|
1. Ashok Kumar, et al., Electrochemical supercapacitors from conducting polyaniline-graphene platforms. Chemical Communications, 2014. 50(48): p. 6298-6308. 2. Usman, M., et al., Enhanced electrochemical supercapacitor properties with synergistic effect of polyaniline, graphene and AgxO. Applied Surface Science, 2016. 370: p. 297-305. 3. Ates, M., et al., Supercapacitor behaviors of polyaniline/CuO, polypyrrole/CuO and PEDOT/CuO nanocomposites. Polymer Bulletin, 2015. 72(10): p. 2573-2589. 4. Dai, W., et al., Fabrication of sandwich nanostructure graphene/polyaniline hollow spheres composite and its applications as electrode materials for supercapacitor. Materials Research Bulletin, 2016. 76: p. 344-352. 5. Chen, Q., et al., Graphene quantum dots-three-dimensional graphene composites for high-performance supercapacitors. Physical Chemistry Chemical Physics, 2014. 16(36): p. 19307-19313. 6. Luk, C.M., et al., Optically and electrically tunable graphene quantum dot-polyaniline composite films. Journal of Materials Chemistry C, 2014. 2(23): p. 4526-4532. 7. Mondal, S., et al., Graphene quantum dot-doped polyaniline nanofiber as high performance supercapacitor electrode materials. Chemical Communications, 2015. 51(62): p. 12365-12368. 8. Lai, S.K., et al., Photoresponse of polyaniline-functionalized graphene quantum dots. Nanoscale, 2015. 7(12): p. 5338-5343. 9. Zhang, K., et al., Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes. Chemistry of Materials, 2010: p. 1392-1401. 10. Zhang, S.L. and N. Pan, Supercapacitors Performance Evaluation. Advanced Energy Materials, 2015. 5(6): p. 19. 11. Rakhi, R.B., et al., Enhanced Rate Performance of Mesoporous Co3O4 Nanosheet Supercapacitor Electrodes by Hydrous RuO2 Nanoparticle Decoration. Acs Applied Materials & Interfaces, 2014. 6(6): p. 4196-4206. 12. Huang, Y., et al., An Overview of the Applications of Graphene-Based Materials in Supercapacitors. Small, 2012. 8(12): p. 1805-1834. 13. Yu, G.H., et al., Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy, 2013. 2(2): p. 213-234. 14. Ghouri, Z.K., et al., Supercapacitors based on ternary nanocomposite of TiO2&Pt@graphenes. Journal of Materials Science-Materials in Electronics, 2016. 27(4): p. 3894-3900. 15. Xiao, D.B., et al., Synthesis and Electrochemical Properties of Two Transition Metal Coordination Complexes Based on 4-Pyridyl-Substituted TTF Ligand. Synthesis and Reactivity in Inorganic Metal-Organic and Nano-Metal Chemistry, 2016. 46(7): p. 1059-1064. 16. Huo, P.F., et al., Quaternary ammonium functionalized poly(arylene ether sulfone)/poly(vinylpyrrolidone) composite membranes for electrical double layer capacitors with activated carbon electrodes. Journal of Membrane Science, 2016. 505: p. 148-156. 17. Largeot, C., et al., Relation between the ion size and pore size for an electric double-layer capacitor. Journal of the American Chemical Society, 2008. 130(9): p. 2730-+. 18. Yao, L., et al., Three-dimensional beehive-like hierarchical porous polyacrylonitrile-based carbons as a high performance supercapacitor electrodes. Journal of Power Sources, 2016. 315: p. 209-217. 19. Zhang, H., et al., One-step synthesis of hierarchically porous carbons for high-performance electric double layer supercapacitors. Journal of Power Sources, 2016. 315: p. 120-126. 20. Wei, L., et al., Three-dimensional porous hollow microspheres of activated carbon for high-performance electrical double-layer capacitors. Microporous and Mesoporous Materials, 2016. 227: p. 210-218. 21. An, G.-H., et al., Activated mesoporous carbon nanofibers fabricated using water etching-assisted templating for high-performance electrochemical capacitors. Physical Chemistry Chemical Physics, 2016. 18(9): p. 6587-6594. 22. Liu, R., et al., Nitrogen-doped Carbon Microfiber with Wrinkled Surface for High Performance Supercapacitors. Scientific Reports, 2016. 6. 