跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/10 05:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鐘柏顯
研究生(外文):Po-HsienChung
論文名稱:探討乾溼日移轉機率在氣候變遷下對水文特性之影響
論文名稱(外文):A Study on the Effects of Dry-Wet Transition Probabilities on Hydrological Characteristics under Climate Change
指導教授:游保杉游保杉引用關係
指導教授(外文):Pao-Shan Yu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系碩博士班
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:127
中文關鍵詞:氣候變遷修正型氣象繁衍模式乾溼日移轉機率隨機森林
外文關鍵詞:climate changethe modified weather generatordry-wet transition probabilitiesrandom forests
相關次數:
  • 被引用被引用:1
  • 點閱點閱:283
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
本研究首先針對歷史紀錄之乾溼日移轉機率進行統計檢定,發現乾溼日移轉機率確實會隨著時間而變化,因此嘗試探討乾溼日移轉機率在氣候變遷下對水文特性之影響,並建立「可反應氣候變遷條件之修正型氣象繁衍模式」(以下簡稱修正型氣象繁衍模式)做為分析工具。本研究採用隨機森林、區別分析與支撐向量機分別建立乾溼日分類模式與雨量回歸模式並比較其優劣,且由最佳分類模式推算未來氣候變遷情境的乾溼日移轉機率,並由最佳回歸模式推算未來氣候變遷情境之平均月雨量以供修正型氣象繁衍模式使用。為探討乾溼日移轉機率在氣候變遷下對水文特性之影響,本研究將修正型與傳統型氣象繁衍模式之未來繁衍結果相互比較,並將繁衍結果做為降雨-逕流模式之輸入,比較修正型與傳統型氣象繁衍模式對未來水庫入流量模擬結果之差異。
研究結果發現:乾溼日分類與雨量回歸模式中均以隨機森林模擬的結果最為理想,能適切反應實際之降雨情況。不論是乾溼日移轉機率或是平均月雨量之分析結果均顯示:未來相較於基期而言豐枯差異更加明顯。且由未來繁衍結果可以發現:修正型與傳統型氣象繁衍模式在低雨量之模擬結果差異不大,但在極端雨量部份則視不同GCM而有不同之結果。在未來水庫入流量的部份,不論修正型與傳統型氣象繁衍模式之模擬結果,其豐枯差異情形均比基期更為懸殊,其中修正型會比傳統型氣象繁衍模式之模擬結果更加劇烈。
This study first find the dry-wet transition probabilities (DWTPs) in our study area have increasing/decreasing trends with time based on the statistical tests during baseline period. That may imply it is necessary to consider the future DWTPs into the weather generator (WGs) when applying WGs for projecting future rainfalls. Therefore, this study try to develop a WG with the ability of considering DWTPs under climate change conditions (called“the modified WG”hereafter). Modified WG is further used to assess the effects of dry-wet transition probabilities on hydrological characteristics under climate change. Three methods, including random forests, discriminate analysis and support vector machine are applied to develop dry/wet-day classification models. The best one among the three classification models is chosen to derive the future DWTPs. Besides, the mean monthly rainfall is required to be the input of WG for rainfall projection. Therefore, the rainfall regression models were built by the methods of random forests, linear regression and support vector regression. The best regression result is to be the input of WG for rainfall projection. To investigating the effects of DWTPs on hydrological characteristics under climate change, the differences of future rainfall projection and inflow were compared between the modified and conventional WGs.
The analysis results show that the random forests has the best performances in classification and daily rainfall regression. Based on the analysis of DWTPs and monthly mean rainfall, the difference of rainfall between the dry and wet seasons during the future period could be more significant than during the baseline period. Future rainfall projection with low rainfall intensity has no difference between the modified and conventional WGs, but the difference of extreme rainfall between two WGs is significant and dependent on model of GCM. The future reservoir inflow between dry and wet seasons could be more significant than those of baseline period. The modified WG show a larger difference between the dry and wet seasons than conventional WG.
摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1-1前言 1
1-2研究動機與目的 2
1-3本文組織與架構 3
第二章 文獻回顧 6
第三章 研究區域資料處理與分析 14
3-1研究區域概述 14
3-2資料說明與處理 17
3-2-1水文資料概述 17
3-2-2情境格網資料 18
3-3歷史乾溼日移轉機率之趨勢分析 20
第四章 研究方法 27
4-1可反應氣候變遷條件之修正型氣象繁衍模式 27
4-2隨機森林 29
4-3區別分析 32
4-4支撐向量機 32
4-5降雨-逕流模式 34
第五章 水文特性之分析 41
5-1乾溼日分類模式之建立與比較 42
5-2雨量回歸模式之建立 65
5-3乾溼日移轉機率變化對水文特性之影響 77
第六章 結論與建議 85
6-1結論 85
6-2建議 87
參考文獻 88
附錄A 乾溼日期距機率分布結果 93
1.吳至剛,2000,「氣候變遷對高屏溪流域水資源衝擊之探討」,國立成功大學水利及海洋工程學系碩士論文。
2.吳雷根,2004,「曾文水庫枯水期長期入流量預測之研究」,國立成功大學水利及海洋工程學系碩士論文。
3.呂季蓉,2006,「台灣南部長期乾旱趨勢分析之研究」,國立成功大學水利及海洋工程學系碩士論文。
4.宋嘉文,2003,「氣候變遷對台灣西半部地區降雨及乾旱影響之研究」,國立成功大學水利及海洋工程學系碩士論文。
5.陳潔,2012,「氣候變遷對曾文水庫區缺水風險之衝擊」,國立成功大學水利及海洋工程學系碩士論文。
6.楊道昌,1999,「區域連續型降雨-逕流模式之研究」,國立成功大學水利及海洋工程學系博士論文。
7.經濟部水利署,2012,「氣候變遷對水環境之衝擊與調適研究計畫」。
8.Ayuo, P., Musick, B., Liu, H., Braitstein, P., Nyandiko, W., Otieno-Nyunya, B., Gardner, A. and Wool-Kaloustian, K. (2013),“Frequency and factors associated with adherence to and completion of combination antiretroviral therapy for prevention of mother to child transmission in western Kenya,Journal of International AIDS Society, 16, 1-10.
9.Breiman, L. and Cutler, A. (2001),“Random Forests,Machine Learning, 45(1), 5-32.
10.Busuioc, A., Tomozeiu, R. and Cacciamani, C. (2008),“Statistical downscaling model based on canonical correlation analysis for winter extreme precipitation events in the Emilia-Romagna region,International Journal of Climatology, 28, 449-464.
11.Charles, S.P., Bates, B.C., Smith, I.N. and Hughes, J.P. (2004),“Statistical downscaling of daily precipitation from observed and modelled atmospheric fields,Hydrological Processes, 18, 1373-1394.
12.Chen, S.T., Yu, P.S. and Tang , Y.H. (2010),“Statistical downscaling of daily precipitation using support vector machines and multivariate analysis,Journal of Hydrology, 385, 13-22.
13.Chu, J.L. and Yu, P.S. (2010),“A study of the impact of climate change on local precipitation using statistical downscaling,Journal of Geophysical Research, 115, 1-11.
14.Fealy, R. and Sweeney, J. (2007),“Statistical downscaling of precipitation for a selection of sites in Ireland employing a generalised linear modelling approach,International Journal of Climatology, 27, 2083-2094.
15.Fisher, R.A. (1936),“The use of multiple measurements in taxonomic problems,Ann of Eugenics, 7, 179-188.
16.Hellström, C., Chen, D., Achberger, C. and Räisänen, J. (2001),“Comparison of climate change scenarios for Sweden based on statistical downscaling of monthly precipitation,Climate Research, 19, 45-55.
17.Hessami, M., Gachon, P., Ouarda, T.B.M.J. and St-Hilaire, A. (2008),“Automated regression-based statistical downscaling tool,Environmental Modelling & Software, 23, 813-834.
18.Hsieh, C.H., Lu, R.H., Lee, N.H., Chiu, W.T., Hsu, M.H. and Li, Y.C. (2011),“Novel solutions for an old disease: Diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks,Surgery, 149(1), 87-93.
19.Huang, J., Zhang, Z., Sun, S. and Yao, J. (2012),“Simulation of extreme precipitation indices in the Yangtze River basin by using statistical downscaling method (SDSM),Theor Appl Climatol, 108, 325-343.
20.Huth, R. (2004),“Sensitivity of local daily temperature change estimates to the selection of downscaling models and predictors,Journal of Climate, 17, 640-652.
21.Jeong, D.I., St-Hilaire, A., Ouarda, T.B.M.J. and Gachon, P. (2012),“Comparison of transfer functions in statistical downscaling models for daily temperature and precipitation over Canada,Stoch Environ Res Risk Assess, 26, 633-653.
