跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/04 14:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂意琳
研究生(外文):I-Lin Lu
論文名稱:利用循理性藥物設計技術發展抗嚴重急性呼吸道症候群以及糖尿病之新穎化合物
論文名稱(外文):Structure-based drug design of anti-SARS and anti-Diabetes compounds
指導教授:伍素瑩
學位類別:博士
校院名稱:國防醫學院
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:241
外文關鍵詞:structure-based drug designSARS-CoV main proteasePPARgammaDPP-IV
相關次數:
  • 被引用被引用:0
  • 點閱點閱:329
  • 評分評分:
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:1
本論文主題為針對三個目標蛋白質建立電腦輔助藥物設計系統。此三個蛋白質分別為嚴重急性呼吸道症候群冠狀病毒之主蛋白酶 (SARS-CoV Main Protease),過氧化酶增殖劑啟動受體- (Peroxisome Proliferator-Activated Receptor-) 以及二肽基肽酶-IV (Dipeptidyl Peptidase-IV,DPP-IV)。電腦輔助藥物設計方法主要可分為兩大類,分別為以蛋白質結構為主以及以配體為主之藥物設計方法(structure-based and ligand-based drug design)。在本論文中,將闡述如何分別應用這兩種技術於上述三種蛋白質先導藥物(Lead compound)之開發設計,並應用結構生物學解析先導藥物與目標蛋白質之交互作用關係。針對嚴重急性呼吸道症候群冠狀病毒,我們利用其主蛋白酶結構進行大規模的虛擬藥物篩選。進一步以對接技術(docking)模擬活性化合物與主蛋白酶的結合方式以定出其負責活性之核心結構並進行類似物篩選。此外,我們亦利用結構生物學技術探討活性化合物與主蛋白酶的結合情況以及其抑制機制。過氧化酶增殖劑啟動受體-為著名抗糖尿病藥物thiazolidinedione的受體。本論文利用以受體形狀為主的虛擬藥物篩選(Shape-based Virtual Screening)配合對接模擬以及類似物篩選找出兩個針對過氧化酶增殖劑啟動受體-具有高度專一性的化合物。生物活性測試顯示此二化合物為不完全活化劑(partial agonist)。進一步利用結構生物學以及對接技術探討此二化合物為不完全活化劑以及專一性的原因,並進一步定出其活性決定區域。二肽基肽酶-IV為治療第二型糖尿病的藥物標的。它可以有效的降低糖尿病患者對葡萄糖的耐受度。在本論文中,我們建立了ㄧ個二肽基肽酶-IV抑制劑的藥效基團模型(Pharmacophore)。此模型保留了二肽基肽酶-IV抑制劑所需具備的重要化學特性並且可與二肽基肽酶-IV蛋白質活性位置形成很好的互補關係。另外並進一步探討其在活性預測、以及資料庫篩選等方面的能力。
In this thesis, we setup the computer-aided drug design protocols for three target proteins, severe acute respiratory syndrome-coronavirus (SARS-CoV) main protease, peroxisome proliferators activated receptor-, and dipeptidyl peptidase-IV. For SARS-CoV main protease, the docking based virtual screening technique was performed. Novel non-peptide inhibitors with inhibition activity of submicro-molar range were discovered through this protocol. The structural biology study further clarify the inhibition mechanism of these compounds to SARS-CoV Mpro, which provide valuable information for next generation drug design against SARS-CoV Mpro. For PPAR-, the shape-based pharmacophore combined with docking study methods were employed. Two specific partial agonists to PPAR- were identified. Structural biology together with docking study explains the biological characteristics of these compounds, including partial agonist mechanism and selectivity, which provide useful information for further lead compounds modification. For DPP-IV, a protocol for pharmacophore generation, selection and validation was setup. The pharmacophore was characterized by the activity prediction power, and large database search power, which could be a practical tool for novel DPP-IV inhibitors discover.
CONTENT………………………………………………………………….............................I
ABBREVIATIONS VII
TABLE CONTENT IX
FIGURE CONTENT XI
CHINESE ABSTRACT XV
ENGLISH ABSTRACT XVI
CHAPTER 1. INTRODUCTION 1
1.1 PROBLEM STATEMENT 1
1.2 GENERAL STRATEGY 2
1.3 SPECIFIC AIM 3
1.4 SUMMARY OF THIS THESIS CONTENT 3
CHAPTER 2 COMPUTER-AIDED DRUG DESIGN 7
2.1 STRUCTURE-BASED DRUG DESIGN 8
2.1.1 Overview and design cycles 8
2.1.2 Protein structure 10
2.1.3 Compound database preparation 11
2.1.4 Computational approach to predict the potential binding ligand—direct docking and de novo docking 11
2.1.4.1 Direct Docking 11
2.1.4.1.1 The search algorithm 14
2.1.4.1.2 Scoring function 16
2.1.4.1.3 Protein flexibility 18
2.1.4.1.4 Post analysis 20
2.1.4.2 De novo docking 22
2.2 LIGAND-BASED DRUG DESIGN 23
2.2.1 Active analogues approach 25
2.2.2 Pharmacophore model design 25
2.2.3 3D-Quantitative structure-activity relationship 28
2.2.4 Pseudoreceptor model 29
CHAPTER 3 SOLVING PROTEIN STRUCTURE BY X-RAY CRYSTALLOGRAPHY 30
3.1 PROTEIN CRYSTALLIZATION 31
3.1.1 Theory 31
3.1.2 Crystallization screening 32
3.1.3 Methods 33
3.2 DATA COLLECTION AND PROCESSING 36
3.2.1 Data collection. 36
3.2.2 Data processing 45
3.3 SOLUTION OF THE PHASE PROBLEM 47
3.4 MODEL BUILDING AND REFINEMENT 51
3.5 THE LIMITATION OF PROTEIN CRYSTAL STRUCTURE IN STRUCTURE-BASED DRUG DESIGN 54
CHAPTER 4 STRUCTURE-BASED DRUG DESIGN OF ANTI-SARS DRUGS 57
4.1 SUMMARY OF THIS CHAPTER 57
4.2 INTRODUCTION 57
4.2.1 Severe acute respiratory syndrome (SARS) 57
4.2.2 Severe acute respiratory syndrome coronavirus (SARS-CoV) 58
4.2.3 SARS-CoV Main Protease 62
4.2.4 Structure of SARS-CoV Main Protease 63
4.2.5 Inhibitors of SARS-CoV Main Protease 67
4.3 MATERIAL AND METHODS 57
4.3.1 Database Preparation 70
4.3.2 Protein Preparation 70
4.3.3 Docking 71
4.3.3.1 Introduction to GOLD algorithm 71
4.3.3.2 Introduction to GOLD GoldScore fitness function 75
4.3.3.3 Parameters setup for GOLD running 77
4.3.4 SARS-CoV Mpro purification and inhibition assay 77
4.3.5 Protein crystallization 78
4.3.6 X-ray diffraction data collection 79
4.3.7 X-ray diffraction data processing 79
4.3.8 Structure determination of SARS-CoV Mpro by molecular replacement methods using the program MOLREP 83
4.3.8.1 Introduction to MOLREP 83
4.3.8.2 MOLREP parameters setup for SARS-CoV Mpro 84
4.3.9 Structure refinement of SARS-CoV Mpro by the program Refmac5 84
4.3.9.1 Introduction to Refmac5 84
4.3.9.2 Refmac5 parameters setup 85
4.3.10 Map display and model building 85
4.4 RESULT AND DISCUSSION 86
4.4.1 Identification of Novel SARS-CoV Mpro Inhibitors by Structure-Based Virtual Screening 86
4.4.2 Identification of Core Structure and Analogue Search 88
4.4.2.1 Docking Study of Compound 1 88
4.4.2.2 Docking Study of Compound 2 89
4.4.3 Crystals of SARS-CoV Mpro 94
4.4.4 Data processing result 95
4.4.4.1 Space group determination 95
4.4.4.2 Data scaling result 96
4.4.5 Molecular replacement result for SARS-CoV Mpro, SARS-CoV Mpro/3, SARS-CoV Mpro/15 96
4.4.6 Model refinement results for SARS-CoV Mpro, SARS-CoV Mpro/3, SARS-CoV Mpro/15 99
4.4.7 Structure validation for SARS-CoV Mpro, SARS-CoV Mpro/3, SARS-CoV Mpro/15 100
4.4.8 Overall structure of SARS-CoV M pro 111
4.4.9 The structure of SARS-CoV Mpro in complex with compound 3 111
4.4.10 The structure of SARS-CoV Mpro in complex with compound 15 115
4.4.11 Comparison of 3 and 15 to Other Complex-Structures of SARS-CoV Mpro 116
4.5 CONCLUSION 117
CHAPTER 5 STRUCTURE-BASED DRUG DESIGN OF ANTI-DIABETES DRUGS—AGONIST OF PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORS- (PPAR) 119
5.1 SUMMARY OF THIS CHAPTER 119
5.2 INTRODUCTION 120
5.2.1 Insulin resistance and Type 2 diabetes (T2D) 120
5.2.2 Peroxisome proliferator activated receptors 121
5.2.3 Peroxisome proliferator activated receptors-gamma and insulin resistance 126
5.2.4 Agonist for Peroxisome proliferator activated receptors-gamma 127
5.2.5 Second generation peroxisome proliferator activated receptors-gamma agonist 128
5.2.5.1 PPAR/ dual agonist 128
5.2.5.2 PPAR// pan agonist 130
5.2.5.3 PPAR partial agonist 132
5.2.6 Structure of Peroxisome proliferator activated receptors-gamma ligand binding domain 134
5.3 MATERIAL AND METHODS 137
5.3.1 Shape-based database searching 137
5.3.1.1 Catalyst shape module 137
5.3.1.2 Catalyst shape generation and database searching 138
5.3.2 Molecular Docking of the Hit Compound to the Binding Pocket of PPARγ 140
5.3.3 Analogue search 140
5.3.4 Structure determination 141
5.4 RESULT AND DISCUSSION 141
5.4.1 Identification of compound 1 as novel PPAR ligands by shape-based virtual screening. 141
5.4.2 Compound 1 core structure identification and analogue search 143
5.4.3 Data processing results for PPAR/2 and PPAR/3 crystals 147
5.4.3.1 Space group determination 147
5.4.3.2 Data scaling result 150
