跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/13 07:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳學華
研究生(外文):Hsuehhwawu
論文名稱:發光二極體對於手術傷口的止痛效果 及機制探討
論文名稱(外文):Mechanism of Analgesic Effect of Light Emitting Diode (LED) Therapy on Incisional Wound
指導教授:汪啟茂汪啟茂引用關係譚炳恆
指導教授(外文):Chii-Maw UangPing-Heng Tan
口試委員:汪啟茂譚炳恆陳志堅
口試委員(外文):Chii-Maw UangPing-Heng TanChih-Chren Chen
口試日期:2013-07-09
學位類別:碩士
校院名稱:義守大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:101
語文別:中文
論文頁數:76
中文關鍵詞:發光二極體切割傷止痛細胞激素
外文關鍵詞:Light Emitting Diodeincisionanalgesiacytokine
相關次數:
  • 被引用被引用:1
  • 點閱點閱:816
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
近年來,發光二極體(LED)光療經由幾種機制在於減輕疼痛和促進組織修復,已引起注意。LED已經有了很久的發展,與雷射光比較,更具經濟效益且更為有效。除了日益增加的基礎與臨床的研究來了解病理的機轉,適當的術後止痛治療仍然是醫學的一大挑戰。LED在術後傷口的止痛效果,尚未好好檢視。促發炎性和抗炎性細胞激素,環氧合酶-2,前列腺素E2的疼痛作用在先前的研究已經顯示出來。因此,在本實驗,我們要檢視LED的止痛效果,藉著比較促發炎性和抗炎性細胞激素,環氧合酶-2,前列腺素E2在切割傷口前或後,與是否接受LED治療有相關性。觀察她們之間的數值改變來驗證有、無LED光照治療對傷口的切割後有、無止痛效果。
本研究探討波長940nm的發光二極體(Light Emitting Diode,LED)作為光源來進行止痛機制的觀察,以實驗大鼠做為對象,在老鼠的左腳腳底切割傷口。實驗鼠被分別為4組:不照光只切傷口組(I組)、先照光再切傷口(L-I組)、先切傷口再照光(I-L組)、切傷口前後都照(L-I-L組)。
我們用熱過度痛感的行為檢驗法,在實驗之前與之後各做一次,來做比較。行為檢驗法之後,我們取傷口皮膚組織,藉著西方墨點法將IL-1β、IL-10, COX-2和PGE2做蛋白質表現分析(每組5隻)。
熱退縮延遲時間在I組有明顯的減少(P<0.05),但有LED照過的三組卻沒有減少。止痛效果與減少IL-1β、 COX-2和PGE2減少和IL-10增加是相關的。IL-1β、COX-2和PGE2的數值在LED照光組也有明顯的下降(P<0.05),而IL-10的數值也明顯的增加(P<0.05),因此,熱退縮延遲時間增長顯示LED的止痛效果而止痛效果與IL-1β、IL-10 COX-2和PGE2減少和IL-10增加是相關的,證實LED光照對切割後疼痛是具有止痛效果的。
Recently, light emitting diode (LED) phototherapy has attracted attention for reducing pain and inducing tissue repair through several mechanisms. The LED has a longer life, is more economically accessible and can be efficient as laser light. Despite increased basic and clinical researches and improved understanding of pathologic mechanisms, optimal post-surgical pain therapy remains a challenge for physicians. The analgesic effect of LED on incisional wound has not been examined. The effect of pro- and anti-inflammatory cytokine, COX-2 and PGE2 in pain treatment has been demonstrated by previous report. Thus, in this study, we will examine the analgesic effect of LED therapy and the role of pro- and anti-inflammatory cytokine, COX-2 and PGE2 in incisional skin after LED therapy or not. The rats were randomly divided into four groups. Rats received 940nm LED therapy 6 days before incision over left hind planta (group L-I) or 6 days after incision (group I-L) or from 3 days before incision to 3 days after incision (group L-I-L), skin incision only (group I). Thermal withdrawal latency was tested before and after treatment, skin tissues were collected for IL-1β, IL-10, COX-2 and PGE2 protein analysis (n=5 each group) by western blot after behavior test. Thermal withdrawal latency was significant decreased in incision wound but not in incision wound treated with LED. The IL-1β, COX-2 and PGE2 were significant decreased after LED treatment compared with incision wound with no LED treatment group (P<0.05). The IL-10 was significant increased after LED treatment compared with incision wound with no LED treatment group (P<0.05). Thus, the analgesic effect of LED was associated with the decrease of IL-1β, COX-2 and PGE2 and the increase of IL-10, and confirmed that the LED therapy on cut pain relief has a positive effect.
