| 
1. Y. C. Liou, J. C. Yao, Bilevel decision via variational inequalities, Comput. Math. Appl., 49 (2005), 1243-1253.
  2. X. P. Ding, Y. C. Liou, Bilevel optimization problems in topological spaces, Taiwanese J. Math., 10 (2006), 173-179.
  3. Birbil S., Bouza G., Frenk J.B.G., Still. G., Equilibrium constraint optimization problems, Eur. J. Oper. Res, 169 (2006), 1108-1127.
  4. L.J. Lin, Mathematical programming with system of equilibrium constraints, J. Glob. Optim. 37 (2007), 195-213.
  5. L. J. Lin, Existence theorems for bilevel problem with applications to mathematical program with equilibrium constraint and semi-infinite problem, J. Optim. Theory Appl, 137 (2008), 27-40.
  6. L. J. Lin, J. H. Shie, Existence Theorems of quasivariational inclusion problems with applications to bilevel problems and mathematical problems with equilibrium constraint, J. Optim. Theory Appl, 138 (2008), 445-457.
  7. Moudafi A., Proximal methods for a class of bilevel monotone equilibrium problems, J. Glob. Optim, 47 (2010), 287-292.
  8. X. P. Ding, Auxiliary principle and algorithm for mixed equilibrium problems and bilevel mixed equilibrium problems in Banach spaces, J. Optim. Theory Appl, 146 (2010), 347.357.
  9. F. E. Browder and W. V. Petryshyn, Construction of fixed points nonlinear mappings in Hilbert space, J. Math. Anal. Appl., 20 (1967), 197-228.
  10. E. Blum and W. Oettli, From optimization and vaiational inequalities to equilibrium problems, Math. Stud., 6 (1994), 123-145.
  11. W. Takahashi, Introduction to nonlinear and convex analysis, Yokohoma Publishers, Yokohoma, 2009.
  12. P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005), 117-136.
  13. Y. J. Cho, X. Qin and J. I. Kang, Convergence theorems based on hybrid methods for generalized equilibrium problems and fixed point problems, Nonlinear Anal., 71(2009), 4203-4214.
  14. G. Marino and H. K. Xu, Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Maht. Anal. Appl., 329 (2007), 336-346.
  15. H. Zhou, Convergence throrems of fixed points for k-strict pseudo-contractions in Hilbert spaces, Nonlinear Anal. 69 (2008), 456-462.
   |