5.4.4 Structure determination of PPAR/2 and PPAR/3 150
5.4.4.1 Molecular replacement result for PPAR/2 and PPAR/3 150
5.4.4.2 Model refinement result for PPAR/2 and PPAR/3 153
5.4.5 Structure validation for PPAR/2 and PPAR/3 154
5.4.6 Overall structures of PPARγ-ligand complex 162
5.4.7 PPARγ-2 complex structure 163
5.4.8. Comparison of compounds 2 and 3 complex structures. 164
5.4.9 Comparison of PPARγ full agonists binding modes 165
5.4.10 Selectivity 167
5.5 CONCLUSION 169
CHAPTER 6 PHARMACOPHORE MODEL FOR DIPEPTIDYL PEPTIDASE IV INHIBITORS 170
6.1 SUMMARY OF THIS CHAPTER 170
6.2 INTRODUCTION 170
6.2.1 Dipeptidyl peptidase IV as a drug target for type-II diabetes 170
6.2.2 Structures of dipeptidyl peptidase IV 172
6.2.2.1 The overall structure 172
6.2.2.2 The active sites 174
6.2.3 Inhibitors of dipeptidyl peptidase IV 177
6.2.3.1 Proline-like Inhibitors of Dipeptidyl Peptidase IV 177
6.2.3.2 Non-Proline-like inhibitors of dipeptidyl peptidase IV 180
6.2.4 Computer-aided drug design to dipeptidyl peptidase IV 183
6.3 MATERIAL AND METHODS 185
6.3.1 DPP-IV inhibition assay 185
6.3.2 Pharmacophore generation 185
6.3.2.1 Introduction to Catalyst-Hypogen module 185
6.3.2.1.1 The conformation generation process 186
6.3.2.1.2 Hypotheses generation--the Hypogen module 190
6.3.2.1.3 Evaluation of the hypotheses 196
6.3.2.2 DPP-IV inhibitors preparation for Catalyst 197
6.3.2.3 Parameters set up for Hypogen module 198
6.3.2.4 Database preparation and searching 198
6.4 RESULT AND DISCUSSION 199
6.4.1 Pharmacophore generation for DPP-IV inhibitors 199
6.4.2 Activity prediction and mapping of Hypo1 to training-set compounds 204
6.4.3 Validation of Hypo1 206
6.4.4 Mapping of Hypo1 onto the protein active site and inhibitors 211
6.5 CONCLUSION 215
CHAPTER 7 CONCLUSION 216
REFERENCES 219
Abagyan, R., Totrov, M. and Kuznetsov, D. (1994). Icm-new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation. Journal of Computational Chemistry 15(5): 488-506.
Acharya, K. R. and Lloyd, M. D. (2005). The advantages and limitations of protein crystal structures. Trends Pharmacol Sci 26(1): 10-14.
Ahren, B., Simonsson, E., Larsson, H., Landin-Olsson, M., Torgeirsson, H., Jansson, P.-A., Sandqvist, M., Bavenholm, P., Efendic, S., Eriksson, J. W., Dickinson, S. and Holmes, D. (2002). Inhibition of dipeptidyl peptidase iv improves metabolic control over a 4-week study period in type 2 diabetes. Diabetes Care 25(5): 869-875.
Ajami, K., Abbott, C. A., Gysbers, V., Kahne, T., McCaughan, G. W. and Gorrell, M. D. (2003). Molecular chimeras and mutational analysis in the prolyl oligopeptidase gene family. Adv Exp Med Biol 524: 49-55.
Altshuler, D., Hirschhorn, J. N., Klannemark, M., Lindgren, C. M., Vohl, M. C., Nemesh, J., Lane, C. R., Schaffner, S. F., Bolk, S. and Brewer et, a. (2000). The common ppargamma pro12ala polymorphism is associated with decreased risk of type 2 diabetes. Nature Genetics 26(1): 76-80.
Andrew Smellie, S. L. T. P. T. (1995). Poling: Promoting conformational variation. Journal of Computational Chemistry 16(2): 171-187.
Argmann, C. A., Cock, T. A. and Auwerx, J. (2005). Peroxisome proliferator-activated receptor gamma: The more the merrier? Eur J Clin Invest 35(2): 82-92; discussion 80.
Ashworth, D. M., Atrash, B., Baker, G. R., Baxter, A. J., Jenkins, P. D., Jones, D. M. and Szelke, M. (1996). 2-cyanopyrrolidides as potent, stable inhibitors of dipeptidyl peptidase iv. Bioorganic & Medicinal Chemistry Letters 6(10): 1163-1166.
Augeri, D. J., Robl, J. A., Betebenner, D. A., Magnin, D. R., Khanna, A., Robertson, J. G., Wang, A., Simpkins, L. M., Taunk, P., Huang, Q., Han, S. P., Abboa-Offei, B., Cap, M., Xin, L., Tao, L., Tozzo, E., Welzel, G. E., Egan, D. M., Marcinkeviciene, J., Chang, S. Y., Biller, S. A., Kirby, M. S., Parker, R. A. and Hamann, L. G. (2005). Discovery and preclinical profile of saxagliptin (bms-477118): A highly potent, long-acting, orally active dipeptidyl peptidase iv inhibitor for the treatment of type 2 diabetes. J Med Chem 48(15): 5025-5037.
Azen, P. S. P., Peters, D. R. K., Berkowitz, M. D. K., Kjos, M. D. S. and Xiang, P. A. (1998). Tripod (troglitazone in the prevention of diabetes): A randomized, placebo-controlled trial of troglitazone in women with prior gestational diabetes mellitus. Controlled Clinical Trials 19(2): 217-231.
Bacha, U., Barrila, J., Velazquez-Campoy, A., Leavitt, S. A. and Freire, E. (2004). Identification of novel inhibitors of the sars coronavirus main protease 3clpro. Biochemistry 43(17): 4906-4912.
Barak, Y., Nelson, M. C., Ong, E. S., Jones, Y. Z., Ruiz-Lozano, P., Chien, K. R., Koder, A. and Evans, R. M. (1999). Ppar gamma is required for placental, cardiac, and adipose tissue development. Mol Cell 4(4): 585-595.
Barlocco, D. (2004). Laf-237 (novartis). Curr Opin Investig Drugs 5(10): 1094-1100.
Barnett, A. (2006). Dpp-4 inhibitors and their potential role in the management of type 2 diabetes. International Journal of Clinical Practice 60(11): 1454-1470.
Barril, X. and Morley, S. D. (2005). Unveiling the full potential of flexible receptor docking using multiple crystallographic structures. J Med Chem 48(13): 4432-4443.
Barroso, I., Gurnell, M., Crowley, V. E., Agostini, M., Schwabe, J. W., Soos, M. A., Maslen, G. L., Williams, T. D., Lewis, H., Schafer, A. J., Chatterjee, V. K. and O'Rahilly, S. (1999). Dominant negative mutations in human ppargamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 402(6764): 880-883.
Basu-Modak, S., Braissant, O., Escher, P., Desvergne, B., Honegger, P. and Wahli, W. (1999). Peroxisome proliferator-activated receptor beta regulates acyl-coa synthetase 2 in reaggregated rat brain cell cultures. J Biol Chem 274(50): 35881-35888.
Baxter, C. A., Murray, C. W., Clark, D. E., Westhead, D. R. and Eldridge, M. D. (1998). Flexible docking using tabu search and an empirical estimate of binding affinity. Proteins 33(3): 367-382.
Berger, J., Bailey, P., Biswas, C., Cullinan, C. A., Doebber, T. W., Hayes, N. S., Saperstein, R., Smith, R. G. and Leibowitz, M. D. (1996). Thiazolidinediones produce a conformational change in peroxisomal proliferator-activated receptor-gamma: Binding and activation correlate with antidiabetic actions in db/db mice. Endocrinology 137(10): 4189-4195.
Berger, J., Leibowitz, M. D., Doebber, T. W., Elbrecht, A., Zhang, B., Zhou, G., Biswas, C., Cullinan, C. A., Hayes, N. S., Li, Y., Tanen, M., Ventre, J., Wu, M. S., Berger, G. D., Mosley, R., Marquis, R., Santini, C., Sahoo, S. P., Tolman, R. L., Smith, R. G. and Moller, D. E. (1999). Novel peroxisome proliferator-activated receptor (ppar) gamma and ppardelta ligands produce distinct biological effects. J Biol Chem 274(10): 6718-6725.
Berger, J. and Moller, D. E. (2002). The mechanisms of action of ppars. Annu. Rev. Med. 53: 409-435.
Berger, J. P., Petro, A. E., Macnaul, K. L., Kelly, L. J., Zhang, B. B., Richards, K., Elbrecht, A., Johnson, B. A., Zhou, G., Doebber, T. W., Biswas, C., Parikh, M., Sharma, N., Tanen, M. R., Thompson, G. M., Ventre, J., Adams, A. D., Mosley, R., Surwit, R. S. and Moller, D. E. (2003). Distinct properties and advantages of a novel peroxisome proliferator-activated protein g selective modulator. Mol. Endocrinol. 17(4): 662-676.
Blanchard, J. E., Elowe, N. H., Huitema, C., Fortin, P. D., Cechetto, J. D., Eltis, L. D. and Brown, E. D. (2004). High-throughput screening identifies inhibitors of the sars coronavirus main proteinase. Chem Biol 11(10): 1445-1453.
