跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/15 22:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳境妤
研究生(外文):Chen, Jing-Yu
論文名稱:無電鍍沉積二氧化釕與釕複合薄膜之特性研究
論文名稱(外文):Electroless Deposition of Composite Ruthenium Oxide and Ruthenium Films
指導教授:吳樸偉
指導教授(外文):Wu, Pu-Wei
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:72
中文關鍵詞:二氧化釕無電鍍複合薄膜
外文關鍵詞:ruthenium oxiderutheniumelectrolesscomposite film
相關次數:
  • 被引用被引用:0
  • 點閱點閱:278
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
35–300 nm非晶形二氧化釕及釕之複合薄膜已成功地以一新開發的鍍液配方,用無電鍍沉積的方式沉積在銅基板上。其無電鍍液之成份為:K2RuCl5•xH2O、NaNO2、NaOH、NaClO。不同鍍液製備步驟、三種不同濃度之NaNO2、及不同沉積時間為本研究之操作變因。本研究討論其反應方程式來說明無電鍍液之沉積機制。紫外光-可見光光譜圖之最大吸收波長的窄小分佈,顯示無電鍍液之穩定程度。此外,利用能量散佈光譜儀、掃描式電子顯微鏡、原子力顯微鏡、X光光電子譜儀、拉曼散射光譜儀來研究二氧化釕與釕複合薄膜之特性。結果顯示,以0.06 M NaNO2(aq)為配方之無電鍍液為最佳之參數。另外,藉由2小時氫氣還原在200℃下還原其複合薄膜,可得到結晶之金屬釕薄膜。而非晶形之複合薄膜,在2小時的氬氣高溫退火400℃的環境下可得結晶之二氧化釕與釕之複合薄膜。
A 35–300 nm amorphous ruthenium oxide and ruthenium composite film has been deposited by electroless plating on a Cu substrate. The plating solution contained compounds of K2RuCl5•xH2O, NaNO2, NaOH, and NaClO. Variables including different mixing steps, concentrations of NaNO2(aq), and plating time were investigated. The reaction steps for the electroless plating were indentified. Stability of the plating solution was confirmed by UV-Vis absorption spectra with narrow maximum wavelength distribution. EDX, SEM, AFM, XPS, and Raman spectroscopy were employed to characterize the as-deposited films. It was concluded that the plating solution with 0.06 M NaNO2(aq) delivered the desirable film qualities. A crystalline Ru film was obtained by H2 reduction for the as-deposited film at 200℃ for 2 hr. In addition, we were able to produce a crystalline RuO2 and Ru composite film by Ar annealing of the as-deposited film at 400℃ for 2 hr.
摘要 i
Abstract ii
Acknowledgements iii
Contents iv
List of Tables vii
List of Figures viii
Chapter 1 Introduction 1
Chapter 2 Literature Review 4
2.1 Physical and chemical properties of RuO2 and Ru 4
2.2 Applications of RuO2 films 5
2.3 Fabrications of RuO2 films 5
2.3.1 Vacuum deposition 5
2.3.2 Solution deposition 7
2.3.3 Other methods 7
2.4 Applications of Ru films 8
2.5 Fabrications of Ru films 8
2.5.1 Vacuum deposition 8
2.5.2 Solution deposition 10
Chapter 3 Experimental 16
3.1 Experimental design 16
3.2 Materials 17
3.3 Plating bath preparation 17
3.4 Instruments and characterization 20
Chapter 4 Results and Discussion I: Development of Ru electroless plating solution 22
4.1 Development of plating bath components 22
4.2 Deposition mechanism 24
4.3 Stability of plating solution 25
Chapter 5 Results and Discussion II: Characterization of composite RuO2 and Ru films 30
5.1 Characterization of composite RuO2 and Ru films 30
5.1.1 The existence of Ru element in the deposited films 30
5.1.2 Morphology observation and thickness measurement of the deposited films 32
5.1.3 Thickness at different plating time 38
5.1.4 Roughness measurement for the deposited films 39
5.1.5 Characterization of the oxidation states for the deposited films 41
5.1.6 Phase and crystallinity characterization for the deposited films 47
5.1.7 Raman spectroscopy characterization for the deposited films 48
5.2 Characterization of the composite RuO2 and Ru films after hydrogen reduction 52
5.2.1 Morphology observation of the deposited films after hydrogen reduction 52
5.2.2 Phase and crystallinity characterization for the deposited films after hydrogen reduction 56
5.2.3 Characterization of the oxidation states for the deposited films after hydrogen reduction 58
5.2.4 Raman spectroscopy characterization for the deposited films after hydrogen reduction 60
5.3 Characterization of composite RuO2 and Ru films after argon annealing 63
5.3.1 Morphology observation of the deposited films after argon annealing 63
5.3.2 Phase and crystallinity characterization for the deposited films after argon annealing 65
Chapter 6 Conclusions 67
References 69
[1] Spendelow JS, Wieckowski A. Noble metal decoration of single crystal platinum surfaces to create well-defined bimetallic electrocatalysts. Physical Chemistry Chemical Physics. 2004;6(22):5094-118.
