跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 09:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:操禮齊
研究生(外文):Li-Chi Tsao
論文名稱:高分子複合材料應用於可撓式人工皮膚感測器
論文名稱(外文):Flexible Sensor Array Using Composite Polymeras Artificial Skin
指導教授:施文彬
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:35
中文關鍵詞:混合高分子電析出現象溫度感測陣列可撓性基板人工皮膚
外文關鍵詞:composite polymerpercolationtemperature sensor arrayflexible substrateartificial skin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:415
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇文章提出了一種新穎的方法來製作溫度感測陣列,此法將電阻式的混合高分子材料以點膠的方式塗佈在可撓性聚醯亞胺(polyimide)基板上,完成後的溫度感測陣列在4×4公分見方的面積裡擁有64個感測元,未來可作為機器人的仿人皮膚感測系統。在可撓性聚醯亞胺基板上鋪設有指叉狀的電極,當外界溫度產生變化時,即可偵測到混合高分子材料的電阻變化。其中聚二甲基矽氧烷(PDMS)為混合高分子材料的骨幹,不同的導電摻入物如:碳黑、石墨及奈米碳纖,混入聚二甲基矽氧烷後,以石墨微粒為摻入物的混合材料對溫度變化有較高的靈敏度及穩定性。而實驗結果顯示當溫度變化範圍在20oC至110oC間,石墨的體積百分率為20%的混合材料有著較佳的電阻變動範圍。將製作完成的溫度感測陣列接上後方掃描電路系統,當不同形狀的熱源接近時,可由電腦螢幕觀察到與熱源相似的感測圖形分布。
This work presents a novel method to fabricate temperature sensor arrays by dispensing electro-resistive polymer on flexible polyimide films. The fabricated temperature sensor array has 64 sensing cells in a 4×4 cm2 area. The sensor array can be used as humanoid artificial skin for sensation system of robots. The flexible polyimide substrate was patterned by interdigitated copper electrodes for determining the resistivity change of the electro-resistive polymer, which increases with ambient temperature. Polydimethlysiloxane(PDMS) was used as the matrix of the electro-resistive composites and different conductive fillers such as carbon black, graphite powder, carbon nano-fibrils have been investigated. It was found that graphite powder serves as the best conductive filler for highest temperature sensitivity and better stability. The volume fraction of the graphite powder for large dynamic range from 20oC to 110oC has been investigated and was found to be 20%. The fabricated temperature sensor array has been tested. The detected temperature contours are in well agreement with the shapes and magnitudes of different heat sources.
致謝 i
摘要 ii
Abstract iii
Table of Contents iv
List of Figures vi
The main text vi
Appendix vii
Chapter 1 Introduction 1
Chapter 2 Materials 3
2-1 Insulating Matrix 3
2-2 Electro-resistive PDMS 4
Chapter 3 Design and Fabrication 9
3-1 Flexible Substrate 9
3-2 Process 9
Chapter 4 Experiments and Discussions 15
4-1 Steps of Experiments 15
4-2 Testing Results 16
Chapter 5 Conclusions 21
References 23
Appendix – Tactile Sensing Property 26
1. The preface of tactile sensor 26
2. Composite polymer for tactile sensing 29
2-1 Percolation of sensing material 29
2-2 The second conductive filler 31
2-3 Resistance-pressure relation 32
3. Fabrication of sensor array 35
[1]R. Tajima, S. Kagami, M. Inaba, and H. Inoue, “Development of soft and distributed tactile sensors and the application to humanoid robot,” Advances Robotics, 16, pp. 381-397, 2002.
[2]J. Engel, J. Chen and C. Liu, “Development of Polyimide Flexible Tactile Sensor Skin,” Journal of Micromechanics and Microengineering, 13, No. 3, pp. 359-366, 2003.
[3]T. Someya et al, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” Proceedings of the National Academy of Sciences of the United States of America, 101, pp. 9966-9970, 2004.
[4]T. Someya et al, “Conformable, Flexible, Large-area Networks of Pressure and Thermal Sensors with Organic Transistor Active Matrixes,” Proceedings of the National Academy of Sciences of the United States of America, 102, pp. 12321- 12325, 2005.
[5]J. M. Engel, J. Chen, D. Bullen, and C. Liu, “Polyurethane rubber as a MEMS material: Characterization and demonstration of an all-polymer two-axis hair cell flow sensor,” IEEE International Conference on MEMS, pp. 279-282, 2005.
[6]J.-S. Han, Z.-Y. Tan, K. Sato, and M. Shikida, “Thermal characterization of micro heater arrays on a polyimide film substrate for fingerprint sensing applications,” Journal of Micromechanics and Microengineering, 15, pp. 282-289, 2005.
[7]M. Hussain, Y.-H. Choa, and K. Niihara, “Fabrication process and electrical behavior of novel pressure-sensitive composites,” Composites, Part A, 32, 1689-1696, 2001.
[8]P. Wang, T. Ding, and F. Xu, “A novel flexible sensor for compression stress relaxation,” IEEE International Conference on Sensors, 1, pp. 265-268, 2003.
[9]R. D. Sherman, L. M. Middleman, and S. M. Jacobs, “Electron transport process in conductor-filled polymers,” Polymer Engineering and Science, 23, pp. 36-46, 1983.
