|
[1] D.E. Metzger, T. Yamashita, C.W. Jenkins, Impingement cooling of concave surfaces with lines of circular air jets, ASME Journal of Engineering Power 93 (1969) 149–155. [2] L.W. Florschetz, C.R. Truman, D.E. Metzger, Streamwise flow and heat transfer distribution for jet impingement with crossflow, ASME Journal of Heat Transfer 103 (1981) 337–342. [3] D.E. Metzger, and R.S. Bunker, Local heat transfer in internally cooled turbine airfoil leading edge regions: Part I—Impingement cooling without film coolant extraction, ASME Journal of Turbomachinery 112 (1990) 451–458. [4] Y. Huang, S.V. Ekkad, J.C. Han, Heat transfer distributions under an array of orthogonal impinging jets, AIAA Journal of Thermophysics and Heat Transfer 12 (1998) 73–79. [5] R.S. Bunker, and D. E. Metzger, Local heat transfer in internally cooled turbine airfoil leading edge regions: Part II—Impingement cooling with film coolant extraction, ASME Journal of Turbomachinery 112 (1990) 459–456. [6] S.V. Ekkad, Y. Huang, J.C. Han, Impingement heat transfer on a target plate with film holes, AIAA Journal of Thermophysics and Heat Transfer 13 (1999) 522– 528. [7] M.E. Taslim, Y. Pan, S.D. Spring, An experimental study of impingement on roughened airfoil leading-walls with film holes, ASME Journal of Turbomachinery 123 (2001)766–773. [8] M. E. Taslim K. Bakhtari H. Liu, Experimental and numerical investigation of impingement on a rib-roughened leading-edge wall, ASME Journal of Turbomachinery 125 (2003) 682–691. [9] D. Massini, E. Burberi , C. Carcasci, L. Cocchi, B. Facchini, A. Armellini, L. Tarchi, S. Zecchi, Heat transfer measurements in a leading edge geometry with racetrack holes and film cooling extraction, ASME Journal of Turbomachinery 135 (2013) 031020 1–9. [10] E.L. Martin and L. M. Wright, Impingement Heat Transfer Enhancement on a Cylindrical, Leading Edge Model With Varying Jet Temperatures, ASME Journal of Turbomachinery 135 (2013) 031021 1–8. [11] K.V. Akella, and J.C. Han, Impingement cooling in rotating two-pass rectangular channels, AIAA Journal of Thermophysics and heat transfer 12 (1998) 582–588. [12] K.V. Akella, and J.C. Han, Impingement cooling in rotating two-pass rectangular channels with ribbed walls, AIAA Journal of Thermophysics and heat transfer 13 (1999) 364–371. [13] S.-S. Hsieh, J.-T. Huang, C.-F. Liu, Local heat transfer in a rotating square channel with jet impingement, ASME Journal of Heat Transfer 121 (1999) 811–818. [14] J. A. Parsons, J. C. Han, C. P. Lee, Rotation effect on jet impingement heat transfer in smooth rectangular channels with four heated walls and radially outward crossflow, ASME Journal of Turbomachinery 120 (1998) 79–85. [15] J. A. Parsons and J.C. Han, Jet-impingement heat transfer in rotating channels with staggered extraction flow, AIAA Journal of Thermophysics and heat transfer 19 (2005) 156–162. [16] H. Iacovides, D. Kounadis, B.E. Launder, J. Li, Z. Xu, Experimental study of the flow and thermal development of a row of cooling jets impinging on a rotating concave surface, ASME Journal of Turbomachinery 127 (2005) 222–229. [17] S. K. Hong, D. H. Lee, H. H. Cho, Effect of jet direction on heat/mass transfer of rotating impingement jet, Applied Thermal Engineering 29 (2009) 2914–2920. [18] J. A. Lamont, S. V. Ekkad, M. A. Alvin, Effects of rotation on heat transfer for a single row jet impingement array with crossflow, ASME Journal of Heat Transfer 134 (2012) 082202 1–12. [19] D. Massini, E. Burberi , C. Carcasci, L. Cocchi, B. Facchini, A. Armellini, L. Casarsa, L. Furlani, Effect of rotation on a gas turbine blade internal cooling system: experimental investigation, ASME Journal of Engineering for Gas Turbines and Power 139 (2017) 101902 1–13. [20] P. Singh and S. V. Ekkad, Detailed heat transfer measurements of jet impingement on dimpled target surface under rotation, ASME Journal of Thermal Science and Engineering Applications 10 (2018) 031006 1–14. [21] S.W. Chang, T.-M. Liou, Y. Po, Yu, Coriolis and rotating buoyancy effect on detailed heat transfer distributions in a two-pass square channel roughened by 45° ribs at high rotation numbers 53 (2012) 1349–1363. [22] B.V. Johnson, J.H. Wagner, G.D. Steuber, F.C. Yeh, Heat transfer in rotating serpentine passages with trip skewed to the flow, ASME Journal of Turbomachinery 116 (1994) 113–123. [23] S.W. Chang, W.-L. Cai, H.-D. Shen, K.-C. Yu, Uncoupling Coriolis force and rotating buoyancy effects on full-field heat transfer properties of a rotating channel, Journal of Visualized Experiments, (2018) In-press. [24] F.W. Dittus, L.M.K. Boelter, Heat transfer in automobile radiators of the tubular type, University of California Publications on Engineering 2 (1930) 433–461. [25] P.R.H. Blasius, Das Aehnlichkeitsgesetz bei Reibungsvorgangen in Flüssigkeiten, Mitteilungen uber Forschungsarbeuten auf dem Gebiete des Ingenieurwesens 131 (1913) 1–41. [26] D.L. Gee, R.L. Webb, Forced convection heat transfer in helically rib-roughened tubes, International Journal of Heat and Mass Transfer 23 (1980) 1127–1136. [27] J.H. Kim, T.W. Simon, R.Viskanta, Journal of heat transfer policy on reporting uncertainties in experimental measurements and results, ASME J. Heat Transfer 115 (1993) 5–6. [28] Ernesto Benini ,Advances in Gas Turbine Technology, Edition: 1st, Chapter: 1, Publisher: Intech, pp.3-24 [29] Han, J. C., and Huh, M., 2009, “Recent Studies in Turbine Blade Internal Cooling, Proceedings of the International Symposium on Heat Transfer in Gas Turbine Systems, Antalya, Turkey. [30]Jeff Dahl, CC BY-SA 4.0 https://commons.wikimedia.org/w/index.php?curid=3235265
|