跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/05 07:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳鴻祺
研究生(外文):Hung-Chi, Chen
論文名稱:無位置感測直流無刷馬達驅動系統之開發
論文名稱(外文):DEVELOPMENT OF POSITION SENSORLESS BRUSHLESS DC MOTOR DRIVES
指導教授:廖聰明廖聰明引用關係
指導教授(外文):Chang-Ming, Liaw
學位類別:博士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:162
中文關鍵詞:無位置感測直流無刷馬達強健控制功因改善智慧調控電流控制速度估測速度控制
外文關鍵詞:sensorless controlbrushless DC motorrobust controlpower factor correctationintelligent controlcurrent controlspeed estimationspeed control
相關次數:
  • 被引用被引用:1
  • 點閱點閱:654
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於無位置感測之直流無刷馬達驅動系統在很多工業應用上具有較高之潛力,因此本論文旨在開發一以數位信號處理器為主之無位置感測直流無刷馬達驅動系統,以及一些關鍵技術以改善其驅動性能。首先建立一實驗用之馬達驅動系統,以利所開發控制方法之實現及從事其性能之評估測試。所建構之驅動系統,馬達係由其適當隔離驅動之變頻器供電;電腦控制系統係由DSP TMS320C240及一特殊之ASIC組成,以促成馬達驅動系統之全數位化控制。
雖然至今已存在有很多直流無刷馬達之無感測控制技術,但其所得之控制性能仍頗受系統參數及工作點變動之影響。為改善此影響,本論文提出一智慧型調控之無位置感測控制方法。在此法中,首先由感測之馬達端電壓估得用以產生切換控制信號之轉子位置信號,再利用所提之智慧調控技術調整切換信號之換向時刻,以獲得較佳之馬達轉矩產生特性,調控之進行係以馬達線引入電流之最小化為性能指標。
除換相之正確與否外,馬達線圈之電流波形亦深深地影響直流無刷馬達之轉矩產生特性。一般而言,任何形式之直流無刷馬達如採行電流模式控制,將具有較佳之驅動控制特性。因此,本論文亦發展一強健型電流控制架構,使直流無刷馬達具有快速且強健之電流追蹤特性。
由於馬達靜止時應電勢為零,無法由端電壓產生換相切換信號,因此需有適當之啟動方法。在本論文所提之啟動方法,將直流無刷馬達先以同步馬達運轉方式穩定且平順地帶到穩定速度後,再切換至無位置感測控制模式。此外,為了從事馬達之速度監視與控制,本論文亦發展一速度估測技術,進而基於估測之速度,從事驅動系統速度迴路之動態模式之估測,並設計一具傳輸延遲補償之速度控制器。
最後,為了使驅動器之交流側具有良好之引入電流電力品質,本論文設計一切換式整流器做為此驅動器之輸入級。採用所開發之強健輸出電壓漣波補償及輸入電流控制器,可在合理之輸出電容值下獲得具高功因及低諧波之輸入電流波形。
所提控制方法之有效性及所建立無感測器直流無刷馬達驅動系統之性能均有實測結果予以驗証。
Since the brushless DC motor (BDCM) drive with position sensorless control possesses higher capability in many industry applications, the major purpose of this dissertation is to establish a DSP-based sensorless BDCM drive, and to develop some key technologies for improving its driving control performance. For facilitating the implementation of the developed sophisticated control rules and the performance test, an experimental motor drive is first constructed. The motor is powered by a voltage source inverter with properly designed isolating drive circuits. The TMS320C240 DSP augmented with a specific ASIC is utilized to build up the digital control computer. This configuration makes the fully digital control for motor drives become possible.
Although many BDCM sensorless control methods have been proposed till now, their performances are rather sensitive to the variations of system parameters and operating condition. To improve this, an intelligent sensorless control strategy is developed in this dissertation. The rotor position for making commutation is first roughly estimated by a proposed switching signal generation scheme using motor terminal voltages. Then the commutation instant is finely adjusted to yield better torque generating capability. This is achieved by a simple but stable self-tuning algorithm for seeking the minimization of motor line drawn current.