摘要…………………………………………………………………………………………….I
Abstract……………………………………………………………………………………….IV
致謝.....................................................................VI
目錄
圖目錄
第一章 緒 論.……………………………………………………………………………..…1
 1-1 研究動機……………………………………………………………………………...1
 1-2 研究背景……………………………………………………………………………...2
 1-3 研究目的……………………………………………………………………………...4
第二章 文獻回顧…………………………………………………………………………….6
 2-1 光學理論……………………………………………………………………………...6
2-1-1 光度量參數簡介………………………………………………………………….6
2-1-2 光通量…………………………………………………………………………….6
2-1-3 發光強度………………………………………………………………………….7
2-1-4 亮度……………………………………………………………………………….7
2-1-5 發光效率………………………………………………………………………….7
2-1-6 光照度…………………………………………………………………………….8
2-1-7 LED 其他相關光度參數…………………………………………………………9
 2-2 光療的歷史……………………………………………………………………….…11
 2-3 光療的發展……………………………………………………………………….…13
 2-4 各種顏色光波應用……………………………………………………………….…16
2-4-1 紅外線……..................………………..…………………………………..…16
2-4-2 紅光………………………………..…………………......................16
2-4-3 黃光………….……………………………………...............................16
2-4-4 藍光………………………………..………………..............................17
2-4-5 紫外線……………………… …………………………………………………...17
2-5 光質與光強對皮膚的生理影響…….….…….……………………………………...18
2-6 熱過度痛感( Hyperalgesia)……………………………………………..…………...20
2-7 細胞激素(cytokine)、環氧合酶(COX-2)和前列腺素E2(PGE2)….….……………21
2-7-1 細胞激素(cytokine) ……………………………………………………………...22
2-7-2細胞激素的作用特點........................................................24
2-7-3 IL-1β,Interleukin-1β(介白質,白細胞介素) ............................ 24
2-7-4 IL-10,Interleukin-10:..................................................24
2-7-5環氧合酶-2(COX-2) ........................................................25
2-7-6前列腺素與前列腺素E2......................................................27
2-8 西方墨點法(Western Blot Method) ………….………………………...………......28
第三章 實驗計畫..........……………...........................................30
 3-1 實驗計畫簡介……………………………......................................30
3-2 設備儀器……………………………………...…………... .....................31
3-3 實施方法……………………………………………….............................................35
 3-4 進行步驟……………...………………………………………………………..……...36
 3-5 數據分析……………….……….............................................48
第四章 實驗結果…………………………....………………………………………………...48
 4-1 LED對熱過度痛感的影響.…......………………………………………………………48
 4-2 LED對細胞激素IL-1β、IL-10、COX-2和PGE2的影響……..……………………50
第五章 討論………………………………………………………………………………...54
第六章 結論與未來展望…………………………………………………………………...58
參考文獻…………………………………………………………………………………...... 59
圖目錄 
圖2-1 小功率 LED 空間光強分布圖……………………………………………………….8
圖2-2 LED 空間光強分布示意圖……………………………………………………………9
圖2-3 LED 相關光度參數定義示意圖……………………………………………………..10
圖2-4利用LED光療和冷水浸泡來比較肌肉酸痛的治療…………………..……………19
圖2-5. 環氧化酵素在合成前列腺素的路徑………………………………………………..27
圖3-1 UGO BASILE plantar test,用來測熱刺激抗過度痛感…………………………….31
圖3-2分光度計(TECAN Sunrise Microplate Reader) ……………………………………...32
圖3-3 Bio-Rad Mini-PROTEAN II Electrophoresis Cell和Mini Trans-Blot Electrophoretic Transfer Cell…………………………………………………………………………………..33