23. Hu, N.T., et al., Three-dimensional skeleton networks of graphene wrapped polyaniline nanofibers: an excellent structure for high-performance flexible solid-state supercapacitors. Scientific Reports, 2016. 6: p. 10. 24. Dar, R.A., et al., Performance of palladium nanoparticle-graphene composite as an efficient electrode material for electrochemical double layer capacitors. Electrochimica Acta, 2016. 196: p. 547-557. 25. Sharma, P., et al., A review on electrochemical double-layer capacitors. Energy Conversion and Management, 2010. 51(12): p. 2901-2912. 26. Wang, P., et al., Supported ultrafine ruthenium oxides with specific capacitance up to 1099 F g(-1) for a supercapacitor. Electrochimica Acta, 2016. 194: p. 211-218. 27. Zhang, H., et al., Hierarchical porous MnO2/CeO2 with high performance for supercapacitor electrodes. Chemical Engineering Journal, 2016. 286: p. 139-149. 28. Wang, W., et al., Electrosynthesis and Performance of Poly(aniline/pyrrole) Copolymer. International Journal of Electrochemical Science, 2016. 11(5): p. 4000-4006. 29. Xie, Y., et al., Supercapacitance performance of polypyrrole/titanium nitride/polyaniline coaxial nanotube hybrid. Journal of Alloys and Compounds, 2016. 665: p. 323-332. 30. Tuyen, N., et al., Cathodic electrodeposition and electrochemical response of manganese oxide pseudocapacitor electrodes. International Journal of Hydrogen Energy, 2015. 40(46): p. 16355-16364. 31. Tuyen, N., et al., Hydrogen bubbling-induced micro/nano porous MnO2 films prepared by electrodeposition for pseudocapacitor electrodes. Electrochimica Acta, 2016. 202: p. 166-174. 32. Wang, K., et al., Fabrication of Co3O4 pseudocapacitor electrodes from nanoscale cobalt-organic frameworks. Polyhedron, 2016. 109: p. 26-32. 33. Wang, Z., et al., Nickel foam supported hierarchical mesoporous MnO2/Ni(OH)(2) nanosheet networks for high performance supercapacitor electrode. Materials Letters, 2016. 171: p. 10-13. 34. Chen, Y., et al., The preparation and electrochemical properties of PEDOT:PSS/MnO2/PEDOT ternary film and its application in flexible micro-supercapacitor. Electrochimica Acta, 2016. 193: p. 199-205. 35. Reddy, B.N., et al., A Poly(3,4-ethylenedioxypyrrole)-Au@WO3-Based Electrochromic Pseudocapacitor. Chemphyschem, 2015. 16(2): p. 377-389. 36. Ryu, K.S., et al., Symmetric redox supercapacitor with conducting polyaniline electrodes. Journal of Power Sources, 2002. 103(2): p. 305-309. 37. He, Y., et al., Holey graphene/polypyrrole nanoparticle hybrid aerogels with three-dimensional hierarchical porous structure for high performance supercapacitor. Journal of Power Sources, 2016. 317: p. 10-18. 38. Chauhan, N.P.S., et al., High-performance supercapacitors based on polyaniline-graphene nanocomposites: Some approaches, challenges and opportunities. Journal of Industrial and Engineering Chemistry, 2016. 36: p. 13-29. 39. Pedros, J., et al., Polyaniline nanofiber sponge filled graphene foam as high gravimetric and volumetric capacitance electrode. Journal of Power Sources, 2016. 317: p. 35-42. 40. Memon, M.A., et al., Conjunction of Conducting Polymer Nanostructures with Macroporous Structured Graphene Thin Films for High-Performance Flexible Supercapacitors. Acs Applied Materials & Interfaces, 2016. 8(18): p. 11711-11719. 41. Ahmed, M.M.M., et al., Electrochemical properties of a thermally expanded magnetic graphene composite with a conductive polymer. Physical Chemistry Chemical Physics, 2016. 18(15): p. 10400-10410. 42. Mao, L., et al., Bendable graphene/conducting polymer hybrid films for freestanding electrodes with high volumetric capacitances. Rsc Advances, 2016. 6(4): p. 2951-2957. 43. Handbook of organic conductive molecules and polymers, H.S. Nalwa, Editor. 1997, Wiley: Chichester ;. 44. Kulkarni, S.B., et al., High-performance supercapacitor electrode based on a polyaniline nanofibers/3D graphene framework as an efficient charge transporter. Journal of Materials Chemistry A, 2014. 2(14): p. 4989-4998. 45. Anbalagan, A.C., et al., Brine solution-driven synthesis of porous polyaniline for supercapacitor electrode application. Polymer, 2016. 