Bo, A. (1998). Glucagon-like peptide-1 (glp-1): A gut hormone of potential interest in the treatment of diabetes. BioEssays 20(8): 642-651.
Bodenstaff, E. R., Hoedemaeker, F. J., Kuil, M. E., de Vrind, H. P. and Abrahams, J. P. (2002). The prospects of protein nanocrystallography. Acta Crystallogr D Biol Crystallogr 58(Pt 11): 1901-1906.
Bohm, H. J. (1992a). The computer program ludi: A new method for the de novo design of enzyme inhibitors. J Comput Aided Mol Des 6(1): 61-78.
Bohm, H. J. (1992b). Ludi: Rule-based automatic design of new substituents for enzyme inhibitor leads. J Comput Aided Mol Des 6(6): 593-606.
Brunger, A. T. (1992). Free r value: A novel statistical quantity for assessing the accuracy of crystal structures. Nature 355(6359): 472-475.
Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T. and Warren, G. L. (1998). Crystallography & nmr system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54(Pt 5): 905-921.
Carlson, H. A. (2002). Protein flexibility and drug design: How to hit a moving target. Curr Opin Chem Biol 6(4): 447-452.
Carmona, M. C., Louche, K., Nibbelink, M., Prunet, B., Bross, A., Desbazeille, M., Dacquet, C., Renard, P., Casteilla, L. and Penicaud, L. (2005). Fenofibrate prevents rosiglitazone-induced body weight gain in ob/ob mice. Int J Obes (Lond) 29(7): 864-871.
Charifson, P. S., Corkery, J. J., Murcko, M. A. and Walters, W. P. (1999). Consensus scoring: A method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. J Med Chem 42(25): 5100-5109.
Chen, C. N., Lin, C. P., Huang, K. K., Chen, W. C., Hsieh, H. P., Liang, P. H. and Hsu, J. T. (2005a). Inhibition of sars-cov 3c-like protease activity by theaflavin-3,3'-digallate (tf3). Evid Based Complement Alternat Med 2(2): 209-215.
Chen, L., Chen, S., Gui, C., Shen, J., Shen, X. and Jiang, H. (2006). Discovering severe acute respiratory syndrome coronavirus 3cl protease inhibitors: Virtual screening, surface plasmon resonance, and fluorescence resonance energy transfer assays. J Biomol Screen 11(8): 915-921.
Chen, L. R., Wang, Y. C., Lin, Y. W., Chou, S. Y., Chen, S. F., Liu, L. T., Wu, Y. T., Kuo, C. J., Chen, T. S. and Juang, S. H. (2005b). Synthesis and evaluation of isatin derivatives as effective sars coronavirus 3cl protease inhibitors. Bioorg Med Chem Lett 15(12): 3058-3062.
Chien, C. H., Huang, L. H., Chou, C. Y., Chen, Y. S., Han, Y. S., Chang, G. G., Liang, P. H. and Chen, X. (2004). One site mutation disrupts dimer formation in human dpp-iv proteins. J Biol Chem 279(50): 52338-52345.
Chou, C. Y., Chang, H. C., Hsu, W. C., Lin, T. Z., Lin, C. H. and Chang, G. G. (2004). Quaternary structure of the severe acute respiratory syndrome (sars) coronavirus main protease. Biochemistry 43(47): 14958-14970.
Clark, D. E., Frenkel, D., Levy, S. A., Li, J., Murray, C. W., Robson, B., Waszkowycz, B. and Westhead, D. R. (1995). Pro-ligand: An approach to de novo molecular design. 1. Application to the design of organic molecules. J Comput Aided Mol Des 9(1): 13-32.
Clark, M., Richard D. Cramer, I. and Opdenbosch, N. V. (1989). Validation of the general purpose tripos 5.2 force field. Journal of Computational Chemistry 10(9): 982-1012.
Collaborative Computational Project, N. (1994). The ccp4 suite: Programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50: 760-763.
CramerIII, R. D., Patterson, D. E. and Bunce, J. D. (1988). Comparative molecular field analysis (comfa). 1. Effect of shape on binding of steroids to carrier proteins J Am Chem Soc 110: 5959-5967.
Cronet, P., Petersen, J. F. W., Folmer, R., Blomberg, N., Sjoblom, K., Karlsson, U., Lindstedt, E.-L. and Bamberg, K. (2001). Structure of the ppara and -g ligand binding domain in complex with az 242; ligand selectivity and agonist activation in the ppar family. Structure 9(8): 699-706.
Daniel, H. v. R., Min, L., Pritchard, P. H. and Kishor, M. W. (2004). Peroxisome proliferator-activated receptor (ppar)-α: A pharmacological target with a promising future. Pharmaceutical Research V21(9): 1531-1538.
Dauter, Z. (1999). Data-collection strategies. Acta Crystallogr D Biol Crystallogr 55(Pt 10): 1703-1717.
Dauter, Z. (2005). Efficient use of synchrotron radiation for macromolecular diffraction data collection. Progress in Biophysics and Molecular Biology 89(2): 153-172.
Davis, A. M., Teague, S. J. and Kleywegt, G. J. (2003). Application and limitations of x-ray crystallographic data in structure-based ligand and drug design. Angew Chem Int Ed Engl 42(24): 2718-2736.
De Meester, I., Korom, S., Van Damme, J. and Scharpe, S. (1999). Cd26, let it cut or cut it down. Immunology Today 20(8): 367-375.
DeLucas, L. J., Bray, T. L., Nagy, L., McCombs, D., Chernov, N., Hamrick, D., Cosenza, L., Belgovskiy, A., Stoops, B. and Chait, A. (2003). Efficient protein crystallization. J Struct Biol 142(1): 188-206.
Demuth, H.-U., Hoffmann, M., Hoffmann, T., Niestroj, A. J., Schilling, S. and Heiser, U. (PCT Int. Appl. 2004). Glutaminyl-based dipeptidyl peptidase iv (dpiv) inhibitors, pharmaceutical compositions, and use. Ltd., P. UK.
Demuth, H.-U., McIntosh, C. H. S. and Pederson, R. A. (2005). Type 2 diabetes--therapy with dipeptidyl peptidase iv inhibitors. Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics 1751(1): 33-44.
Deng, Z., Chuaqui, C. and Singh, J. (2004). Structural interaction fingerprint (sift): A novel method for analyzing three-dimensional protein-ligand binding interactions. J Med Chem 47(2): 337-344.
Devasthale, P. V., Chen, S., Jeon, Y., Qu, F., Shao, C., Wang, W., Zhang, H., Cap, M., Farrelly, D., Golla, R., Grover, G., Harrity, T., Ma, Z., Moore, L., Ren, J., Seethala, R., Cheng, L., Sleph, P., Sun, W., Tieman, A., Wetterau, J. R., Doweyko, A., Chandrasena, G., Chang, S. Y., Humphreys, W. G., Sasseville, V. G., Biller, S. A., Ryono, D. E., Selan, F., Hariharan, N. and Cheng, P. T. (2005). Design and synthesis of n-[(4-methoxyphenoxy)carbonyl]-n-[[4-[2-(5-methyl-2-phenyl-4-oxazolyl)ethoxy]phenyl]methyl]glycine [muraglitazar/bms-298585], a novel peroxisome proliferator-activated receptor a/g dual agonist with efficacious glucose and lipid-lowering activities. J. Med. Chem. 48(6): 2248-2250.
DeWitte, R. S. and Shakhnovich, E. I. (1996). Smog: De novo design method based on simple, fast, and accurate free energy estimates. 1. Methodology and supporting evidence. J. Am. Chem. Soc. 118(47): 11733-11744.
Doebber, T. W., Kelly, L. J., Zhou, G., Meurer, R., Biswas, C., Li, Y., Wu, M. S., Ippolito, M. C., Chao, Y. S., Wang, P. R., Wright, S. D., Moller, D. E. and Berger, J. P. (2004). Mk-0767, a novel dual ppara/g agonist, displays robust antihyperglycemic and hypolipidemic activities. Biochem. Biophys. Res. Commun. 318(2): 323-328.
Donnelly, C. A., Ghani, A. C., Leung, G. M., Hedley, A. J., Fraser, C., Riley, S., Abu-Raddad, L. J., Ho, L. M., Thach, T. Q., Chau, P., Chan, K. P., Lam, T. H., Tse, L. Y., Tsang, T., Liu, S. H., Kong, J. H., Lau, E. M., Ferguson, N. M. and Anderson, R. M. (2003). Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in hong kong. Lancet 361(9371): 1761-1766.
Dooley, A. J., Shindo, N., Taggart, B., Park, J. G. and Pang, Y. P. (2006). From genome to drug lead: Identification of a small-molecule inhibitor of the sars virus. Bioorg Med Chem Lett 16(4): 830-833.
Dror, O., Shulman-Peleg, A., Nussinov, R. and Wolfson, H. J. (2004). Predicting molecular interactions in silico: I. A guide to pharmacophore identification and its applications to drug design. Curr Med Chem 11(1): 71-90.
Drosten, C., Gunther, S., Preiser, W., van der Werf, S., Brodt, H. R., Becker, S., Rabenau, H., Panning, M., Kolesnikova, L., Fouchier, R. A., Berger, A., Burguiere, A. M., Cinatl, J., Eickmann, M., Escriou, N., Grywna, K., Kramme, S., Manuguerra, J. C., Muller, S., Rickerts, V., Sturmer, M., Vieth, S., Klenk, H. D., Osterhaus, A. D., Schmitz, H. and Doerr, H. W. (2003). Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348(20): 1967-1976.
Drucker, D. J. (1998). Glucagon-like peptides. Diabetes 47(2): 159-169.
Du, Q. S., Wang, S. Q., Zhu, Y., Wei, D. Q., Guo, H., Sirois, S. and Chou, K. C. (2004). Polyprotein cleavage mechanism of sars cov mpro and chemical modification of the octapeptide. Peptides 25(11): 1857-1864.