圖3-4 UVP BioSpectrum 500 Imaging System…………………………………………….34
圖3-5使用 Ugo Basile plantar test過程照………………………………………………….36
圖3-6. 940nm LED光源排列方式……….………………………………………………….37
圖3-7. 照光方式(測面照)……. …….………………………………………………………38
圖3-8. 照光方式(正面照)……………………………………………………………...……38
圖3-9.以躺臥方式直接照光………………………………………………..………………..39
圖3-10.剪下皮膚組織………………………………………………………………………..41
圖3-11.用均質機絞碎皮膚組織……………………………………………………………..42
圖4-1.各組實驗前後熱退縮延遲時間的比較…...………………………………………….49
圖4-2.各組的IL-1β蛋白質表現的比較……………………………………………..……..51
圖4-3.各組的IL-10蛋白質表現的比較…………………………………………………….52
圖4-4.各組的COX-2蛋白質表現的比較………………………………………………..…53
圖4-4.各組的COX-2蛋白質表現的比較…………………………………………………. 54
丁慶華和蔡吉勝,2010。光學美容儀之研製。建國科技大學自動化工程系暨機電光系統研究所和國立嘉義大學生物機電工程學系。第二十五卷 第一期。頁83~90。
方 煒,饒瑞佶,高亮度發光二極體於生物產業之應用,2001。
林貴卿,光學美容搣脂儀開發研製,國立嘉義大學生物機電工程學系,Jan. 2007。
光療與發展:http://www.phototherapy-centre.com/history.htm
楊智超,發光二極體刺激對豬燒燙傷傷口癒合之影響,中原大學醫學工程學所,中華民國94年9月。
陳岱羚,發光二極體光刺激對糖尿病老鼠燒燙傷口癒合之影響,中原大學醫學工程學所,2006年6月。
古揮廷,白光LED光源模擬應用與設計。義守大學電子工程學系,2009年6月。
周展超,激光與光子治療,中國醫學科學院,中國協和醫科大學,皮膚病研究所皮膚激光治癒中心,2007,頁275~278。
霍彦明, 王志远, 封丽华, LED光源在医学中的应用。灯与照明第34卷第4期,頁59~61,2010年12月。
刘 江、角建瓴、刘承宜和范广涵,L ED 在生物医学方面的应用和前景,頁1~4,2002 年第23 卷第6 期。
项红升、李明、霍荣龄、杨巍和孙君泓, LED 应用于光疗的研究进展,北京生物医学工程,第24 卷 第4 期。頁311~315,2005 年 8 月。
Brennan TJ, Vandermeulen EP, Gebhart GF. Characterization of a rat model of incisional pain. Pain 1996; 64:493–501.
Casalechi HL, Nicolau RA, Casalechi VL, Silveira L Jr, De Paula AM, Pacheco MT. The effects of low-level light emitting diode on the repair process of Achilles tendon therapy in rats. Lasers Med Sci 2009; 24(4):659–665.
Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. Journal of Neuroscience Methods 1994; 53: 55–63.
Clark AK, D’Aquisto F, Gentry C, Marchand F, McMahon SB, Malcangio M. Rapid co-release of interleukin 1beta and caspase 1 in spinal cord inflammation. J Neurochem 2006; 99: 868-80.
Cunha FQ, Poole S, Lorenzetti BB, Ferreira SH. The pivotal role of tumour necrosis factor alpha in the development of inflammatory hyperalgesia. Br J Pharmacol 1992; 107: 660–4.
Dall Agnol MA, Nicolau RA, Lima CJ, Munin E. Comparative analysis of coherent light action (laser) versus non-coherent light (light-emitting diode) for tissue repair in diabetic rats. Lasers Med Sci 2009;24:909–916.
Dixon WJ. Efficient analysis of experimental observations. Ann. Rev. Pharmacol. Toxicol. 1980; 20:441–62.
Douris P, Southard V, Ferrigi R, Grauer J, Katz D, Nascimento C, Podbielski P . Effect of phototherapy on delayed onset muscle soreness. Photomed Laser Surg 2006; 24(3):377–382.
Eells JT, Wong-Riley MT, VerHoeve J, Henry M, Buchman EV, Kane MP, Gould LJ, Das R, Jett M, Hodgson BD, Margolis D, Whelan HT. Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion 2004; 4(5–6):559–567.
Kleinschnitz C, Brinkhoff J, Zelenka M, Sommer C, Stoll G. The extent of cytokine induction in peripheral nerve lesions depends on the mode of injury and NMDA receptor signaling. J Neuroimmunol 2004;149:77–83.