87: p. 129-137. 46. Wu, W., et al., Facile fabrication of polyaniline nanotubes using the self-assembly behavior based on the hydrogen bonding: a mechanistic study and application in high-performance electrochemical supercapacitor electrode. Electrochimica Acta, 2015. 152: p. 126-134. 47. Lin, Y.-C., et al., Preparation and Application of Polyaniline Doped with Different Sulfonic Acids for Supercapacitor. Acta Physico-Chimica Sinica, 2016. 32(2): p. 474-480. 48. Sumboja, A., et al., Investigation of Charge Transfer Kinetics of Polyaniline Supercapacitor Electrodes by Scanning Electrochemical Microscopy. Advanced Materials Interfaces, 2015. 2(1). 49. Tran, C., et al., Polyaniline-coated freestanding porous carbon nanofibers as efficient hybrid electrodes for supercapacitors. Journal of Power Sources, 2015. 293: p. 373-379. 50. Mensing, J.P., et al., Novel surfactant-stabilized graphene-polyaniline composite nanofiber for supercapacitor applications. Composites Part B-Engineering, 2015. 77: p. 93-99. 51. Gedela, V., et al., A unique solar radiation exfoliated reduced graphene oxide/polyaniline nanofibers composite electrode material for supercapacitors. Materials Letters, 2015. 152: p. 177-180. 52. Yang, C., et al., Flexible and foldable supercapacitor electrodes from the porous 3D network of cellulose nanofibers, carbon nanotubes and polyaniline. Materials Letters, 2015. 155: p. 78-81. 53. Khosrozadeh, et al., A high-capacitance solid-state supercapacitor based on free-standing film of polyaniline and carbon particles. Applied Energy, 2015. 153: p. 87-93. 54. Lei, D., et al., Flexible polyaniline-decorated carbon fiber nanocomposite mats as supercapacitors. Materials Letters, 2015. 154: p. 173-176. 55. Liang, B.L., et al., Poly(aniline-co-pyrrole) on the surface of reduced graphene oxide as high-performance electrode materials for supercapacitors. Electrochimica Acta, 2015. 177: p. 335-342. 56. Sapurina, I.Y., et al., Oxidative Polymerization of Aniline: Molecular Synthesis of Polyaniline and the Formation of Supramolecular Structures. New Polymers for Special Applications. 2012. 57. Stejskal, J., et al., Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure and Applied Chemistry, 2002. 74(5): p. 857-867. 58. Kang, E.T., et al., Polyaniline: A polymer with many interesting intrinsic redox states. Progress in Polymer Science, 1998. 23(2): p. 277-324. 59. Kulkarni, M.V., et al., Synthesis and characterization of polyaniline doped with organic acids. Journal of Polymer Science Part a-Polymer Chemistry, 2004. 42(8): p. 2043-2049. 60. Zhang, Z.M., et al., Nanostructures of polyaniline doped with inorganic acids. Macromolecules, 2002. 35(15): p. 5937-5942. 61. Tran, H.D., et al., The oxidation of aniline to produce "polyaniline": a process yielding many different nanoscale structures. Journal of Materials Chemistry, 2011. 21(11): p. 3534-3550. 62. Ayad, M., et al., Nanostructured crosslinked polyaniline with high surface area: Synthesis, characterization and adsorption for organic dye. Chemical Engineering Journal, 2012. 204: p. 79-86. 63. Qin, H., et al., Near-UV-emitting graphene quantum dots from graphene hydrogels. Carbon, 2015. 94: p. 181-188. 64. Park, S.Y., et al., Eco-friendly carbon-nanodot-based fluorescent paints for advanced photocatalytic systems. Scientific Reports, 2015. 5: p. 8. 65. Nirala, N.R., et al., Colorimetric detection of cholesterol based on highly efficient peroxidase mimetic activity of graphene quantum dots. Sensors and Actuators B-Chemical, 2015. 218: p. 42-50. 66. Umrao, S., et al., Microwave bottom-up route for size-tunable and switchable photoluminescent graphene quantum dots using acetylacetone: New platform for enzyme-free detection of hydrogen peroxide. Carbon, 2015. 81: p. 514-524. 67. Gupta, V., et al., Graphene Quantum Dot-Based Organic Solar Cells. Quantum Dot Solar Cells, ed. J. Wu and Z.M. Wang. Vol. 15. 2014. 255-268. 