Ducruix, A. a. G., R. (1992). Crystallization of nucleic acids and proteins. A practical approach. New York, Oxford University Press.
Edmondson, S. D., Mastracchio, A., Mathvink, R. J., He, J., Harper, B., Park, Y. J., Beconi, M., DiSalvo, J., Eiermann, G. J., He, H., Leiting, B., Leone, J. F., Levorse, D. A., Lyons, K., Patel, R. A., Patel, S. B., Petrov, A., Scapin, G., Shang, J., Roy, R. S., Smith, A., Wu, J. K., Xu, S., Zhu, B., Thornberry, N. A. and Weber, A. E. (2006). (2s,3s)-3-amino-4-(3,3-difluoropyrrolidin-1-yl)-n,n-dimethyl-4-oxo-2-(4-[1,2,4]triazolo[1,5-a]pyridin-6-ylphenyl)butanamide: A selective alpha-amino amide dipeptidyl peptidase iv inhibitor for the treatment of type 2 diabetes. J. Med. Chem. 49(12): 3614-3627.
Eisen, M. B., Wiley, D. C., Karplus, M. and Hubbard, R. E. (1994). Hook: A program for finding novel molecular architectures that satisfy the chemical and steric requirements of a macromolecule binding site. Proteins 19(3): 199-221.
Eldridge, M. D., Murray, C. W., Auton, T. R., Paolini, G. V. and Mee, R. P. (1997). Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J Comput Aided Mol Des 11(5): 425-445.
Engel, M., Hoffmann, T., Manhart, S., Heiser, U., Chambre, S., Huber, R., Demuth, H.-U. and Bode, W. (2006). Rigidity and flexibility of dipeptidyl peptidase iv: Crystal structures of and docking experiments with dpiv. Journal of Molecular Biology 355(4): 768-783.
Engel, M., Hoffmann, T., Wagner, L., Wermann, M., Heiser, U., Kiefersauer, R., Huber, R., Bode, W., Demuth, H.-U. and Brandstetter, H. (2003). The crystal structure of dipeptidyl peptidase iv (cd26) reveals its functional regulation and enzymatic mechanism. PNAS 100(9): 5063-5068.
Ewing, T. J., Makino, S., Skillman, A. G. and Kuntz, I. D. (2001). Dock 4.0: Search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des 15(5): 411-428.
Gale, E. A. (2001). Lessons from the glitazones: A story of drug development. Lancet 357(9271): 1870-1875.
Gampe, R. T., Montana, V. G., Lambert, M. H., Miller, A. B., Bledsoe, R. K., Milburn, M. V., Kliewer, S. A., Willson, T. M. and Xu, H. E. (2000). Asymmetry in the ppar[gamma]/rxr[alpha] crystal structure reveals the molecular basis of heterodimerization among nuclear receptors. Molecular Cell 5(3): 545-555.
Ghose, A. K. and Wendoloski, J. J. (1998). Perspective in drug discovery and design. Kluwer.Escom 9/10/11: 253.
Ghosh, A. K., Xi, K., Ratia, K., Santarsiero, B. D., Fu, W., Harcourt, B. H., Rota, P. A., Baker, S. C., Johnson, M. E. and Mesecar, A. D. (2005). Design and synthesis of peptidomimetic severe acute respiratory syndrome chymotrypsin-like protease inhibitors. J Med Chem 48(22): 6767-6771.
Gohlke, H., Hendlich, M. and Klebe, G. (2000). Knowledge-based scoring function to predict protein-ligand interactions. J Mol Biol 295(2): 337-356.
Gohlke, H. and Klebe, G. (2001). Statistical potentials and scoring functions applied to protein-ligand binding. Curr Opin Struct Biol 11(2): 231-235.
Gohlke, H. and Klebe, G. (2002). Drugscore meets comfa: Adaptation of fields for molecular comparison (afmoc) or how to tailor knowledge-based pair-potentials to a particular protein. J Med Chem 45(19): 4153-4170.
Guo, L. and Tabrizchi, R. (2006). Peroxisome proliferator-activated receptor gamma as a drug target in the pathogenesis of insulin resistance. Pharmacology & Therapeutics 111(1): 145-173.
Haffner, C. D., McDougald, D. L. and Lenhard, J. M. (PCT Int. Appl. 2003). Preparation of fluoropyrrolidinecarbonitrile derivatives as dipeptidyl peptidase inhibitors. Corporation, S. B. USA.
Hamill, P., Hudson, D., Kao, R. Y., Chow, P., Raj, M., Xu, H., Richer, M. J. and Jean, F. (2006). Development of a red-shifted fluorescence-based assay for sars-coronavirus 3cl protease: Identification of a novel class of anti-sars agents from the tropical marine sponge axinella corrugata. Biol Chem 387(8): 1063-1074.
Handschuh, S., Wagener, M. and Gasteiger, J. (1998). Superposition of three-dimensional chemical structures allowing for conformational flexibility by a hybrid method. J Chem Inf Comput Sci 38(2): 220-232.
Hart, T. N. and Read, R. J. (1992). A multiple-start monte carlo docking method. Proteins 13(3): 206-222.
Hendlich, M. (1998). Databases for protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 54(Pt 6 Pt 1): 1178-1182.
Himmelsbach, F., Langkopf, E., Eckhardt, M., Mark, M., Maier, R., Lotz, R. R. H. and Tadayyon, M. (2004). Preparation of 8-[3-aminopiperidin-1-yl]xanthines as dipeptidylpeptidase-iv (dpp-iv) inhibitors. K.-G., B. I. P. G. m. b. H. C. Germany.
Hindle, S. A., Rarey, M., Buning, C. and Lengaue, T. (2002). Flexible docking under pharmacophore type constraints. J Comput Aided Mol Des 16(2): 129-149.
Hiramatsu, H., Yamamoto, A., Kyono, K., Higashiyama, Y., Fukushima, C., Shima, H., Sugiyama, S., Inaka, K. and Shimizu, R. (2004). The crystal structure of human dipeptidyl peptidase iv (dppiv) complex with diprotin a. Biological Chemistry 385(6): 561-564.
Hsu, M. F., Kuo, C. J., Chang, K. T., Chang, H. C., Chou, C. C., Ko, T. P., Shr, H. L., Chang, G. G., Wang, A. H. and Liang, P. H. (2005). Mechanism of the maturation process of sars-cov 3cl protease. J Biol Chem 280(35): 31257-31266.
Hsu, T., Chen, X., Chen, C. T., Lee, S. J., Chang, C. N., Kao, K. H., Coumar, M. S., Yeh, Y. T., Chien, C. H., Wang, H. S., Lin, K. T., Chang, Y. Y., Wu, S. H., Chen, Y. S., Lu, I. L., Wu, S. Y., Tsai, T. Y., Chen, W. C., Hsieh, H. P., Chao, Y. S. and Jiaang, W. T. (2006). 2-[3-[2-[(2s)-2-cyano-1-pyrrolidinyl]-2-oxoethylamino]-3-methyl-1-oxobutyl ]- 1,2,3,4-tetrahydroisoquinoline: A potent, selective, and orally bioavailable dipeptide-derived inhibitor of dipeptidyl peptidase iv. J Med Chem 49(1): 373-380.
Hunziker, D., Hennig, M. and Peters, J. U. (2005). Inhibitors of dipeptidyl peptidase iv--recent advances and structural views. Curr Top Med Chem 5(16): 1623-1637.
Issemann, I. and Green, S. (1990). Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347(6294): 645-650.
Jain, A. N. (2006). Scoring functions for protein-ligand docking. Curr Protein Pept Sci 7(5): 407-420.
Jenwitheesuk, E. and Samudrala, R. (2003). Identifying inhibitors of the sars coronavirus proteinase. Bioorg Med Chem Lett 13(22): 3989-3992.
Jiaang, W. T., Chen, Y. S., Hsu, T., Wu, S. H., Chien, C. H., Chang, C. N., Chang, S. P., Lee, S. J. and Chen, X. (2005). Novel isoindoline compounds for potent and selective inhibition of prolyl dipeptidase dpp8. Bioorg Med Chem Lett 15(3): 687-691.
Joannis Apostolakis, A. P. k. A. C. (1998). Docking small ligands in flexible binding sites. Journal of Computational Chemistry 19(1): 21-37.
Jones, G., Willett, P. and Glen, R. C. (1995a). A genetic algorithm for flexible molecular overlay and pharmacophore elucidation. J Comput Aided Mol Des 9(6): 532-549.
Jones, G., Willett, P. and Glen, R. C. (1995b). Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J Mol Biol 245(1): 43-53.
Jones, G., Willett, P., Glen, R. C., Leach, A. R. and Taylor, R. (1997). Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology 267(3): 727-748.
Jones, T. A., Zou, J. Y., Cowan, S. W. and Kjeldgaard, M. (1991). Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Cryst A47: 110-119.
Kameoka, J., Tanaka, T., Nojima, Y., Schlossman, S. F. and Morimoto, C. (1993). Direct association of adenosine deaminase with a t cell activation antigen, cd26. Science 261(5120): 466-469.
Kao, R. Y., Tsui, W. H., Lee, T. S., Tanner, J. A., Watt, R. M., Huang, J. D., Hu, L., Chen, G., Chen, Z., Zhang, L., He, T., Chan, K. H., Tse, H., To, A. P., Ng, L. W., Wong, B. C., Tsoi, H. W., Yang, D., Ho, D. D. and Yuen, K. Y. (2004). Identification of novel small-molecule inhibitors of severe acute respiratory syndrome-associated coronavirus by chemical genetics. Chem Biol 11(9): 1293-1299.
Kellenberger, E., Rodrigo, J., Muller, P. and Rognan, D. (2004). Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins 57(2): 225-242.