Komine N, Ikeda K, Tada K, Hashimoto N, Sugimoto N, Tomita K. Activation of the extracellular signal-regulated kinase signal pathway by light emitting diode irradiation. Lasers Med Sci 2010; 25 (4):531–537.
Kraus J, Boner C, Giannini E, et al. Regulation of muopioid receptor gene transcription by interleukin-4 and influence of an allelic variation within a STAT6 transcription factor binding site. J Biol Chem 2001; 276: 43901-8.
Lasers Med Sci 2009; 24(4):659–665.
Liang HL, Whelan HT, Eells JT, Wong-Riley MT . Near-infrared light via light-emitting diode treatment is therapeutic against rotenone- and 1-methyl-4-phenylpyridinium ion-induced neurotoxicity. Neuroscience 2008; 153(4):963–974.
Mannion RJ, Woolf CJ. Pain mechanisms and management: a central perspective. Clin J Pain, 2000;16(suppl):S144–S156.
Marchand F, Perretti M, McMahon SB. Role of the immune system in chronic pain. Nat Rev Neurosci 2005;6:521–532.
Mariana Zingari Camargo.”Effects of light emitting diode (LED) therapy and cold water immersion therapy on exercise-induced muscle damage in rats”. Lasers in Medical Science 2012;5:1051-8
Milligan ED, Langer SJ, Sloane EM, et al. Controlling pathological pain by adenovirally driven spinal production of the anti-inflammatory cytokine, interleukin-10. Eur J Neurosci 2005;21:2136–2148.
Samad TA, Moore KA, Sapirstein A, et al. Interleukin-1-beta mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature 2001; 410: 471–5.
Schafers M, Lee DH, Brors D, Yaksh TL, Sorkin LS. Increased sensitivity of injured and adjacent uninjured rat primary sensory neurons to exogenous tumor necrosis factor-alpha after spinal nerve ligation. J Neurosci 2003; 23: 3028-38.
Sinatra RS, Bigham M. The anatomy and pathophysiology of acute pain. In: Grass JA, ed. Problems in Anesthesiology. Philadelphia, PA: Lippincott-Raven; 1997.
Solear AM, Angell-Petersen E, Warloe T. Photodynamic therapy of superficial basal cell carcinoma with 5-amilevulinic acid with imethysulfoxide and ethylendiaminetetraacetic acid: A comparison of two light sources. Photochem Photobiol 2000;71:724–729.
Sussai DA, Carvalho Pde T, Dourado DM, Belchior AC, dos Reis FA, Pereira DM . Low-level laser therapy attenuates creatine kinase levels and apoptosis during forced swimming in rats. Lasers Med Sci 2010; 25(1):115–120.
Wagner R, Janjigian M, Myers RR. Anti-inflammatory interleukin-10 therapy in CCI neuropathy decreases thermal hyperalgesia, macrophage recruitment, and endoneurial TNF-alpha expression. Pain 1998;74:35–42.
Whelan HT, Buchmann EV, Dhokalia A, Kane MP, Whelan NT, Wong-Riley MT, Eells JT, Gould LJ, Hammamieh R, Das R, Jett M . Effect of NASA light-emitting diode irradiation on molecular changes for wound healing in diabetic mice. J Clin Laser Med Surg 2003; 21(2):67–74.
Wong-Riley MT, Liang HL, Eells JT, Chance B, Henry MM, Buchmann E, Kane M, Whelan HT . Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase. J Biol Chem 2005; 280(6):4761–4771.
Woolf CJ, Chong MS. Preemptive analgesia-treating postoperative pain by preventing the establishment of central sensitization. Anesth Analg 1993; 77: 362–79.
Zelenka M, Schafers M, Sommer C. Intraneural injection of interleukin-1beta and tumor necrosis factor-alpha into rat sciatic nerve at physiological doses induces signs of neuropathic pain. Pain 2005;116:257–263.
Zhu X, Vincler MA, Parker R, Eisenach JC. Spinal cord dynorphin expression increases, but does not drive microglial prostaglandin production or mechanical hypersensitivity after incisional surgery in rats. Pain 2006; 125:43–52.
Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983; 16: 109–10.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top