-18.
Schatz D. G. and Spanopoulou E. (2005) Biochemistry of V(D)J recombination. Curr Top Microbiol Immunol 290, 49-85.
Schlissel M., Constantinescu A., Morrow T., Baxter M. and Peng A. (1993) Double-strand signal sequence breaks in V(D)J recombination are blunt, 5'-phosphorylated, RAG-dependent, and cell cycle regulated. Genes Dev 7, 2520-32.
Schwager J., Mikoryak C. A. and Steiner L. A. (1988) Amino acid sequence of heavy chain from Xenopus laevis IgM deduced from cDNA sequence: implications for evolution of immunoglobulin domains. Proc Natl Acad Sci U S A 85, 2245-9.
Shinkai Y., Rathbun G., Lam K. P., Oltz E. M., Stewart V., Mendelsohn M., Charron J., Datta M., Young F., Stall A. M. and et al. (1992) RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855-67.
Sommerset I., Krossoy B., Biering E. and Frost P. (2005) Vaccines for fish in aquaculture. Expert Rev Vaccines 4, 89-101.
Swanson P. C. and Desiderio S. (1999) RAG-2 promotes heptamer occupancy by RAG-1 in the assembly of a V(D)J initiation complex. Mol Cell Biol 19, 3674-83.
Thompson C. B. (1995) New insights into V(D)J recombination and its role in the evolution of the immune system. Immunity 3, 531-9.
Tonegawa S. (1983) Somatic generation of antibody diversity. Nature 302, 575–581.
Van Muiswinkel W. B. and Wiegertjes G. F. (1997) Immune responses after injection vaccination of fish. Fish Vaccinology 90, 55-57.
Verkoczy L. K., Stiernhdm B. J. and Berinstein N. L. (1995) Up-regulation of recombination activating gene expression by signal transduction through the surface Ig receptor. J Immunol 154, 5136-43.
Warr G. W. (1995) The immunoglobulin genes of fish. Dev Comp Immunol 19, 1-12.
Warr G. W. (1997) The adaptive immune system of fish Fish Vaccinology 90, 15-21.
Willett C. E., Cherry J. J. and Steiner L. A. (1997a) Characterization and expression of the recombination activating genes (rag1 and rag2) of zebrafish. Immunogenetics 45, 394-404.
Willett C. E., Cortes A., Zuasti A. and Zapata A. G. (1999) Early hematopoiesis and developing lymphoid organs in the zebrafish. Dev Dyn 214, 323-36.
Willett C. E., Zapata A. G., Hopkins N. and Steiner L. A. (1997b) Expression of zebrafish rag genes during early development identifies the thymus. Dev Biol 182, 331-41.
Wilson A., Held W. and MacDonald H. R. (1994) Two waves of recombinase gene expression in developing thymocytes. J Exp Med 179, 1355-60.
Wilson M., Bengten E., Miller N. W., Clem L. W., Du Pasquier L. and Warr G. W. (1997) A novel chimeric Ig heavy chain from a teleost fish shares similarities to IgD. Proc Natl Acad Sci U S A 94, 4593-7.
Yancopoulos G. D. and Alt F. W. (1986) Regulation of the assembly and expression of variable-region genes. Annu Rev Immunol 4, 339-68.
Yu W., Nagaoka H., Jankovic M., Misulovin Z., Suh H., Rolink A., Melchers F., Meffre E. and Nussenzweig M. C. (1999a) Continued RAG expression in late stages of B cell development and no apparent re-induction after immunization. Nature 400, 682-7.
Yu W., Nagaoka H., Misulovin Z., Meffre E., Suh H., Jankovic M., Yannoutsos N., Casellas R., Besmer E., Papavasiliou F., Qin X. and Nussenzweig M. C. (1999b) RAG expression in B cells in secondary lymphoid tissues. Cold Spring Harb Symp Quant Biol 64, 207-10.
Zapata A. G., Torroba M., Varas A. and Jim�聲ez E. (1997) Immunity in Fish Larvae. Fish Vaccinology 90, 23-32.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top