Kim, D., Wang, L., Beconi, M., Eiermann, G. J., Fisher, M. H., He, H., Hickey, G. J., Kowalchick, J. E., Leiting, B., Lyons, K., Marsilio, F., McCann, M. E., Patel, R. A., Petrov, A., Scapin, G., Patel, S. B., Roy, R. S., Wu, J. K., Wyvratt, M. J., Zhang, B. B., Zhu, L., Thornberry, N. A. and Weber, A. E. (2005). (2r)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin -7(8h)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: A potent, orally active dipeptidyl peptidase iv inhibitor for the treatment of type 2 diabetes. J Med Chem 48(1): 141-151.
Kitchen, D. B., Decornez, H., Furr, J. R. and Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat Rev Drug Discov 3(11): 935-949.
Klebe, G., Abraham, U. and Mietzner, T. (1994). Molecular similarity indices in a comparative analysis (comsia) of drug molecules to correlate and predict their biological activity. J Med Chem 37(24): 4130-4146.
Knegtel, R. M., Kuntz, I. D. and Oshiro, C. M. (1997). Molecular docking to ensembles of protein structures. J Mol Biol 266(2): 424-440.
Kota, B. P., Huang, T. H.-W. and Roufogalis, B. D. (2005). An overview on biological mechanisms of ppars. Pharmacological Research 51(2): 85-94.
Kramer, B., Rarey, M. and Lengauer, T. (1999). Evaluation of the flexx incremental construction algorithm for protein-ligand docking. Proteins 37(2): 228-241.
Ksiazek, T. G., Erdman, D., Goldsmith, C. S., Zaki, S. R., Peret, T., Emery, S., Tong, S., Urbani, C., Comer, J. A., Lim, W., Rollin, P. E., Dowell, S. F., Ling, A. E., Humphrey, C. D., Shieh, W. J., Guarner, J., Paddock, C. D., Rota, P., Fields, B., DeRisi, J., Yang, J. Y., Cox, N., Hughes, J. M., LeDuc, J. W., Bellini, W. J. and Anderson, L. J. (2003). A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348(20): 1953-1966.
Kuang, W. F., Chow, L. P., Wu, M. H. and Hwang, L. H. (2005). Mutational and inhibitive analysis of sars coronavirus 3c-like protease by fluorescence resonance energy transfer-based assays. Biochem Biophys Res Commun 331(4): 1554-1559.
Kuo, C. J., Chi, Y. H., Hsu, J. T. and Liang, P. H. (2004). Characterization of sars main protease and inhibitor assay using a fluorogenic substrate. Biochem Biophys Res Commun 318(4): 862-867.
Kurogi, Y. and Guner, O. F. (2001). Pharmacophore modeling and three-dimensional database searching for drug design using catalyst. Curr Med Chem 8(9): 1035-1055.
Laskowski, R. A., MacArthur, M. W., Moss, D. S. and Thornton, J. M. (1993). Procheck: A program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26: 283-291.
Leach, A. (2001). Molecular modelling: Principles and applications, Prentice Hall.
Leach, A. R., Shoichet, B. K. and Peishoff, C. E. (2006). Prediction of protein-ligand interactions. Docking and scoring: Successes and gaps. J Med Chem 49(20): 5851-5855.
Lee, T. W., Cherney, M. M., Huitema, C., Liu, J., James, K. E., Powers, J. C., Eltis, L. D. and James, M. N. (2005). Crystal structures of the main peptidase from the sars coronavirus inhibited by a substrate-like aza-peptide epoxide. J Mol Biol 353(5): 1137-1151.
Lehmann, J. M., Moore, L. B., Smith-Oliver, T. A., Wilkison, W. O., Willson, T. M. and Kliewer, S. A. (1995). An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor g (ppar g). J. Biol. Chem. 270(22): 12953-12956.
Lehrke, M. and Lazar, M. A. (2005). The many faces of pparγ Cell 123: 993-999.
Lemmen, C., Lengauer, T. and Klebe, G. (1998). Flexs: A method for fast flexible ligand superposition. J Med Chem 41(23): 4502-4520.
Leslie, A. G., Powell, H. R., Winter, G., Svensson, O., Spruce, D., McSweeney, S., Love, D., Kinder, S., Duke, E. and Nave, C. (2002). Automation of the collection and processing of x-ray diffraction data -- a generic approach. Acta Crystallogr D Biol Crystallogr 58(Pt 11): 1924-1928.
Li, Y., Wang, Z. and Motani, A. (2004). T0903131 (t131):A selective modulator of ppar gamma. Diabetes(53:ABS): 659.
Lillioja, S., Mott, D. M., Howard, B. V., Bennett, P. H., Yki-Jarvinen, H., Freymond, D., Nyomba, B. L., Zurlo, F., Swinburn, B. and Bogardus et, a. (1988). Impaired glucose tolerance as a disorder of insulin action. Longitudinal and cross-sectional studies in pima indians. The New England Journal Of Medicine 318(19): 1217-1225.
Lin, C. W., Tsai, C. H., Tsai, F. J., Chen, P. J., Lai, C. C., Wan, L., Chiu, H. H. and Lin, K. H. (2004). Characterization of trans- and cis-cleavage activity of the sars coronavirus 3clpro protease: Basis for the in vitro screening of anti-sars drugs. FEBS Lett 574(1-3): 131-137.
Lin, C. W., Tsai, F. J., Tsai, C. H., Lai, C. C., Wan, L., Ho, T. Y., Hsieh, C. C. and Chao, P. D. (2005). Anti-sars coronavirus 3c-like protease effects of isatis indigotica root and plant-derived phenolic compounds. Antiviral Res.
Lipinski, C. A., Lombardo, F., Dominy, B. W. and Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(1-3): 3-26.
Liu, M. and Wang, S. (1999). Mcdock: A monte carlo simulation approach to the molecular docking problem. J Comput Aided Mol Des 13(5): 435-451.
Liu, Y. C., Huang, V., Chao, T. C., Hsiao, C. D., Lin, A., Chang, M. F. and Chow, L. P. (2005a). Screening of drugs by fret analysis identifies inhibitors of sars-cov 3cl protease. Biochem Biophys Res Commun 333(1): 194-199.
Liu, Z., Huang, C., Fan, K., Wei, P., Chen, H., Liu, S., Pei, J., Shi, L., Li, B., Yang, K., Liu, Y. and Lai, L. (2005b). Virtual screening of novel noncovalent inhibitors for sars-cov 3c-like proteinase. J Chem Inf Model 45(1): 10-17.
Lloyd, D. G., Buenemann, C. L., Todorov, N. P., Manallack, D. T. and Dean, P. M. (2004). Scaffold hopping in de novo design. Ligand generation in the absence of receptor information. J Med Chem 47(3): 493-496.
Lohray, B. B., Lohray, V. B., Bajji, A. C., Kalchar, S., Poondra, R. R., Padakanti, S., Chakrabarti, R., Vikramadithyan, R. K., Misra, P., Juluri, S., Mamidi, N. V. and Rajagopalan, R. (2001). (-)3-[4-[2-(phenoxazin-10-yl)ethoxy]phenyl]-2-ethoxypropanoic acid [(-)drf 2725]: A dual ppar agonist with potent antihyperglycemic and lipid modulating activity. J. Med. Chem. 44(16): 2675-2678.
Longenecker, K. L., Stewart, K. D., Madar, D. J., Jakob, C. G., Fry, E. H., Wilk, S., Lin, C. W., Ballaron, S. J., Stashko, M. A., Lubben, T. H., Yong, H., Pireh, D., Pei, Z., Basha, F., Wiedeman, P. E., von Geldern, T. W., Trevillyan, J. M. and Stoll, V. S. (2006). Crystal structures of dpp-iv (cd26) from rat kidney exhibit flexible accommodation of peptidase-selective inhibitors. Biochemistry 45(24): 7474-7482.
Lovell, S. C., Davis, I. W., Arendall, W. B., 3rd, de Bakker, P. I., Word, J. M., Prisant, M. G., Richardson, J. S. and Richardson, D. C. (2003). Structure validation by calpha geometry: Phi,psi and cbeta deviation. Proteins 50(3): 437-450.
Lu, I. L., Huang, C. F., Peng, Y. H., Lin, Y. T., Hsieh, H. P., Chen, C. T., Lien, T. W., Lee, H. J., Mahindroo, N., Prakash, E., Yueh, A., Chen, H. Y., Goparaju, C. M. V., Chen, X., Liao, C. C., Chao, Y. S., Hsu, J. T. A. and Wu, S. Y. (2006). Structure-based drug design of a novel family of ppar partial agonists: Virtual screening, x-ray crystallography, and in vitro/in vivo biological activities. J. Med. Chem. 49(9): 2703-2712.
Lu, I. L., Lee, S. J., Tsu, H., Wu, S. Y., Kao, K. H., Chien, C. H., Chang, Y. Y., Chen, Y. S., Cheng, J. H., Chang, C. N., Chen, T. W., Chang, S. P., Chen, X. and Jiaang, W. T. (2005). Glutamic acid analogues as potent dipeptidyl peptidase iv and 8 inhibitors. Bioorg Med Chem Lett 15(13): 3271-3275.
Luft, J. R., Collins, R. J., Fehrman, N. A., Lauricella, A. M., Veatch, C. K. and DeTitta, G. T. (2003). A deliberate approach to screening for initial crystallization conditions of biological macromolecules. J Struct Biol 142(1): 170-179.
Mahindroo, N., Huang, C. F., Peng, Y. H., Wang, C. C., Liao, C. C., Lien, T. W., Chittimalla, S. K., Huang, W. J., Chai, C. H., Prakash, E., Chen, C. P., Hsu, T. A., Peng, C. H., Lu, I. L., Lee, L. H., Chang, Y. W., Chen, W. C., Chou, Y. C., Chen, C. T., Goparaju, C. M. V., Chen, Y. S., Lan, S. J., Yu, M. C., Chen, X., Chao, Y. S., Wu, S. Y. and Hsieh, H. P. (2005). Novel indole-based peroxisome proliferator-activated receptor agonists: Design, sar, structural biology, and biological activities. J. Med. Chem. 48(26): 8194-8208.