68. Lu, W., et al., High-quality water-soluble luminescent carbon dots for multicolor patterning, sensors, and bioimaging. Rsc Advances, 2015. 5(22): p. 16972-16979. 69. Matsuoka, K.-i., et al., Modulation of electrochemical property of carbon nanodot by post-chemical reductions. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2015. 470: p. 15-21. 70. Mitchell Bacon, et al., Graphene Quantum Dots. Particle & Particle Systems Characterization, 2013. 31(4): p. 415-428. 71. Li, L.L., et al., Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale, 2013. 5(10): p. 4015-4039. 72. Yang, F., et al., Influence of pH on the fluorescence properties of graphene quantum dots using ozonation pre-oxide hydrothermal synthesis. Journal of Materials Chemistry, 2012. 22(48): p. 25471-25479. 73. Shinde, D.B., et al., Electrochemical Preparation of Luminescent Graphene Quantum Dots from Multiwalled Carbon Nanotubes. Chemistry-a European Journal, 2012. 18(39): p. 12522-12528. 74. Lin, L., et al., Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes. Chemical Communications, 2012. 48(82): p. 10177-10179. 75. Pan, D., et al., Cutting sp2clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence. Journal of Materials Chemistry, 2012. 22(8): p. 3314-3318. 76. Silva, G.A., Neuroscience nanotechnology: Progress, opportunities and challenges. Nature Reviews Neuroscience, 2006. 7(1): p. 65-74. 77. Song, Y., et al., Bioimaging based on fluorescent carbon dots. RSC Advances, 2014. 4(52): p. 27184-27200. 78. Jiang, F., et al., Eco-friendly synthesis of size-controllable amine-functionalized graphene quantum dots with antimycoplasma properties. Nanoscale, 2013. 5(3): p. 1137-1142. 79. Li, L.L., et al., A Facile Microwave Avenue to Electrochemiluminescent Two-Color Graphene Quantum Dots. Advanced Functional Materials, 2012. 22(14): p. 2971-2979. 80. Chen, S., et al., Unusual emission transformation of graphene quantum dots induced by self-assembled aggregation. Chemical Communications, 2012. 48(61): p. 7637-7639. 81. Zhu, S., et al., Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chemical Communications, 2011. 47(24): p. 6858-6860. 82. Tang, L.B., et al., Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots. Acs Nano, 2012. 6(6): p. 5102-5110. 83. Wu Kun, et al., Graphene Quantum Dots Enhanced Electrochemical Performance of Polypyrrole as Supercapacitor Electrode. JOURNAL OF ELECTROCHEMISTRY, 2013. 84. Zhang, Z.J., et al., Nitrogen-doped nanoporous carbon materials derived from folic acid: Simply introducing redox additive of p-phenylenediamine into KOH electrolyte for greatly improving the supercapacitor performance. Journal of Electroanalytical Chemistry, 2016. 764: p. 45-55. 85. Hassan, M., et al., Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance. Nanoscale, 2014. 6(20): p. 11988-11994. 86. Wang, J., et al., Size-controllable polypyrrole nanospheres synthesized in the presence of phosphorylated chitosan and their size effect in different applications. Journal of Nanoparticle Research, 2015. 17(5): p. 9. 87. Li, Y., et al., Binding-induced internal-displacement of signal-on photoelectrochemical response: A glyphosate detection platform based on graphitic carbon nitride. Sensors and Actuators B-Chemical, 2016. 224: p. 798-804. 88. Janaky, C., et al., Conducting polymer-based hybrid assemblies for electrochemical sensing: a materials science perspective. Analytical and Bioanalytical Chemistry, 2013. 405(11): p. 3489-3511. 89. Peng, C., et al., Carbon nanotube and conducting polymer composites for supercapacitors. Progress in Natural Science-Materials International, 2008. 18(7): p. 777-788. 90. Endrodi, B., et al., Challenges and Rewards of the Electrosynthesis of Macroscopic Aligned Carbon Nanotube Array/Conducting Polymer Hybrid Assemblies. Journal of Polymer Science Part B-Polymer Physics, 2015. 53(21): p. 1507-1518. 91. Lu, S., et al., Tuning surface properties of graphene oxide quantum dots by gamma-ray irradiation. Journal of Luminescence, 2016. 