[2] Oh SH, Park CG, Park C. Thermal stability of RuO2/Ru bilayer thin film in oxygen atmosphere. Thin Solid Films. 2000;359(1):118-23.
[3] Josell D, Wheeler D, Witt C, Moffat TP. Seedless superfill: Copper electrodeposition in trenches with ruthenium barriers. Electrochem Solid State Lett. 2003;6(10):C143-C5.
[4] Cho SK, Kim SK, Han H, Kim JJ, Oh SM. Damascene Cu electrodeposition on metal organic chemical vapor deposition-grown Ru thin film barrier. Journal of Vacuum Science & Technology B. 2004;22(6):2649-53.
[5] Kang SY, Hwang CS, Kim HJ. Improvements in growth behavior of CVD Ru films on film substrates for memory capacitor integration. Journal of the Electrochemical Society. 2005;152(1):C15-C9.
[6] Ogawa S, Tarumi N, Abe M, Shiohara M, Imamura H, Kondo S, et al. Amorphous Ru/polycrystalline Ru highly reliable stacked layer barrier technology. IEEE International Intercconnect Technology Conference; 2008; Burlingame, CA; 2008. p. 102-4.
[7] Hu CC, Huang YH. Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors. Journal of the Electrochemical Society. 1999;146(7):2465-71.
[8] Fang QL, Evans DA, Roberson SL, Zheng JP. Ruthenium oxide film electrodes prepared at low temperatures for electrochemical capacitors. Journal of the Electrochemical Society. 2001;148(8):A833-A7.
[9] Rarnani M, Haran BS, White RE, Popov BN. Synthesis and characterization of hydrous ruthenium oxide-carbon supercapacitors. Journal of the Electrochemical Society. 2001;148(4):A374-A80.
[10] Chang KH, Hu CC. Oxidative synthesis of RuOx•nH2O with ideal capacitive characteristics for supercapacitors. Journal of the Electrochemical Society. 2004;151(7):A958-A64.
[11] Kim IH, Kim KB. Ruthenium oxide thin film electrodes prepared by electrostatic spray deposition and their charge storage mechanism. Journal of the Electrochemical Society. 2004;151(1):E7-E13.
[12] Kim IH, Kim JH, Lee YH, Kim KB. Synthesis and characterization of electrochemically prepared ruthenium oxide on carbon nanotube film substrate for supercapacitor applications. Journal of the Electrochemical Society. 2005;152(11):A2170-A8.
[13] Hu CC, Liu MJ, Chang KH. Anodic deposition of hydrous ruthenium oxide for supercapacitors. Journal of Power Sources. 2007;163(2):1126-31.
[14] Kim JH, Kil DS, Yeom SJ, Roh JS, Kwak NJ, Kim JW. Modified atomic layer deposition of RuO2 thin films for capacitor electrodes. Applied Physics Letters. 2007;91(5).
[15] Glenn O. Mallory, Hajdu JB, eds. Electroless plating : fundamentals and applications Orlando, Fla: American Electroplaters and Surface Finishers Society 1990.
[16] Okuno K. Application of electroless ruthenium deposits for elecronic materials. Plat Surf Finish. 1990;77(2):48-52.
[17] Chang YS, Chou ML. Microstructure evolution of newly developed electroless ruthenium deposition on silicon observed by scanning by transmission electron microscope. J Appl Phys. 1991;69(11):7848-52.
[18] Lysczek EM, Mohney SE. Selective deposition of ohmic contacts to p-InGaAs by electroless plating. Journal of the Electrochemical Society. 2008;155(10):H699-H702.
[19] Sergio Trasatti, O'Grady WE. Advances in electrochemistry and electrochemical engineering. New York: Wiley 1982:177-261.
[20] Kroschwitz JI. Kirk-Othmer encyclopedia of chemical technology. Hoboken, N.J.: Wiley-Interscience 2004.
[21] Lee JG, Kim YT, Min SK, Choh SH. Effects of excess oxygen on the properties of reactivity sputtered RuOx thin-films. J Appl Phys. 1995;77(10):5473-5.
[22] Si J, Desu SB. RuO2 films by metal-organic chemical vapor deposition. Journal of Materials Research. 1993;8(10):2644-8.