Mahindroo, N., Wang, C. C., Liao, C. C., Huang, C. F., Lu, I. L., Lien, T. W., Peng, Y. H., Huang, W. J., Lin, Y. T., Hsu, M. C., Lin, C. H., Tsai, C. H., Hsu, J. T. A., Chen, X., Lyu, P. C., Chao, Y. S., Wu, S. Y. and Hsieh, H. P. (2006). Indol-1-yl acetic acids as peroxisome proliferator-activated receptor agonists: Design, synthesis, structural biology, and molecular docking studies. J. Med. Chem. 49(4): 1212-1216.
Mangelsdorf, D. J., Thummel, C., Beato, M., Herrlich, P., Schutz, G., Umesono, K., Blumberg, B., Kastner, P., Mark, M., Chambon, P. and et al. (1995). The nuclear receptor superfamily: The second decade. Cell 83(6): 835-839.
Marguet, D., Baggio, L., Kobayashi, T., Bernard, A. M., Pierres, M., Nielsen, P. F., Ribel, U., Watanabe, T., Drucker, D. J. and Wagtmann, N. (2000). Enhanced insulin secretion and improved glucose tolerance in mice lacking cd26. Proc Natl Acad Sci U S A 97(12): 6874-6879.
Marguet, D., Bernard, A. M., Vivier, I., Darmoul, D., Naquet, P. and Pierres, M. (1992). Cdna cloning for mouse thymocyte-activating molecule. A multifunctional ecto-dipeptidyl peptidase iv (cd26) included in a subgroup of serine proteases. J. Biol. Chem. 267(4): 2200-2208.
Martin, Y., Bures, M., Danaher, E., Delazzer, J., Lico, I. and Pavlik, P. (1993). A fast new approach to pharmacophore mapping and its application to dopaminergic and benzodiazepine agonists. J Comput Aided Mol Des. 7(1): 83-102.
Martina, E., Stiefl, N., Degel, B., Schulz, F., Breuning, A., Schiller, M., Vicik, R., Baumann, K., Ziebuhr, J. and Schirmeister, T. (2005). Screening of electrophilic compounds yields an aziridinyl peptide as new active-site directed sars-cov main protease inhibitor. Bioorg Med Chem Lett.
Matthews, B. W. (1968). Solvent content of protein crystals. Journal of Molecular Biology 33(2): 491-497.
Matthews, B. W. (1976). X-ray crystallographic studies of proteins. Annual Review of Physical Chemistry 27(1): 493-493.
McPhillips, T. M., McPhillips, S. E., Chiu, H. J., Cohen, A. E., Deacon, A. M., Ellis, P. J., Garman, E., Gonzalez, A., Sauter, N. K., Phizackerley, R. P., Soltis, S. M. and Kuhn, P. (2002). Blu-ice and the distributed control system: Software for data acquisition and instrument control at macromolecular crystallography beamlines. J Synchrotron Radiat 9(Pt 6): 401-406.
Mentlein, R. (1999). Dipeptidyl-peptidase iv (cd26)-role in the inactivation of regulatory peptides. Regulatory Peptides 85(1): 9-24.
Mentlein, R., Gallwitz, B. and Schmidt, W. E. (1993). Dipeptidyl-peptidase iv hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem 214(3): 829-835.
Miller, M. D., Kearsley, S. K., Underwood, D. J. and Sheridan, R. P. (1994). Flog: A system to select 'quasi-flexible' ligands complementary to a receptor of known three-dimensional structure. J Comput Aided Mol Des 8(2): 153-174.
Miller, S. A. and St. Onge, E. L. (2006). Sitagliptin: A dipeptidyl peptidase iv inhibitor for the treatment of type 2 diabetes. Ann Pharmacother 40(7): 1336-1343.
Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K. and Olson, A. J. (1998). Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry 19(14): 1639-1662.
Muchmore, S. W., Olson, J., Jones, R., Pan, J., Blum, M., Greer, J., Merrick, S. M., Magdalinos, P. and Nienaber, V. L. (2000). Automated crystal mounting and data collection for protein crystallography. Structure 8(12): R243-246.
Muegge, I. and Martin, Y. C. (1999). A general and fast scoring function for protein-ligand interactions: A simplified potential approach. J. Med. Chem. 42(5): 791-804.
Murakami, K., Tobe, K., Ide, T., Mochizuki, T., Ohashi, M., Akanuma, Y., Yazaki, Y. and Kadowaki, T. (1998). A novel insulin sensitizer acts as a coligand for peroxisome proliferator-activated receptor-alpha (ppar-alpha) and ppar-gamma: Effect of ppar-alpha activation on abnormal lipid metabolism in liver of zucker fatty rats. Diabetes 47(12): 1841-1847.
Navaza, J. (1994). Amore: An automated package for molecular replacement. Acta Crystallographica Section A 50(2): 157-163.
Nie, Q. H., Luo, X. D., Zhang, J. Z. and Su, Q. (2003). Current status of severe acute respiratory syndrome in china. World J Gastroenterol 9(8): 1635-1645.
Nishibata, Y. and Itai, A. (1991). Automatic creation of drug candidate structures based on receptor structure. Starting point for artificial lead generation. Tetrahedron 41: 8985.
Nissen, S. E., Wolski, K. and Topol, E. J. (2005). Effect of muraglitazar on death and major adverse cardiovascular events in patients with type 2 diabetes mellitus. Jama 294(20): 2581-2586.
Nolte, R. T., Wisely, G. B., Westin, S., Cobb, J. E., Lambert, M. H., Kurokawa, R., Rosenfeld, M. G., Willson, T. M., Glass, C. K. and Milburn, M. V. (1998). Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-g. Nature 395(6698): 137-143.
Nordhoff, S., Cerezo-Galvez, S., Feurer, A., Hill, O., Matassa, V. G., Metz, G., Rummey, C., Thiemann, M. and Edwards, P. J. (2006). The reversed binding of [beta]-phenethylamine inhibitors of dpp-iv: X-ray structures and properties of novel fragment and elaborated inhibitors. Bioorganic & Medicinal Chemistry Letters 16(6): 1744-1748.
Oberfield, J. L., Collins, J. L., Holmes, C. P., Goreham, D. M., Cooper, J. P., Cobb, J. E., Lenhard, J. M., Hull-Ryde, E. A., Mohr, C. P., Blanchard, S. G., Parks, D. J., Moore, L. B., Lehmann, J. M., Plunket, K., Miller, A. B., Milburn, M. V., Kliewer, S. A. and Willson, T. M. (1999). A peroxisome proliferator-activated receptor g ligand inhibits adipocyte differentiation. Proc. Natl. Acad. Sci. U. S. A. 96(11): 6102-6106.
Oliver, W. R., Jr., Shenk, J. L., Snaith, M. R., Russell, C. S., Plunket, K. D., Bodkin, N. L., Lewis, M. C., Winegar, D. A., Sznaidman, M. L., Lambert, M. H., Xu, H. E., Sternbach, D. D., Kliewer, S. A., Hansen, B. C. and Willson, T. M. (2001). A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. PNAS 98(9): 5306-5311.
Ortiz, A. R., Pisabarro, M. T., Gago, F. and Wade, R. C. (1995). Prediction of drug binding affinities by comparative binding energy analysis. J Med Chem 38(14): 2681-2691.
Osterberg, F., Morris, G. M., Sanner, M. F., Olson, A. J. and Goodsell, D. S. (2002). Automated docking to multiple target structures: Incorporation of protein mobility and structural water heterogeneity in autodock. Proteins 46(1): 34-40.
Otwinowski, Z. and Minor, W. (1997). Processing of x-ray diffraction data collected in oscillation mode. Methods in Enzymology 276: 307-326.
Palm, K., Luthman, K., Ungell, A. L., Strandlund, G. and Artursson, P. (1996). Correlation of drug absorption with molecular surface properties. J Pharm Sci 85(1): 32-39.
Park, B. H., Vogelstein, B. and Kinzler, K. W. (2001). Genetic disruption of ppardelta decreases the tumorigenicity of human colon cancer cells. Proc Natl Acad Sci U S A 98(5): 2598-2603.
Pearlman, D. A. and Charifson, P. S. (2001). Improved scoring of ligand-protein interactions using owfeg free energy grids. J Med Chem 44(4): 502-511.
Pei, Z., Li, X., Longenecker, K., vonGeldern, T. W., Wiedeman, P. E., Lubben, T. H., Zinker, B. A., Stewart, K., Ballaron, S. J., Stashko, M. A., Mika, A. K., Beno, D. W. A., Long, M., Wells, H., Kempf-Grote, A. J., Madar, D. J., McDermott, T. S., Bhagavatula, L., Fickes, M. G., Pireh, D., Solomon, L. R., Lake, M. R., Edalji, R., Fry, E. H., Sham, H. L. and Trevillyan, J. M. (2006). Discovery, structure-activity relationship, and pharmacological evaluation of (5-substituted-pyrrolidinyl-2-carbonyl)-2-cyanopyrrolidines as potent dipeptidyl peptidase iv inhibitors. J. Med. Chem. 49(12): 3520-3535.
Perrakis, A., Morris, R. and Lamzin, V. S. (1999). Automated protein model building combined with iterative structure refinement. Nat Struct Biol 6(5): 458-463.
Peters, J.-U., Weber, S., Kritter, S., Weiss, P., Wallier, A., Boehringer, M., Hennig, M., Kuhn, B. and Loeffler, B.-M. (2004). Aminomethylpyrimidines as novel dpp-iv inhibitors: A 105-fold activity increase by optimization of aromatic substituents. Bioorganic & Medicinal Chemistry Letters 14(6): 1491-1493.