In addition to the proper commutation, the winding current waveform also significantly affects the torque generating performance of a BDCM. As generally recognized, better motor driving control performance can be obtained for any type of BDCMs if the current-mode PWM control is applied. Accordingly, a robust current-mode control scheme is developed to let the BDCM drive possess fast and robust winding current tracking response.
Since no commutation signals are available from the sensed motor terminal voltages at standstill, a suitable means is indispensable for starting a sensorless BDCM drive. A simple method is developed to start the BDCM stably and smoothly like a synchronous motor until a steady-state speed is reached. As to the speed monitoring and control, a speed estimation approach is proposed. And based on the estimated speed, the dynamic model is estimated and a speed controller considering the effect of system dead-time is developed.
Finally, a switch-mode rectifier is employed as the input stage of the inverter for drawing power with good power quality from utility grid. The robust voltage ripple cancellation and current control approaches are developed such that good tracking control performance in input current waveform is obtained even if the output filtering capacitor with reasonably small value is used.
The effectiveness of all the developed control approaches and the driving performance of the established sensorless BDCM drive are demonstrated experimentally.
封面
中文摘要
致謝
目錄
第一章 簡介
第二章 以DSP為主之直流無刷馬達驅動系統
第三章 無位置感測及智慧調控
第四章 強健電流模式控制
第五章 啟動、速度估測及控制
第六章 具強健鏈波消去及輸入電流控制之切換式整流器
第七章 結論
附錄
[1] H. Murakami, Y. Honda, H. Kiriyama, S. Morimoto, and Y. Takeda, “The performance comparison of SPMSM, IPMSM and SynRM in use as air-conditioning compressor,” in Proc. IEEE IAS, 1999, pp. 840-845.
[2] J. R. Hendershot and T. J. E Miller, Design of Brushless Permanent-Magnet Motors. New York: Magna Physics Div. Tridelta Industries Inc., 1994.
[3] D. C. Hanselman, Brushless Permanent-Magnet Motor Design. New York: McGraw Inc., 1994.
[4] T. A. Lipo and F. R. Turnbull, “Analysis and comparison of two types of square-wave inverter drives,” IEEE Trans. Ind. Applicat., vol. 11, no. 2, pp. 137-147, Mar., 1975.
[5] T. M. Jahns, “Torque production in permanent-magnet synchronous motor drives with rectangular current excitation,” IEEE Trans. Ind. Applicat., vol. 20, no. 4, pp. 803-813, Jul., 1984.
[6] P. Pillay, and R. Krishnan, “Modeling, simulation and analysis of permanent-magnet motor drives, part I: the permanent-magnet synchronous motor drive,” IEEE Trans. Ind. Applicat., vol. 25, no. 2, pp. 265-273, 1989.
[7] P. Pillay, and R. Krishnan, “Modeling, simulation and analysis of permanent-magnet motor drives, part II: the brushless DC motor drive,” IEEE Trans. Ind. Applicat., vol. 25, no. 2, pp. 274-279, 1989.
[8] Y. Dote, Servo Motor and Motion Control Using Digital Signal Processors. Englewood Cliffs: Prentice Hall, 1990.
[9] K. Rajashekara, and A. Kawamura, Sensorless control of AC motor drives. New York: IEEE press, 1996
[10] J. P. Johnson, M. Ehsani, and Guzelgunler, “Review of sensorless methods for brushless DC motor,” in Proc. IEEE IAS, 1999, pp. 143-150.
[11] K. Llzuka, H. Uzuhashi, M. Kano, T. Endo, and K. Mohri, “Microcomputer control for sensorless brushless motor,” IEEE Trans. Ind. Applicat., vol. 21, no. 4, pp. 595-601, 1985.
[12] S. Morimoto, Y. Takeda and T. Hirasa, “Loss minimization control of permanent magnet synchronous motor drives,” IEEE Trans. Ind. Electron., vol. 41, no. 5, pp. 511-517, Oct., 1994.
[13] Micro Linear data book, “Sensorless BLDC PWM motor controller - ML4425/ML4426,” May, 1997.