[10]B. Lundberg, and B. Sundqvist, “Resistivity of a composite conducting polymer as a function of temperature, pressure, and environment: Applications as a pressure and gas concentration transducer,” J. Appl. Phys., 60, pp.1074-1079, 1986.
[11]S. M. Aharoni, “Electrical resistivity of a composite of conducting particles in an insulating matrix,” J. Appl. Phys., 43, pp. 2463-2465, 1972.
[12]D. S. McLachlan, M. Blaszkiewicz, and R. E. Newnham, “Electrical resistivity of composites,” J. Am. Ceram. Soc., 73, pp. 2187-2203, 1990.
[13]M. L. Homer et al, “Temperature effects on polymer-carbon composite sensors: evaluating the role of polymer molecular weight and carbon loading,” IEEE International Conference on Sensors, 2, pp. 877-881, 2003.
[14]G. Zhang et al, “Two-step PTC effect in immiscible polymer blends filled with carbon black,” Journal of Materials Science, 39, pp. 695-697, 2004.
[15]Bonnie T. Chia et al, “Temperature sensor array using flexible substrate,” IEEE International Conference on MEMS, pp. 589-592, 2007.
[16]Mark H. Lee, “Tactile sensing: new directions, new challenges,” International Journal of Robotics research, pp. 636-643, 2000.
[17]O. Kerpa, K. Weiss, and H. Worn, “Development of a flexible tactile sensor system for a humanoid robot,” International Conference on Intelligent Robots and Systems, 1, pp. 27-31, 2003.
[18]H. K. Lee et al, “A Modular Expandable Tactile Sensor Using Flexible Polymer,” IEEE International Conference on MEMS, pp. 642-645, 2005.
[19]K. Noda et al, “A shear stress sensor for tactile sensing with piezoresistive cantilever standing in elastic material,” Sensors and Actuators A, 127, pp. 295-307, 2006.
[20]D. Toker et al, “Tunneling and percolation in metal-insulator composite materials,” Physical Review B, 68, pp. 041403(1)-041403(4), 2003.
[21]M. Foygel et al, “Theoretical and computational studies of carbon nanotube composites and suspensions,” Physical Review B, 71, pp. 104201(1)-104201(4), 2003.
[22]I. Balberg, “Tunneling and nonuniversal conductivity in composite materials,” Physical Review Letters, 59, pp. 1305-1308, 1987.
[23]Ian J Youngs, “A geometric percolation model for non-spherical excluded volumes,” J. Phys. D: Appl. Phys., 36, pp. 738-747, 2003.
[24]Louis H. Buell, “Finger pad interfacial pressure measurement with fine spatial resolution,” Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 2003.
[25]PCR Technical Katsuhiko Kanamori, CS57-7RSC Research Report, 2002.
[26]T. Wang et al, “Waterborne, nanocomposite pressure-sensitive adhesives with high tack energy, optical transparency, and electrical conductivity,” Adv. Mater., 18, pp. 2730-2734, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 伊彬、劉瑋婷(2007)。台灣兒童圖畫書出版產業困境與願景-從插畫創作者之角度檢視。教育資料與圖書館學季刊。44:33,327-356。
2. 伊彬、林慧雅、鄧逸平(2007,覆審中)。台灣兒童圖畫書插畫之時代風格:1987-2003年民間出版現象與美感偏好。藝術教育研究。
3. 伊彬、鄧逸平、黃永宏(2004)。從中華兒童叢書(1965-1999)到信誼基金會(1979-2001)出版兒童圖畫書插畫風格之演變及其意義。藝術教育研究,7,23-53。
4. 朱元祥(2001)。提升設計教育的國際競爭力。生活科技教育,34(8),2-8。
5. 何志峰(1999),流通管理科組三明治教學之規劃。技術及職業教育雙月刊,52,15-17。
6. 李長俊(1998)。美術史、美術教育、文化建設。美育月刊,93,3。台北:國立台灣藝術教育館。
7. 施政廷(1996)。新編「認識兒童讀物插畫」出版了。中華民國兒童文學學會季刊,12(4),38-39。
8. 林宜靜(2006)。析論台灣出版與文化創意產業之結合。全國新書資訊月刊,93,4-9。
9. 曹俊彥(1994)。為兒童讀物找畫家。文訊,102,34-36。
10. 徐素霞(1998)。圖像語言藝術與純藝術之創作探討。美育月刊,91,31-36。台北:國立台灣藝術教育館。
11. 高玉芬、何志峰(1996)。由策略聯盟剖析建教合作。技術及職業教育雙月刊,35,51-54。
12. 陳玉金(1996)。耕耘圖畫書的園地—從童書銷售現況看本土圖畫書插畫創作發展空間。雄獅美術,302,49-51。
13. 陳家詡(2004)。繪本橋樑-幫助台灣通往國際。書香遠傳,16,12-15。
14. 葛雅茜(1996)。給台灣最好的兒童圖畫書—鄭明進。雄獅美術,302,37。
15. 蘇振明(1998)。認識兒童讀物插畫及其教育性。美育月刊,91,2。台北:國立台灣藝術教育館。