22.Kandaswamy, K.K., Chou, K.C., Martinetz, T., Möller, S., Suganthan, P.N., Sridharan, S. and Pugalenthi, G. (2011),“AFP-Pred: A random forest approach for predicting antifreeze protein from sequence-derived properties,Journal of Theoretical Biology, 270, 56-62.
23.Kremer, C., Perren, F., Kappelin, J., Selariu, E. and Abul-Kasim, K. (2013),“Prognosis of aphasia in stroke patients early after iv thrombolysis,Clinical Neurology and Neurosurgery, 115, 289-292.
24.Lian, Y., You, J.Y., Sparks, R. and Demissie, M. (2012),“Impact of human activities to hydrologic alterations on lllinois river,Journal of Hydrologic Engineering, 17, 537-546.
25.Ließ, M., Glaser, B. and Huwe, B. (2012),“Uncertainty in the spatial prediction of soil texture comparison of regression tree and Random Forest models,Geoderma, 170, 70-79.
26.Lin, W.J. and Chen, J. (2012),“Class-imbalanced classifier for high-dimensional data,Briefings In Bioinformatics, 14(1), 13-26.
27.Linderson, Maj-Lena, Achberger, C. and Chen, D. (2004),“Statistical downscaling and scenario construction of precipitation in Scania, southern Sweden,Nordic Hydrology, 35(3), 261-278.
28.Liu, D., Chen, X., Lian, Y. and Lou, Z. (2010),“Impact of climate change and human activities on surface runoff in the Dongjiang River basin of China,Hydrological Processes, 24, 1487-1495.
29.Liu, M., Wang, M. and Li, D. (2013),“Comparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification:Application to the recognition of orange beverage and Chinese vinegar,Sensors and Actuators B, 117, 970-980.
30.Lutz, K., Jacobeit, J., Philipp, A., Kunstmann, H. and Laux P. (2012),“Comparison and evaluation of statistical downscaling techniques for station-based precipitation in the Middle East,International Journal of Climatology, 32, 1579-1595
31.Neykov, N., Neytchev, P., Zucchini, W. and Hristov, H. (2012),“Linking atmospheric circulation to daily precipitation patterns over the territory of Bulgaria,Environ Ecol Stat, 19, 249-267.
32.Pang, H., Lin, A., Holford, M., Enerson, B.E., Lu, B., Lawton, M.P., Floyd, E. and Zhao, H. (2006),“Pathway analysis using random forests classification and regression,Bioinformatics, 22(16), 2028-2036.
33.Qian, B., Hayhoe, H. and Gameda, S. (2005),“Evaluation of the stochastic weather generators LARS-WG and AAFC-WG for climate change impact studies,Climate Research, 29, 3-21.
34.Rougé, C., Ge, Y. and Cai, X. (2013),“Detecting gradual and abrupt changes in hydrological records,Advances in Water Resources, 53, 33-44.
35.Trigo, R.M. and Palutikof, J.P. (2001),“Precipitation scenarios over Iberia: A comparison between direct GCM output and different downscaling techniques,Journal of Climate, 14, 4422-4446.
36.Tripathi, S., Srinivas, V.V. and Nanjundiah, R.S. (2006),“Downscaling of precipitation for climate change scenarios: a support vector machine approach,Journal of Hydrology, 330, 621-640.
37.Vincenzi, S., Zucchetta, M., Franzoi, P., Pellizzato, M., Pranovi, F., De Leo, G.A. and Torricelli, P. (2011),“Application of a random forests algorithm to predict spatial distribution of the potential yield of Ruditapes philippinarum in the Venice Lagoon, Italy,Ecological Modelling, 222, 1471-1478.
38.Wang, X., Yang, T., Shao, Q., Acharya, K., Wang, W. and Yu, Z. (2012),“Statistical downscaling of extremes of precipitation and temperature and construction of their future scenarios in an elevated and cold zone,Stoch Environ Res Risk Assess, 26, 405-418.
39.Yang, T.C., Yu, P.S., Wei, C.M. and Chen, S.T. (2011),“Projection of climate change for daily precipitation : a case study in Shih-Men reservoir catchment in Taiwan,Hydrological Processes, 25, 1342-1354.
40.Yu, P.S., Yang,T.C. and Wu, C.K. (2002),“Impact of climate change on water resources in southern Taiwan,Journal of Hydrology, 260(1-4), 161-175.
41.Zhang, G. and Lu, Y. (2012),“Bias-corrected random forests in regression,Journal of Applied Statistics, 39(1), 151-160.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