[14] Micro Linear Application Note 35, “Using the ML4411 BLDC motor controller,” March, 1998.
[15] R. C. Becerra, T. M. Jahns, and M. Ehsani, “Four quadrant sensorless brushless ECM drive,” in Proc. IEEE APEC, 1991, pp. 202-209.
[16] N. Ertugrul, and P. P. Acarnley, “Indirect rotor position sensing in real-time for brushless permanent magnet motor drives,” in Proc. IEEE APEC, 1997, pp. 736-742.
[17] J. C. Moreira, “Indirect sensing for rotor flux position of permanent magnet AC motors operation in a wide speed range,” in Proc. IEEE IAS, 1994, pp. 401-407.
[18] S. Ogasawara, and H. Akagi, “An approach to position sensorless drive for brushless DC motors,” IEEE Trans. Ind. Applicat., vol.27, no. 5, pp. 928-933, 1991.
[19] R. L. Lin, M. T. Hu, C. Y. Lee, and S. C. Chen, “Using phase-current sensing circuit as the position sensor for brushless DC motors without shaft position sensor,” in Proc. IEEE IECON, 1989, pp. 215-218.
[20] J. P. Johnson, and M. Ehsani, “Sensorless brushless DC control using a current anomaly,” in Proc. IEEE IAS, 1999, pp. 151-158.
[21] H. C. Chen, and C. M. Liaw, “Sensorless control via intelligent commutation tuning for brushless DC motor,” IEE Electron. Power Applicat., vol. 146, no. 6, pp. 678-684, 1999.
[22] V. Maurisso, P. C. K. Luk, and T. Alukaiday, “Sensorless control of a brushless DC motor (BLDCM) on the ADMC330 DSP,” in Proc. DSP Chips in Real Time Measurement and Control, 1997, pp. 5/1-5/5.
[23] C. C. Chang, W. Xia, K. T. Chau, and J. Z. Jinag, “Permanent magnet brushless drives,” IEEE Trans. Ind. Applicat. Magazine, vol. 4, no. 6, pp. 16-22, 1998.
[24] C. M. Liaw, J. B. Wang, and Y. C. Change, “A fuzzy adapted field-oriented mechanism for induction motor drive,” IEEE Trans. Energy Conversion, vol. 11, no. 1, pp. 76-83, 1996.
[25] C. S. Berendsen, G. Champenois, and A. Bolopion, “Commutation strategies for brushless DC motors: influence on instant torque,” IEEE Trans. Power Electron., vol. 8, no. 2, pp. 231-236, 1993.
[26] J. Y. Hung, and Z. Ding, “Design of currents to reduce torque ripple in brushless permanent-magnet motors,” IEE Proc.-B, vol. 140, no. 4, pp. 260-266, 1993.
[27] P. C. Krause, O. Wasynczuk, and S. S. Sudhoff, Analysis of Electric Machinery. New York: IEEE press, 1995
[28] N. A. Demerdash, and T. W. Nehl, “Dynamic modeling of brushless DC motors for aerospace actuation,” IEEE Trans. Aerospace and Electronic Systems, vol. 16, no. 6, pp. 811-821, 1980.
[29] B. K. BOSE, Power electronics and variable frequency drives. New York: IEEE press, 1997.
[30] H. C. Chen and C. M. Liaw, “Current-mode control and intelligent commutation tuning for sensorless BDCM drive,” in Proc. IEEE APEC, 2001, pp. 872-878.
[31] J. Holtz, “Pulsewidth modulation-a survey,” IEEE Trans. Ind. Electron., vol. 39, no. 5, pp. 410-420, 1992.
[32] D. M. Brod, and D. W. Novotny, “Current control of VSI-PWM inverters,” IEEE Trans. Ind. Electron., vol.21, no. 4, pp. 562-570, 1985.
[33] M. P. Kazmierkowski, and L. Malesani, “Current control techniques for three phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
[34] B. Bolopion, D. Jouve, and R. Pacaut, “Control of permanent magnets synchronous machines: a simulation comparative survey,” in Proc. IEEE APEC, 1990, pp. 384-393.