175: p. 88-93. 92. McAllister, M.J., et al., Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of Materials, 2007. 19(18): p. 4396-4404. 93. Ding, J., et al., Highly efficient photocatalytic hydrogen evolution of graphene/YInO3 nanocomposites under visible light irradiation. Nanoscale, 2014. 6(4): p. 2299-2306. 94. Li, H., et al., Carbon nanodots: synthesis, properties and applications. Journal of Materials Chemistry, 2012. 22(46): p. 24230-24253. 95. Dhand, C., et al., Preparation, characterization and application of polyaniline nanospheres to biosensing. Nanoscale, 2010. 2(5): p. 747-754. 96. Hu, F., et al., Effect of Graphene Oxide as a Dopant on the Electrochemical Performance of Graphene Oxide/Polyaniline Composite. Journal of Materials Science & Technology, 2014. 30(4): p. 321-327. 97. Valuru Jagadeesh Badu, et al., Conducting polyaniline-electrical charge transportation. scientific Research, 2012. 98. Cardoso, M.J.R., et al., Polyaniline synthesized with functionalized sulfonic acids for blends manufacture. Materials Research, 2007. 10(4): p. 425-429. 99. Price, W.E., et al., Effect of thermal treatment on the electroactivity of polyaniline. Polymer, 1996. 37(6): p. 917-923. 100. Lee, K., et al., Highly porous nanostructured polyaniline/carbon nanodots as efficient counter electrodes for Pt-free dye-sensitized solar cells. Journal of Materials Chemistry A, 2015. 3(37): p. 19018-19026. 101. Srivastava, S., et al., Characterization of gas sensing behavior of multi walled carbon nanotube polyaniline composite films. International Journal of Hydrogen Energy, 2009. 34(19): p. 8444-8450. 102. Zeghioud, H., et al., Preparation and characterization of a new polyaniline salt with good conductivity and great solubility in dimethyl sulphoxide. Journal of the Serbian Chemical Society, 2015. 80(11): p. 1435-1448. 103. Pang, Z., et al., Effect of CSA Concentration on the Ammonia Sensing Properties of CSA-Doped PA6/PANI Composite Nanofibers. Sensors, 2014. 14(11): p. 21453-21465. 104. Parmar, M., et al., PANI and Graphene/PANI Nanocomposite Films - Comparative Toluene Gas Sensing Behavior. Sensors, 2013. 13(12): p. 16611-16624. 105. Wang, X., et al., Facile synthesis of polyaniline/carbon dot nanocomposites and their application as a fluorescent probe to detect mercury. Rsc Advances, 2015. 5(52): p. 41914-41919. 106. Feng, X.M., et al., Polyaniline/Au composite hollow spheres: Synthesis, characterization, and application to the detection of dopamine. Langmuir, 2006. 22(9): p. 4384-4389. 107. Tang, S.-J., et al., Polymerization of aniline under various concentrations of APS and HCl. Polymer Journal, 2011. 43(8): p. 667-675. 108. Mao, Y., et al., pH-switched luminescence and sensing properties of a carbon dot-polyaniline composite. Rsc Advances, 2013. 3(16): p. 5475-5482. 109. Yang, N., et al., Layered nanostructures of polyaniline with graphene oxide as the dopant and template. Synthetic Metals, 2010. 160(15-16): p. 1617-1622. 110. Mitra, M., et al., Reduced graphene oxide-polyaniline composites-synthesis, characterization and optimization for thermoelectric applications. Rsc Advances, 2015. 5(39): p. 31039-31048. 111. Yang, C.Y., et al., Thermal stability of polyaniline networks in conducting polymer blends. Synthetic Metals, 1996. 79(1): p. 27-32. 112. Liu, Y., et al., Carboxyl-functionalized graphene oxide-polyaniline composite as a promising supercapacitor material. Journal of Materials Chemistry, 2012. 22(27): p. 13619-13624. 113. Abdolahi, A., et al., Synthesis of Uniform Polyaniline Nanofibers through Interfacial Polymerization. Materials, 2012. 5(8): p. 1487-1494. 114. Zakaria, Z., et al., Effect of Hydrochloric Acid Concentration on Morphology of Polyaniline Nanofibers Synthesized by Rapid Mixing Polymerization. Journal of Nanomaterials, 2015. 115. Hatchett, D.W., et al., Acid doping of polyaniline: Spectroscopic and electrochemical studies. Journal of Physical Chemistry B, 1999. 103(50): p. 10992-10998. 