|
[1.1] D. Kahng and S. M Sze, “A floating gate and its application to memory devices,” Bell Syst. Tech, J., vol. 46, p. 1288, 1967. [1.2] J. D. Blauwe, “Nanocrystal nonvolatile memory devices,” IEEE Transaction on Nanotechnology, vol. 1, p. 72, 2002. [1.3] J. S, Witters, G. Groeseneken and H. E. Maes, “Analysis and modeling of on-chip high-voltage generator circuits for use in EEPROM circuits,” IEEE Journal of Solid State Circuits, p. 1372, 1989. [1.4] M. H. White, Y. Yang, A. Purwar, and M. L. Frech, “A low voltage SONOS nonvolatile semiconductor memory technology,” IEEE Nonvolatile Memory Technology Conference, p. 52, 1996. [1.5] M. H. White, D. A. Adams, and J. Bu, “On the go with SONOS,” IEEE circuits & devices, vol.16, p. 22, 2000. [1.6] S. Tiwari, F. Rana, K. Chan, H. Hanafi, C. Wei, and D. Buchanan, “Volatile and non-volatile memories in silicon with nano-crystal storage,” IEDM Tech. Dig., p. 521, 1995. [1.7] J. J. Welser, S. Tiwari, S. Rishton, K. Y. Lee, and Y. Lee, “Room temperature operation of a quantum-dot flash memory,” IEEE Electron Device Lett., vol. 18, p. 278, 1997. [1.8] Y. C. King, T. J. King, and C. Hu, “MOS memory using germanium nanocrystal formed by thermal oxidation of Si1-xGex,” IEDM Tech. Dig., p. 115, 1998. [1.9] S. Choi, M. Cho, and H. Hwang, “Improved metal-oxide-nitride- oxide-silicon-type flash device with high-k dielectrics for blocking layer, ” J. Appl. Phys., vol. 94, pp. 5408-5410, 2003. [1.10] S. Choi, M. Cho, C. B. Samantaray, S. Jeon, C. Kim, and H. Hwang, “Improved charge-trapping nonvolatile memory with Dy-doped HfO2 as charge-trapping layer and Al2O3 as blocking layer,” Jpn. J. Appl. Phys., vol. 43, pp. L882-L884, 2004.
[2.1] P. E. Cottrell, R. R. Troutman, and T. H. Ning, “Hot-electron emission in n-channel IGFETs,” IEEE Solid-State Circuits, vol. 14, p. 442, 1979. [2.2] M. Lenzlinger, “Fowler-Nordheim tunneling in thermal grown SiO2,” Appl. Phys. Lett., vol. 40, pp. 278-283, 1969. [2.3] Donald A. Neamen, “Semiconductor physics and device,” p. 43. [2.4] Stanley. Wolf, “Silicon processing for the VLSI ERA,” Lattice Press., p. 435, 1995. [2.5] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, Proceedings of The IEEE, vol. 85, p. 1248, 1997. [2.6] D. Ielmini, A. Spinelli, A. Lacaita, and A. Modelli, “Statistical model of reliability and scaling projections for Flash memories,” IEDM Tech. Dig., pp. 3221–3224, 2001. [2.7] D. Ielmini, A. S. Spinelli, A. L. Lacaita, L. Confalonieri, and A. Visconti, “New technique for fast characterization of SILC distribution in Flash arrays,” Proc. IRPS., pp. 73–80, 2001. [2.8] D. Ielmini, A. S. Spinelli, A. L. Lacaita, R. Leone, and A. Visconti, “Localization of SILC in flash memories after program/erase cycling,” Proc. IRPS., pp. 1–6, 2002.
[3.1] H. Choi, M. Chang, M. Jo, “Improved memory characteristics of Ge nano-crystals using a LaAlO3 buffer layer,” Electrochemical and Solid-State Lett., vol. 11, pp. H154-H156, 2008. [3.2] C. L. Yuan, and P. S. Lee, “Enhanced charge storage capability of Ge/GeO2 core/shell nanostructure,” Nanotechnology, vol. 19, p. 355206, 2008. [3.3] S. Huang, S. Banerjee, R. T. Tung, and S. Oda, “Electron trapping, storing, and emission in nano-crystalline Si dots by capacitance–voltage and conductance–voltage measurements,” J. Appl. Phys., vol. 93, pp. 576-581, 2003. [3.4] J. Y. Tseng, C. W. Cheng, S. Y. Wang, T. B. Wu, “ Memory characteristics of Pt nano-crystals self-assembled from reduction of an embedded PtOx ultrathin film in metal-oxide-semiconductor structures,” Appl. Phys. Lett., vol. 85, pp. 2595-2597, 2004. [3.5] C. L. Heng, T. G. Finstad, “Electrical characteristics of a metal-insulator- semiconductor memory structure containing Ge nano-crystals,” Phys. E, vol. 26, pp. 386-390, 2005. [3.6] C. C. Wang, Y. K. Chiou, C. H. Chang, J. Y. Tseng, L. J. Wu, C. Y. Chen and T. B. Wu, “Memory characteristics of Au nano-crystals embedded in metal-oxide- semiconductor structure by using atomic-layer-deposited Al2O3 as control oxide,” J. Phys. D, vol. 40, pp. 1673-1677, 2007. [3.7] J. C. Wang, S. H. Chiao, C. L. Lee, T. F. Lei, Y. M. Lin, M. F. Wang, S. C. Chen, C. H. Yu, and M. S. Liang, “A physical model for the hysteresis phenol- menon of the ultrathin ZrO2 film,” J. Appl. Phys., vol. 92, pp. 3936-3940, 2002. [3.8] K. Prabhakaran, F. Maeda, Y. Watanabe, and T. Ogino, “Distinctly dfferent theramal decomposition pathways of ultrathin oxide layer on Ge and Si surfaces ” Appl. Phys. Lett., vol. 76, pp. 2244-2246, 2000. [3.9] Y. Kamata, “High-k/Ge MOSFETs for future nano-electronics,” Materialstoday, vol. 11, pp. 30-38, 2008.
|