[35] Y. Baudon, D. Jouve, and J. P. Ferrieux, “Current control of permanent magnet synchronous machines - experimental and simulation study,” IEEE Trans. Power Electron., vol. 7, no. 3, pp. 560-567, 1992.
[36] Y. Baudon, D. Jouve, and J. P. Rognon, “Influence of control strategy on neutral point voltage behavior in permanent magnets synchronous machines,” in Proc. IEEE PESC, 1989, pp. 784-790.
[37] N. Matsui, and H. Ohashi, “DSP-based adaptive control of a brushless motor,” in Proc. IEEE IAS, 1988, pp. 375-380.
[38] J. Chen, and P. C. Tang, “A sliding mode current control scheme for PWM brushless DC motor drives,” IEEE Trans. Power Electron., vol. 14 , no. 3, pp. 541-550, 1999.
[39] H. C. Chen, and C. M. Liaw, “Robust current control for brushless DC motor,” IEE Electron. Power Applicat., vol. 147, no. 6, pp. 503-512, 2000.
[40] L. H. Hoang, S. Karim, and V. Philippe, “Analysis and implementation of a real-time predictive current controller for permanent-magnet synchronous servo drives,” IEEE Trans. Ind. Electron., vol. 41, no. 1, pp. 110-117, 1994.
[41] I. H. Oh, Y. S. Jung, and M. J. Youn, “A source voltage-clamped resonant link inverter for a PMSM using a predictive current control technique,” IEEE Trans. Power Electron., vol. 14, no. 6, pp. 1122-1131, 1999.
[42] K. H. Kim, I. C. Baik, and M. J. Youn, “An improved digital current control of a PM synchronous motor with a simple feedforward disturbance compensation scheme,” in Proc. IEEE PESC, 1998, pp. 101-107.
[43] O. Kukrer, “Discrete-time current control of voltage-fed three-phase PWM inverters,” IEEE Trans. Power Electron., vol. 11, no. 2, pp. 260-269, 1996.
[44] J. A. Haylock, B. C. Mecrow, A. G. Jack, and D. J. Atkinson, “Enhanced current control of PM machine drives through the use of flux controllers,” in IEEE Proc. IAS, 1998, pp. 467-474.
[45] D. Jouve, J. P. Rognon, and D. Roye, “Effective current and speed controllers for permanent-magnet machines: a survey,” in Proc. IEEE APEC, 1990, pp. 384-393.
[46] O. Kukrer, “Discrete-time current control of voltage-fed three-phase PWM inverters,” IEEE Trans. Power Electron., vol. 11, no. 2, pp. 260-269, 1996.
[47] L. H. Hoang, S. Karim, and V. Philippe, “Analysis and implementation of a real-time predictive current controller for permanent-magnet synchronous servo drives,” IEEE Trans. Ind. Electron., vol.41, no. 1, pp. 110-117,1994.
[48] T. H. Chen, K. C. Huang, and C. M. Liaw, “High-frequency switching-mode power amplifier for shaker armature excitation,” IEE Proc. Electron. Power Applicat., vol. 144, no. 6, 415-422,1997.
[49] T. H. Chen, and C. M. Liaw, “Vibration acceleration control of an inverter-fed electrodynamic shaker,” IEEE Trans. Mechatronics, vol. 4, no. 1, pp. 60-70,1999.
[50] C. M. Liaw and S. J. Chiang, “Robust control of multi-module current-mode controlled converters,” IEEE Trans. Power Electron., vol. 8, no. 4, pp. 455-465, 1993.
[51] J. C. Balda, and P. Pollay, “Speed controller design of a vector-controlled permanent magnet synchronous motor drive with parameter variation,” in Proc. IEEE IAS, 1990, pp. 163-168.
[52] L. Xu and C. Wang, “Implementation and experimental investigation of sensorless control schemes for PMSM in super-high variable speed operation,” in Proc. IEEE IAS, 1998, pp. 483-489.