116. Bai, X., et al., Synthesis of cluster polyaniline nanorod via a binary oxidant system. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2007. 27(4): p. 695-699. 117. Yu, H., et al., Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties. Journal of Materials Chemistry, 2012. 22(40): p. 21679-21685. 118. Gawli, Y., et al., 3D Polyaniline Architecture by Concurrent Inorganic and Organic Acid Doping for Superior and Robust High Rate Supercapacitor Performance. Scientific Reports, 2016. 6. 119. Chen, S.A., et al., POLYANILINE PLASTICIZED WITH 1-METHYL-2-PYRROLIDONE - STRUCTURE AND DOPING BEHAVIOR. Macromolecules, 1993. 26(13): p. 3254-3261. 120. Rodriguez, J.M.D., et al., Determination of the real surface area of Pt electrodes by hydrogen adsorption using cyclic voltammetry. Journal of Chemical Education, 2000. 77(9): p. 1195-1197. 121. de la Garza, L., et al., Surface states of titanium dioxide nanoparticles modified with enediol ligands. Journal of Physical Chemistry B, 2006. 110(2): p. 680-686. 122. Zhao, Y., et al., Nano-network MnO2/polyaniline composites with enhanced electrochemical properties for supercapacitors. Materials & Design, 2016. 97: p. 512-518. 123. Dou, P., et al., Rapid synthesis of hierarchical nanostructured Polyaniline hydrogel for high power density energy storage application and three-dimensional multilayers printing. Journal of Materials Science, 2016. 51(9): p. 4274-4282. 124. Zu, L., et al., Preparation and Electrochemical Characterization of Mesoporous Polyaniline-Silica Nanocomposites as an Electrode Material for Pseudocapacitors. Materials, 2015. 8(4): p. 1369-1383. 125. Ghenaatian, H.R., et al., Electrochemical investigations of self-doped polyaniline nanofibers as a new electroactive material for high performance redox supercapacitor. Synthetic Metals, 2009. 159(17-18): p. 1717-1722. 126. Cong, H.-P., et al., Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy & Environmental Science, 2013. 6(4): p. 1185-1191. 127. Wang, L., et al., Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Reduced Graphene Oxide Sheets for Supercapacitors. Scientific Reports, 2013. 3. 128. Lee, Y.W., et al., Iodine vapor doped polyaniline nanoparticles counter electrodes for dye-sensitized solar cells. Synthetic Metals, 2013. 174: p. 6-13. 129. Trevisan, R., et al., PEDOT Nanotube Arrays as High Performing Counter Electrodes for Dye Sensitized Solar Cells. Study of the Interactions Among Electrolytes and Counter Electrodes. Advanced Energy Materials, 2011. 1(5): p. 781-784. 130. Wu, J., et al., High-performance polypyrrole nanoparticles counter electrode for dye-sensitized solar cells. Journal of Power Sources, 2008. 181(1): p. 172-176. 131. Ke, Q., et al., 3D Nanostructure of Carbon Nanotubes Decorated Co3O4 Nanowire Arrays for High Performance Supercapacitor Electrode. Electrochimica Acta, 2015. 163: p. 9-15. 132. Kumar, R., et al., Self-Assembled Hierarchical Formation of Conjugated 3D Cobalt Oxide Nanobead-CNT-Graphene Nanostructure Using Microwaves for High-Performance Supercapacitor Electrode. Acs Applied Materials & Interfaces, 2015. 7(27): p. 15042-15051. 133. Wang, Q., et al., Conductive polyaniline composite films from aqueous dispersion: Performance enhancement by multi-walled carbon nanotube. Synthetic Metals, 2015. 199: p. 1-7. 134. Shu, D., et al., Enhanced Capacitance and Rate Capability of Nanocrystalline VN as Electrode Materials for Supercapacitors. International Journal of Electrochemical Science, 2013. 8(1): p. 1209-1225. 135. Chen, G.Z., Understanding supercapacitors based on nano-hybrid materials with interfacial conjugation. Progress in Natural Science-Materials International, 2013. 23(3): p. 245-255. 136. Tai, Z., et al., Three-Dimensional Graphene/Polyaniline Composite Hydrogel as Supercapacitor Electrode. Journal of the Electrochemical Society, 2012. 159(10): p. A1702-A1709. 137. Wang, H., et al., A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale, 2010. 2(10): p. 2164-2170.
|