Philippopoulos, M. and Lim, C. (1999). Exploring the dynamic information content of a protein nmr structure: Comparison of a molecular dynamics simulation with the nmr and x-ray structures of escherichia coli ribonuclease hi. Proteins 36(1): 87-110.
Pospisilik, J. A., Stafford, S. G., Demuth, H. U., Brownsey, R., Parkhouse, W., Finegood, D. T., McIntosh, C. H. and Pederson, R. A. (2002). Long-term treatment with the dipeptidyl peptidase iv inhibitor p32/98 causes sustained improvements in glucose tolerance, insulin sensitivity, hyperinsulinemia, and beta-cell glucose responsiveness in vdf (fa/fa) zucker rats. Diabetes 51(4): 943-950.
Qiao, L., Baumann, C. A., Crysler, C. S., Ninan, N. S., Abad, M. C., Spurlino, J. C., Desjarlais, R. L., Kervinen, J., Neeper, M. P., Bayoumy, S. S., Williams, R., Deckman, I. C., Dasgupta, M., Reed, R. L., Huebert, N. D., Tomczuk, B. E. and Moriarty, K. J. (2006). Discovery, sar, and x-ray structure of novel biaryl-based dipeptidyl peptidase iv inhibitors. Bioorg Med Chem Lett 16(1): 123-128.
Rajnarayanan, R. V., Dakshanamurthy, S. and Pattabiraman, N. (2004). "Teaching old drugs to kill new bugs": Structure-based discovery of anti-sars drugs. Biochem Biophys Res Commun 321(2): 370-378.
Ramachandran, G. N. and Sasisekharan, V. (1968). Conformation of polypeptides and proteins. Adv Protein Chem 23: 283-438.
Rangwala, S. M. and Lazar, M. A. (2002). The dawn of the spparms? Sci STKE 2002(121): PE9.
Rangwala, S. M., Rhoades, B., Shapiro, J. S., Rich, A. S., Kim, J. K., Shulman, G. I., Kaestner, K. H. and Lazar, M. A. (2003). Genetic modulation of pparγ phosphorylation regulates insulin sensitivity. Developmental Cell 5(4): 657-663.
Rarey, M., Kramer, B., Lengauer, T. and Klebe, G. (1996). A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261(3): 470-489.
Rasmussen, H. B., Branner, S., Wiberg, F. C. and Wagtmann, N. (2003). Crystal structure of human dipeptidyl peptidase iv/cd26 in complex with a substrate analog. Nat Struct Biol 10(1): 19-25.
Reifel Miller, A., Otto, K., Hawkins, E., Barr, R., Bensch, W. R., Bull, C., Dana, S., Klausing, K., Martin, J.-A., Rafaeloff-Phail, R., Rafizadeh-Montrose, C., Rhodes, G., Robey, R., Rojo, I., Rungta, D., Snyder, D., Wilbur, K., Zhang, T., Zink, R., Warshawsky, A. and Brozinick, J. T. (2005). A ppara/g dual agonist with a unique in vitro profile and potent glucose and lipid effects in rodent models of type 2 diabetes and dyslipidemia. Mol. Endocrinol. 19: 1593-1605.
Rosen, E. D. and Spiegelman, B. M. (2001). Ppargamma : A nuclear regulator of metabolism, differentiation, and cell growth. The Journal Of Biological Chemistry 276(41): 37731-37734.
Rosenblatt, S., Miskin, B., Glazer, N. B., Prince, M. J. and Robertson, K. E. (2001). The impact of pioglitazone on glycemic control and atherogenic dyslipidemia in patients with type 2 diabetes mellitus. Coron Artery Dis 12(5): 413-423.
Rossmann, M. G. (1972). The molecular replacement method New York, Gordon and Breach.
Rossmann, M. G. and Blow, D. M. (1962). The detection of sub-units within the crystallographic asymmetric unit. Acta Cryst 15: 24-31.
Rota, P. A., Oberste, M. S., Monroe, S. S., Nix, W. A., Campagnoli, R., Icenogle, J. P., Penaranda, S., Bankamp, B., Maher, K., Chen, M. H., Tong, S., Tamin, A., Lowe, L., Frace, M., DeRisi, J. L., Chen, Q., Wang, D., Erdman, D. D., Peret, T. C., Burns, C., Ksiazek, T. G., Rollin, P. E., Sanchez, A., Liffick, S., Holloway, B., Limor, J., McCaustland, K., Olsen-Rasmussen, M., Fouchier, R., Gunther, S., Osterhaus, A. D., Drosten, C., Pallansch, M. A., Anderson, L. J. and Bellini, W. J. (2003). Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300(5624): 1394-1399.
Rummey, C., Nordhoff, S., Thiemann, M. and Metz, G. (2006). In silico fragment-based discovery of dpp-iv s1 pocket binders. Bioorganic & Medicinal Chemistry Letters 16(5): 1405-1409.
Rupp, B., Segelke, B. W., Krupka, H. I., Lekin, T., Schafer, J., Zemla, A., Toppani, D., Snell, G. and Earnest, T. (2002). The tb structural genomics consortium crystallization facility: Towards automation from protein to electron density. Acta Crystallogr D Biol Crystallogr 58(Pt 10 Pt 1): 1514-1518.
Sadowski, J. (1997). A hybrid approach for addressing ring flexibility in 3d database searching. J Comput Aided Mol Des 11(1): 53-60.
Schuttelkopf, A. W. and van Aalten, D. M. F. (2004). Prodrg: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica Section D 60(8): 1355-1363.
Semple, R. K., Chatterjee, V. K. K. and O'Rahilly, S. (2006). Ppar{gamma} and human metabolic disease. J. Clin. Invest. 116(3): 581-589.
Shahripour, A. B., Plummer, M. S., Lunney, E. A., Albrecht, H. P., Hays, S. J., Kostlan, C. R., Sawyer, T. K., Walker, N. P. C., Brady, K. D. and Allen, H. J. (2002). Structure-based design of nonpeptide inhibitors of interleukin-1[beta] converting enzyme (ice, caspase-1). Bioorganic & Medicinal Chemistry 10(1): 31-40.
Shan, Y. F., Li, S. F. and Xu, G. J. (2004). A novel auto-cleavage assay for studying mutational effects on the active site of severe acute respiratory syndrome coronavirus 3c-like protease. Biochem Biophys Res Commun 324(2): 579-583.
Shi, J., Wei, Z. and Song, J. (2004). Dissection study on the severe acute respiratory syndrome 3c-like protease reveals the critical role of the extra domain in dimerization of the enzyme: Defining the extra domain as a new target for design of highly specific protease inhibitors. J Biol Chem 279(23): 24765-24773.
Shie, J. J., Fang, J. M., Kuo, C. J., Kuo, T. H., Liang, P. H., Huang, H. J., Yang, W. B., Lin, C. H., Chen, J. L., Wu, Y. T. and Wong, C. H. (2005). Discovery of potent anilide inhibitors against the severe acute respiratory syndrome 3cl protease. J Med Chem 48(13): 4469-4473.
Siminialayi, I. and Emem-Chioma, P. (2006). Type 2 diabetes mellitus: A review of pharmacological treatment. Niger J Med. 15(3): 207-214.
Sousa, S. F., Fernandes, P. A. and Ramos, M. J. (2006). Protein-ligand docking: Current status and future challenges. Proteins 65(1): 15-26.
Spiegelman, B. M. (1998). Ppar-gamma: Adipogenic regulator and thiazolidinedione receptor. Diabetes 47(4): 507-514.
Stoffers, D. A., Kieffer, T. J., Hussain, M. A., Drucker, D. J., Bonner-Weir, S., Habener, J. F. and Egan, J. M. (2000). Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein idx-1 and increase islet size in mouse pancreas. Diabetes 49(5): 741-748.
Stubbs, M. T., Reyda, S., Dullweber, F., Moller, M., Klebe, G., Dorsch, D., Mederski, W. W. and Wurziger, H. (2002). Ph-dependent binding modes observed in trypsin crystals: Lessons for structure-based drug design. Chembiochem 3(2-3): 246-249.
Tan, Y. J., Lim, S. G. and Hong, W. (2005). Characterization of viral proteins encoded by the sars-coronavirus genome. Antiviral Res 65(2): 69-78.
Tanaka, T., Yamamoto, J., Iwasaki, S., Asaba, H., Hamura, H., Ikeda, Y., Watanabe, M., Magoori, K., Ioka, R. X., Tachibana, K., Watanabe, Y., Uchiyama, Y., Sumi, K., Iguchi, H., Ito, S., Doi, T., Hamakubo, T., Naito, M., Auwerx, J., Yanagisawa, M., Kodama, T. and Sakai, J. (2003). Activation of peroxisome proliferator-activated receptor {delta} induces fatty acid {beta}-oxidation in skeletal muscle and attenuates metabolic syndrome. PNAS 100(26): 15924-15929.
Taylor, J. S. and Burnett, R. M. (2000). Darwin: A program for docking flexible molecules. Proteins 41(2): 173-191.
Terwilliger, T. C. (2002). Automated structure solution, density modification and model building. Acta Crystallogr D Biol Crystallogr 58(Pt 11): 1937-1940.
Thoma, R., Loffler, B., Stihle, M., Huber, W., Ruf, A. and Hennig, M. (2003). Structural basis of proline-specific exopeptidase activity as observed in human dipeptidyl peptidase-iv. Structure 11(8): 947-959.
Toney, J. H., Navas-Martin, S., Weiss, S. R. and Koeller, A. (2004). Sabadinine: A potential non-peptide anti-severe acute-respiratory-syndrome agent identified using structure-aided design. J Med Chem 47(5): 1079-1080.