[53] R. Wu and G. R. Slemon, “A permanent magnet motor drive without a shaft sensor,” IEEE Trans. Ind. Applicat., vol. 27, no. 5, pp. 1005-1011,1991.
[54] N. Matsui, “Sensorless operation of brushless DC motor drives,” in Proc. IECON, 1993, pp. 739-744.
[55] N. Matsui, T. Takeshita and K. Yasuda, “A new sensorless drive of brushless DC motor,” in Proc. IEEE IECON, 1992, pp. 430-435.
[56] N. Matsui and M. Shigyo, “Brushless DC motor control without position and speed sensor,” in Proc. IEEE IAS, 1990, pp. 448-454.
[57] N. Matsui, “Sensorless PM brushless DC motor drives,” IEEE Trans. Ind. Electron., vol. 43, no. 2, pp. 300-308, 1996.
[58] N. Matsui and T. Takeshita, “A novel starting method of sensorless salient-pole brushless motor,” in Proc. IEEE IAS, 1995, pp. 386-392.
[59] Micro Linear data book, “Sensorless smart-start BLDC PWM motor controller - ML4428,” April, 1997.
[60] F. Parasiliti, R. Petrella and M. Tursini, “Initial rotor position estimation method for PM motors,” in Proc. IEEE IAS, 2000, pp. 1190-1197.
[61] L. Dixon, High power factor switching preeregulator design optimization. Unitrode Power Supply Design Seminar SEM-700, pp. 7/1-7/2, 1990.
[62] J. Sebastian, M. Jaureguizar and J. Uceda, “An overview of power factor correction in single-phase off-line power supply systems,” in Proc. IEEE IECON, 1994, pp. 1688-1693.
[63] H. Wei and I. Batarseh, “Comparison of basic converter topologies for power factor correction,” in Proc. Southeastcon, 1998, pp. 348-353.
[64] J. B. Williams, “Design of feedback loop in unity power factor AC to DC converter,” in Proc. IEEE PESC, 1989, pp. 959-967.
[65] C. M. Liaw and T. H. Chen, “A soft-switching mode rectifier with power factor correction and high frequency transformer link,” IEEE Trans. Power Electron., vol. 15, no. 4, pp. 644-654, Jul., 2000.
[66] J. Sun, W. C. Wu and R. M. Bass, “Large-signal characterization of single-phase PFC circuits with different types of current control,” in Proc. IEEE APEC, 1998, pp. 655-661.
[67] M. Dawnjusha and G. K. Dubey, “Switching techniques for switch mode rectifier,” in Proc. IEEE PEDS, 1999, pp. 167-173.
[68] M. Dawnjusha and G. K. Dubey, “Bang-bang current control with predicted switching frequency for switch-mode rectifiers,” IEEE Trans. Industry Applica., vol. 46, no. 1, pp. 61-66, Feb., 1999.
[69] Z. Yang and P. C. Sen, “A dynamically robust current control technique for boost type power factor correction circuits,” in Proc. IEEE IAS, 1998, pp. 1477-1485.
[70] J. C. LeBunetel and M. Machmoum, “Control of boost unity power factor correction systems,” in Proc. IEEE IECON, 1999, pp. 266-271.
[71] S. Wall and R. Jackson, “Fast controller design for practical power-factor correction systems,” in Proc. IEEE IECON, 1993, pp. 1027-1032.
[72] G. Spiazzi, P. Mattavelli and L. Rossetto, “Power factor preregulator with improved dynamic response,” IEEE Trans. Power Electron., vol. 12, pp. 343-349, Mar., 1997.
[73] M. O. Eissa, S. B. Leeb, G. C. Verghese and A. M. Stankovic, “Fast controller for an unity-power-factor PWM rectifier,” IEEE Trans. Power Electron., vol. 11, no. 1, pp. 1-6, 1996.
[74] S. Buso, P. Mattavelli, L. Rossetto and G. Spiazzi, “Simple digital control improving dynamic performance of power factor preregulators,” IEEE Trans. Power Electron., vol. 13, no. 5, pp. 814-823, Sep., 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