楊祐俊、洪爭坊、趙雲鵬。(2009)。醋酸菌Gluconacetobacter xylinus轉殖類血紅素。臺中區農業改良場研究彙報。102:1-14。
馬承鑄、顧真榮。(2001)。細菌纖維素生物理化特性和商業用途(綜述)。上海農業學報。17: 93-98。
林明煌。(2017)。利用基因轉殖木質醋酸菌以增加纖維素產量。國立彰化師範大學生物技術研究所碩士論文。Austin S, Nordström K. (1990). Partition-mediated incompatibility of bacterial plasmids. Cell. 60(3):351-4.
Banzon, J.A. (1990). Coconut as food. Philippine Coconut Research and Development Foundation, Diliman, Quezon City, Philippines. 239.
Blackwell, J. (1982). The macromolecular organization of cellulose and chitin. Cellulose and Other Natural Polymer Systems. 403–428pp.
Bae SO, Sugano Y, Ohi K, Shoda M. (2004). Features of bacterial cellulose synthesis in a mutant generated by disruption of the diguanylate cyclase 1 gene of Acetobacter xylinum BPR 2001. Appl Microbiol Biotechnol. 65(3):315-22.
Camacho-Zaragoza JM, Hernández-Chávez G, Moreno-Avitia F, Ramírez-Iñiguez R, Martínez A, Bolívar F, Gosset G. (2016). Engineering of a microbial coculture of Escherichia coli strains for the biosynthesis of resveratrol. Microb Cell Fact. 15(1):163.
Chen YM, Xu HY, Wang Y, Zhang JF, Wang SM. (2014). Vitreoscilla hemoglobin promotes Salecan production by Agrobacterium sp. ZX09. J Zhejiang Univ-Sci B. 15(11):979–985.
Deng F, Pan Y, Chang F, Fang W, Fang Z, Xiao Y. (2018). Co-expression of β-glucosidase and Vitreoscilla hemoglobin in Escherichia coli. Chinese Journal of Biotechnology. 34(3): 379−388.
Dudman, W. F. (1959). Cellulose production by Acetobacter actigenum in defined medium. J Gen Microbiol. 21:327-37.
Dikshit KL, Webster DA. (1988). Cloning, characterization and expression of the bacterial globin gene from Vitreoscilla in Escherichia coli. Gene. 70(2):377-86.
Hestrin S, Schramm M. (1954). Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J. 58(2):345–352.
Haigler, C. H. (1985). The function and biogenesis of native cellulose. In Cellulose Chemistry and its Applications (T. P. Nevell and S. H. Zeronian eds). Chichester, England: Ellis Horwood, 30-83.
Jozala AF, Pértile RA, dos Santos CA, de Carvalho Santos-Ebinuma V, Seckler MM, Gama FM, Pessoa A Jr. (2015). Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Appl Microbiol Biotechnol. 99(3):1181-90.
Kallio PT, Bailey JE. (1996). Intracellular expression of Viteroscilla hemoglobin (VHb) enhances total protein secretion and improves the production of alpha-amylase and neutral protease in Bacillus subtilis. Biotechnol Prog. 12(1):31-39.
Khosravi M, Webster DA, Stark BC. (1990). Presence of the bacterial hemoglobin gene improves alpha-amylase production of a recombinant Escherichia coli strain. Plasmid. 24(3):190-4.
Khosla C, Curtis JE, DeModena J, Rinas U, Bailey JE. (1990). Expression of intracellular hemoglobin improves protein synthesis in oxygen-limited Escherichia coli. Biotechnology. 8(9):849-53.
Khosla C, Bailey JE. (1988). The Vitreoscilla hemoglobin gene: molecular cloning, nucleotide sequence and genetic expression in Escherichia coli. Mol Gen Genet. 214(1):158-61.
Kunkel SA, Pagilla KR, Stark BC. (2015). Engineering of Nitrosomonas europaea to express Vitreoscilla hemoglobin enhances oxygen uptake and conversion of ammonia to nitrite. AMB Express. 5(1):135.
Khosla C, Bailey JE. (1988). Heterologous expression of a bacterial hemoglobin improves the growth properties of recombinant Escherichia coli. Nature. 331(6157):633-5.
Lin J, Zhang X, Song B, Xue W, Su X, Chen X, Dong Z. (2017). Improving cellulase production in submerged fermentation by the expression of a Vitreoscilla hemoglobin in Trichoderma reesei. AMB Express. 7(1):203.
Li HJ, He YL, Zhang DH, Yue TH, Jiang LX, Li N, Xu JW. (2016). Enhancement of ganoderic acid production by constitutively expressing Vitreoscilla hemoglobin gene in Ganoderma lucidum. J Biotechnol. 227:35-40.
Liu T, Yao R, Zhao Y, Xu S, Huang C, Luo J, Kong L. (2017). Cloning, Functional characterization and site-directed mutagenesis of 4-Coumarate: Coenzyme A Ligase (4CL) involved in coumarin biosynthesis in Peucedanum praeruptorum Dunn. Frontiers in plant science. 8:4.
Liu XF, Pei JZ, Du GJ, Yang ZM. (2011). Recent Progress in Renaturation of Inclusion Bodies of Prokaryotically Expressed Snake Venom Proteins. China Biotechnology. 31(03):113-119.