Tronrud, D. (2004). Introduction to macromolecular refinement. Acta Crystallographica Section D 60(12 Part 1): 2156-2168.
Tsai, K. C., Chen, S. Y., Liang, P. H., Lu, I. L., Mahindroo, N., Hsieh, H. P., Chao, Y. S., Liu, L., Liu, D., Lien, W., Lin, T. H. and Wu, S. Y. (2006a). Discovery of a novel family of sars-cov protease inhibitors by virtual screening and 3d-qsar studies. J Med Chem 49(12): 3485-3495.
Tsai, T.-Y., Coumar, M. S., Hsu, T., Hsing-Pang Hsieh, Chien, C.-H., Chen, C.-T., Chang, C.-N., Lo, Y.-K., Ssu-Hui Wu, Huang, C.-Y., Huang, Y.-W., Wang, M.-H., Wu, H.-Y., Lee, H.-J., Chen, X., Chao, Y.-S. and Jiaang, W.-T. (2006b). Substituted pyrrolidine-2,4-dicarboxylic acid amides as potent
dipeptidyl peptidase iv inhibitors. Bioorganic & Medicinal Chemistry Letters 16: 3268-3272.
Upton, R., Widdowson, P. S., Ishii, S., Tanaka, H. and Williams, G. (1998). Improved metabolic status and insulin sensitivity in obese fatty (fa/fa) zucker rats and zucker diabetic fatty (zdf) rats treated with the thiazolidinedione, mcc-555. 125(8): 1708-1714.
Vagin, A. and Teplyakov, A. (1997). Molrep: An automated program for molecular replacement. Journal of Applied Crystallography 30(6): 1022-1025.
van der Woerd, M., Ferree, D. and Pusey, M. (2003). The promise of macromolecular crystallization in microfluidic chips. Journal of Structural Biology 142(1): 180-187.
Vangrevelinghe, E., Zimmermann, K., Schoepfer, J., Portmann, R., Fabbro, D. and Furet, P. (2003). Discovery of a potent and selective protein kinase ck2 inhibitor by high-throughput docking. J Med Chem 46(13): 2656-2662.
Verdonk, M. L., Cole, J. C., Hartshorn, M. J., Murray, C. W. and Taylor, R. D. (2003). Improved protein-ligand docking using gold. Proteins 52(4): 609-623.
Vigers, G. P. and Rizzi, J. P. (2004). Multiple active site corrections for docking and virtual screening. J Med Chem 47(1): 80-89.
Vriend, G. (1990). What if: A molecular modeling and drug design program. J Mol Graph 8(1): 52-56, 29.
Wagstaff, A. J. and Goa, K. L. (2002). Rosiglitazone: A review of its use in the management of type 2 diabetes mellitus. Drugs 62(12): 1805-1837.
Wang, R., Gao, Y. and Lai, L. (2000). Ligbuilder: A multi-purpose program for structure-based drug design. J Mol Mod 6: 498-516.
Wang, R., Lai, L. and Wang, S. (2002). Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aided Mol Des 16(1): 11-26.
Wang, Y.-X., Lee, C.-H., Tiep, S., Yu, R. T., Ham, J., Kang, H. and Evans, R. M. (2003). Peroxisome-proliferator-activated receptor [delta] activates fat metabolism to prevent obesity. Cell 113(2): 159-170.
Ward, R. A., Perkins, T. D. and Stafford, J. (2005). Structure-based virtual screening for low molecular weight chemical starting points for dipeptidyl peptidase iv inhibitors. J Med Chem 48(22): 6991-6996.
Ward, W. H., Cook, P. N., Slater, A. M., Davies, D. H., Holdgate, G. A. and Green, L. R. (1994). Epidermal growth factor receptor tyrosine kinase. Investigation of catalytic mechanism, structure-based searching and discovery of a potent inhibitor. Biochem Pharmacol 48(4): 659-666.
Watanabe, N., Murai, H. and Tanaka, I. (2002). Semi-automatic protein crystallization system that allows in situ observation of x-ray diffraction from crystals in the drop. Acta Crystallogr D Biol Crystallogr 58(Pt 10 Pt 1): 1527-1530.
Weber, A. E. (2004). Dipeptidyl peptidase iv inhibitors for the treatment of diabetes. J. Med. Chem. 47(17): 4135-4141.
Weber, P. C. (1991). Physical principles of protein crystallization. Adv Protein Chem 41: 1-36.
Weiner, S., Kollman, P., Case, D., Singh, U., Ghio, C., Alagona, G., Profeta, S. J. and Weiner, P. (1984). A new force field for molecular mechanics simulation of nucleic acids and proteins. J Am Chem Soc 106: 765-784.
Werman, A., Hollenberg, A., Solanes, G., Bjorbaek, C., Vidal-Puig, A. J. and Flier, J. S. (1997). Ligand-independent activation domain in the n terminus of peroxisome proliferator-activated receptor gamma (ppargamma). Differential activity of ppargamma1 and -2 isoforms and influence of insulin. J Biol Chem 272(32): 20230-20235.
Wesley, U. V., Albino, A. P., Tiwari, S. and Houghton, A. N. (1999). A role for dipeptidyl peptidase iv in suppressing the malignant phenotype of melanocytic cells. J. Exp. Med. 190(3): 311-322.
Willson, T. M., Lambert, M. H. and Kliewer, S. A. (2001). Peroxisome proliferator-activated receptor g and metabolic disease. Annu. Rev. Biochem. 70: 341-367.
Wu, C. Y., Jan, J. T., Ma, S. H., Kuo, C. J., Juan, H. F., Cheng, Y. S., Hsu, H. H., Huang, H. C., Wu, D., Brik, A., Liang, F. S., Liu, R. S., Fang, J. M., Chen, S. T., Liang, P. H. and Wong, C. H. (2004). Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc Natl Acad Sci U S A 101(27): 10012-10017.
Xiong, B., Gui, C. S., Xu, X. Y., Luo, C., Chen, J., Luo, H. B., Chen, L. L., Li, G. W., Sun, T., Yu, C. Y., Yue, L. D., Duan, W. H., Shen, J. K., Qin, L., Shi, T. L., Li, Y. X., Chen, K. X., Luo, X. M., Shen, X., Shen, J. H. and Jiang, H. L. (2003). A 3d model of sars_cov 3cl proteinase and its inhibitors design by virtual screening. Acta Pharmacol Sin 24(6): 497-504.
Xu, H. E., Lambert, M. H., Montana, V. G., Plunket, K. D., Moore, L. B., Collins, J. L., Oplinger, J. A., Kliewer, S. A., Gampe, R. T., Jr., McKee, D. D., Moore, J. T. and Willson, T. M. (2001). Structural determinants of ligand binding selectivity between the peroxisome proliferator-activated receptors. Proc. Natl. Acad. Sci. U. S. A. 98(24): 13919-13924.
Yajima, K., Hirose, H., Fujita, H., Seto, Y., Fujita, H., Ukeda, K., Miyashita, K., Kawai, T., Yamamoto, Y., Ogawa, T., Yamada, T. and Saruta, T. (2003). Combination therapy with ppargamma and pparalpha agonists increases glucose-stimulated insulin secretion in db/db mice. Am J Physiol Endocrinol Metab 284(5): E966-971.
Yamaguchi, K., Lee, S.-H., Eling, T. E. and Baek, S. J. (2006). A novel peroxisome proliferator-activated receptor {gamma} ligand, mcc-555, induces apoptosis via posttranscriptional regulation of nag-1 in colorectal cancer cells. Mol Cancer Ther 5(5): 1352-1361.
Yang, H., Xie, W., Xue, X., Yang, K., Ma, J., Liang, W., Zhao, Q., Zhou, Z., Pei, D., Ziebuhr, J., Hilgenfeld, R., Yuen, K. Y., Wong, L., Gao, G., Chen, S., Chen, Z., Ma, D., Bartlam, M. and Rao, Z. (2005a). Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol 3(10): e324:1742-1752.
Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Mo, L., Ye, S., Pang, H., Gao, G. F., Anand, K., Bartlam, M., Hilgenfeld, R. and Rao, Z. (2003). The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc Natl Acad Sci U S A 100(23): 13190-13195.
Yang, J. M., Chen, Y. F., Shen, T. W., Kristal, B. S. and Hsu, D. F. (2005b). Consensus scoring criteria for improving enrichment in virtual screening. J Chem Inf Model 45(4): 1134-1146.
Yang, S., Chen, S. J., Hsu, M. F., Wu, J. D., Tseng, C. T. K., Liu, Y. F., Chen, H. C., Kuo, C. W., Wu, C. S., Chang, L. W., Chen, W. C., Liao, S. Y., Chang, T. Y., Hung, H. H., Shr, H. L., Liu, C. Y., Huang, Y. A., Chang, L. Y., Hsu, J. C., Peters, C. J., Wang, A. H. J. and Hsu, M. C. (2006). Synthesis, crystal structure, structure-activity relationships, and antiviral activity of a potent sars coronavirus 3cl protease inhibitor. J. Med. Chem. 49(16): 4971-4980.
Yaron, A. and Naider, F. (1993). Proline-dependent structural and biological properties of peptides and proteins. Crit Rev Biochem Mol Biol 28(1): 31-81.
Zhang, X. W. and Yap, Y. L. (2004). Old drugs as lead compounds for a new disease? Binding analysis of sars coronavirus main proteinase with hiv, psychotic and parasite drugs. Bioorg Med Chem 12(10): 2517-2521.
Ziebuhr, J., Snijder, E. J. and Gorbalenya, A. E. (2000). Virus-encoded proteinases and proteolytic processing in the nidovirales. J Gen Virol 81(Pt 4): 853-879.
Zimmet, P., Alberti, K. G. and Shaw, J. (2001). Global and societal implications of the diabetes epidemic. Nature 414(6865): 782-787.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top