[23] Yuan Z, Puddephatt RJ, Sayer M. Low-temperature chemical vapor deposition of ruthenoum dioxide from ruthenium tertoxide: a simple approach to high-purity RuO2 films. Chem Mat. 1993;5(7):908-10.
[24] Hashaikeh R, Butler IS, Kozinski JA. Thin-film ruthenium dioxide coatings via ozone-mediated chemical vapor deposition. Thin Solid Films. 2006;515(4):1918-21.
[25] Rochefort D, Dabo P, Guay D, Sherwood PMA. XPS investigations of thermally prepared RuO2 electrodes in reductive conditions. Electrochim Acta. 2003;48(28):4245-52.
[26] Kawano K, Nagai A, Kosuge H, Shibutami T, Oshima N, Funakubo H. Seed layer free conformal ruthenium film deposition on hole substrates by MOCVD using (2,4-dimethylpentadienyl)(ethylcyclopentadienyl)ruthenium. Electrochem Solid State Lett. 2006;9(7):C107-C9.
[27] Kim SK, Lee SY, Lee SW, Hwang GW, Hwang CS, Lee JW, et al. Atomic layer deposition of Ru thin films using 2,4-(dimethylpentadienyl)(ethylcyclopentadienyl)Ru by a liquid injection system. Journal of the Electrochemical Society. 2007;154(2):D95-D101.
[28] Arunagiri TN, Zhang Y, Chyan O, El-Bouanani M, Kim MJ, Chen KH, et al. 5 nm ruthenium thin film as a directly plateable copper diffusion barrier. Applied Physics Letters. 2005;86(8):3.
[29] Jia Z, Ren TL, Liu TZ, Hu H, Zhang ZG, Xie D, et al. Study on oxidization of Ru and its application as electrode of PZT capacitor for FeRAM. Materials Science and Engineering B-Solid State Materials for Advanced Technology. 2007 Apr;138(3):219-23.
[30] Shin JH, Waheed A, Winkenwerder WA, Kim HW, Agapiou K, Jones RA, et al. Chemical vapor deposition of amorphous ruthenium-phosphorus alloy films. Thin Solid Films. 2007;515(13):5298-307.
[31] Heo JY, Lee SY, Eom D, Hwang CS, Kim HJ. Enhanced nucleation Behavior of atomic-layer-deposited ru film on low-k dielectrics afforded by UV-O3 treatment. Electrochem Solid State Lett. 2008;11(2):G5-G8.
[32] Aaltonen T, Alen P, Ritala M, Leskela M. Ruthenium thin films grown by atomic layer deposition. Chem Vapor Depos. 2003;9(1):45-9.
[33] Chan HYH, Takoudis CC, Weaver MJ. High-pressure oxidation of ruthenium as probed by surface-enhanced Raman and X-ray photoelectron spectroscopies. J Catal. 1997;172(2):336-45.
[34] Kim YS, Kim HI, Dar MA, Seo HK, Kim GS, Ansari SG, et al. Electrochemically deposited ruthenium seed layer followed by copper electrochemical plating. Electrochem Solid State Lett. 2006;9(1):C19-C23.
[35] Kim YS, Kim HI, Cho JH, Seo HK, Kim GS, Ansari SG, et al. Electrochemical deposition of copper and ruthenium on titanium. Electrochim Acta. 2006;51(25):5445-51.
[36] Thambidurai C, Kim YG, Stickney JL. Electrodeposition of Ru by atomic layer deposition (ALD). Electrochim Acta. 2008;53(21):6157-64.
[37] Wolfe S, Hasan SK, Campbell JR. Ruthenoum trichloride-catalysed hopochlirode oxidation of organic compounds. Journal of the chemical societyD, Chemical communications. 1970:1420-1.
[38] Seddon EA. The Chemistry of Ruthenium. Amsterdam ; New York: Elsevier 1984.
[39] 呂咏錚. 無電鍍金屬釕及其應用於銅擴散阻障層之研究: 國立交通大學; 2008.
[40] Pagliaro M, Campestrini S, Ciriminna R. Ru-based oxidation catalysis. Chemical Society Reviews. 2005;34(10):837-45.
[41] Sayama K, Abe R, Arakawa H, Sugihara H. Decomposition of water into H2 and O2 by a two-step photoexcitation reaction over a Pt-TiO2 photocatalyst in NaNO2 and Na2CO3 aqueous solution. Catalysis Communications. 2006;7(2):96-9.
[42] Mar SY, Chen CS, Huang YS, Tiong KK. Characterization of RuO2 thin films by Raman spectroscopy. Appl Surf Sci. 1995;90(4):497-504.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