Liu M, Li S, Xie Y, Jia S, Hou Y, Zou Y, Zhong C. (2018). Enhanced bacterial cellulose production by Gluconacetobacter xylinus via expression of Vitreoscilla hemoglobin and oxygen tension regulation. Applied Microbiology and Biotechnology. 102(3):1155–1165.
Muangman P, Opasanon S, Suwanchot S, Thangthed O. (2011). Efficiency of microbial cellulose dressing in partial-thickness burn wounds. J Am Col Certif Wound Spec. 3(1):16-9.
Nordström K, Austin SJ. (1989). Mechanisms that contribute to the stable segregation of plasmids. Annual Review of Genetics. 23:37-69.
Novick RP. (1987). Plasmid incompatibility. Microbiology Reviews. 51(4):381-95.
Okiyama, A. Shirae, H. Kano, H., Yamanaka, S. (1992). Bacterial cellulose I. Two-stage fermentation process for cellulose production by Acetobacter acet. Food-Hydrocolloids. 6(5):471-477.
Okiyama, A., Motoki, M., Yamanaka, S. (1992). Bacterial cellulose II. Processing of the gelatinous cellulose for food materials. Food Hydrocolloids. 6(5):479-487
Ross P, Mayer R, Benziman M. (1991). Cellulose biosynthesis and function in bacteria. Microbio Rev. 55(1):35-58.
Ross P, Mayer R, Weinhouse H, Amikam D, Huggirat Y, Benziman M, de Vroom E, Fidder A, de Paus P, Sliedregt LA. (1990). The cyclic diguanylic acid regulatory system of cellulose synthesis in Acetobacter xylinum. J Biol Chem. 265(31):18933-43.
Singh SM, Panda AK. (2005). Solubilization and refolding of bacterial inclusion body proteins. Journal of Bioscience and Bioengineering. 99(4):303-310.
Sambrook, J., Fritsch, E.F., Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.
Schein, C. H., Noteborn, M. H. M. (1988).Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature. Biotechnology 6:291–294.
Speed MA, Wang DI, King J. (1996). Specific aggregation of partially folded polypeptide chains: The molecular basis of inclusion body composition. Nature Biotechnology. 14(10):1283–1287.
Strandberg L, Enfors SO. (1991). Factors influencing inclusion body formation in the production of a fused protein in Escherichia coli. Appl Environ Microbiol. 57(6):1669–1674.
Sørensen MA, Kurland CG, Pedersen S. (1989). Codon usage determines translation rate in Escherichia coli. Journal of Molecular Biology. 207(2):365-77.
Setyawati MI, Chien LJ, Lee CK. (2007). Expressing Vitreoscilla hemoglobin in statically cultured Acetobacter xylinum with reduced O2 tension maximizes bacterial cellulose pellicle production. Journal of Biotechnology. 132(1):38-43.
Seras-Franzoso J, Peternel S, Cano-Garrido O, Villaverde A, García-Fruitós E. (2015). Bacterial inclusion body purification. Methods Mol Biol. 1258:293-305.
Shafferman A, Helinski DR. (1983). Structural properties of the beta origin of replication of plasmid R6K. J Biol Chem. 258(7):4083-90.
Stark BC, Dikshit KL, Pagilla KR. (2012). The Biochemistry of Vitreoscilla hemoglobin. Comput Struct Biotechnol J. 3(4). e201210002.
Toyosaki, H. Nacitomi, T., Seto, A., Matsuoka, M., Tsuchida, T., Yoshinaga, F. (1995). Screening of Bacterial Cellulose-producing Acetobacter Strains Suitable for Agitated Culture. Bioscience, Biotechnology, and Biochemistry. 59(8):1498-1502.
Velappan N, Sblattero D, Chasteen L, Pavlik P, Bradbury AR. (2007). Plasmid incompatibility: more compatible than previously thought? Protein Engineering, Design and Selection. 20(7):309–313.
Villaverde A, Carrió MM. (2003). Protein aggregation in recombinant bacteria: biological role of inclusion bodies. Biotechnol Lett. 25(17):1385-95.
Webster DA, Hackett DP. (1966). The purification and properties of
cytochrome o from Vitreoscilla. J. Biol. Chem. 241(14):3308-3315.
Wu JM, Fu WC. (2012). Intracellular co-expression of Vitreoscilla hemoglobin enhances cell performance and β-galactosidase production in Pichia pastoris. Journal of Bioscience and Bioengineering. 113(3):332-7.
Wang S, Liu F, Hou Z, Zong G, Zhu X, Ling P. (2014). Enhancement of natamycin production on Streptomyces gilvosporeus by chromosomal integration of the Vitreoscilla hemoglobin gene (vgb). World J Microbiol Biotechnol. 30(4):1369-76.
Zähringer F, Massa C, Schirmer T. (2011). Efficient enzymatic production of the bacterial second messenger c-di-GMP by the diguanylate cyclase YdeH from E. coli. Appl Biochem Biotechnol. 163(1):71-9.
Zhang SP, Zubay G, Goldman E. (1991). Low-usage codons in Escherichia coli, yeast, fruit fly and primates. Gene. 105(1):61-72.
Zhang H, Feng Y, Cui Q, Song X. (2017). Expression of Vitreoscilla hemoglobin enhances production of arachidonic acid and lipids in Mortierella alpine. BMC Biotechnology. 17(1):68.