跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.35) 您好!臺灣時間:2025/12/18 02:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊庭佳
研究生(外文):Ting-Chia Yang
論文名稱:聚苯胺/奈米碳材複合材料之合成及其電容效能之研究
論文名稱(外文):Synthesis and electrochemical storage performance of polyaniline/nano-carbon composites
指導教授:廖建勛
指導教授(外文):Chien-Shium Liao
口試委員:吳宗明蔡毓楨
口試委員(外文):Tzong-Ming WuYu-Chen Tsai
口試日期:2016-6-27
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:112
中文關鍵詞:超級電容器奈米碳點聚苯胺
外文關鍵詞:supercapacitorcarbon nanodotspolyaniline
相關次數:
  • 被引用被引用:0
  • 點閱點閱:198
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究製備聚苯胺/奈米碳材複合材料,並探討其電化學及電容性質。石墨烯為超級電容器常見的一種碳材,當尺寸縮小為量子點時會有良好的生物相容性、低毒性及良好的發光效應,在本研究中奈米碳點(CNDs)測得電容值在電流密度為0.1 A g-1時為11.02 F g-1。為提高奈米碳點的電容值,將聚苯胺原位聚合於CNDs表面。聚苯胺為一種共軛導電高分子,合成容易且具有高的比電容值 (電流密度為0.1 A g-1下電容值為187 F g-1),將兩種材料製備成複合材料可有效將電容值提高。本研究分析不同比例酸摻雜及二次摻雜對於聚苯胺/奈米碳材複合材料 (CNDP)電容值的影響。不同比例酸摻雜會影響聚苯胺的合成型態,利用樟腦磺酸進行二次摻雜的複合材料型態變為片狀堆疊。最高的比電容值出現在二次摻雜且奈米碳點摻雜比例為10 wt.% (CNDP10-sd)的複合材料,在電流密度為0.1 A g-1時電容值可達約350 F g-1,在1 A g-1的電流密度下電容值仍有接近86 F g-1。結果顯示透過混成聚苯胺可有效提升奈米碳點的電容值,且聚苯胺的循環穩定性也得到提升。
Supercapacitors (SC) have attracted much attention due to their high power densities, wide temperature range, high energy densities and long cycle life compared to batteries. Carbon materials and conducting polymers are common electrode materials for electrical double layer capacitors (EDLC) and pseudo-capacitors, respectively. In order to enhance the performance of the SC, combined carbon materials and conducting polymers to form the hybrid capacitors have been reported. Polyaniline (PANI) is one of the conducting polymers, which has multiple redox states showing large pseudo-capacitance. Carbon nanodot (CND), one of the derivatives of nano carbons, has ultra-small size and unique electronic and optical properties. The CNDs have been recognized as superior electrode material for supercapacitors resulting from quantum confinement effect of wider band gap. Polyaniline/carbon nanodots composites were prepared by chemical oxidation polymerization of aniline in presence of CNDs. After secondary doping, the CNDP-sd composite shows better electrochemical properties and thermal stabilities than pristine PANIs and CNDs. The capacitance of CNDP-sd composite is about 350 F g-1 compared to 187 F g-1 of PANI-sd and 11 F g-1 of CNDs, respectively at a current density of 0.1 A g-1.
摘要 I
Abstract II
Catalog III
List of Figures VI
List of Tables X
Chapter 1 Introduction 1
1-1 Foreword 1
1-2 Research motives 3
Chapter 2 Literature review 4
2-1 Electrochemical capacitors 4
2-1-1 Types of supercapacitors 5
2-2 Polyaniline (PANI) 14
2-2-1 Introduction of polyaniline 14
2-2-2 Application of polyaniline composites for supercapacitors 16
2-3 Preparation of polyaniline 18
2-4 Carbon nanodots (CNDs) 22
2-4-1 Introduction of carbon nanodots 22
2-4-2 Preparation of carbon nanodots 24
2-4-3 Application of CNDs-based materials in supercapacitors 28
2-5 Synthesis methods of PANI/CNDs composites 30
Chapter 3 Research framework 31
Chapter 4 Experimental content 32
4-1 Materials 32
4-2 Instruments 34
4-3 Preparation of graphene oxide (GO) 35
4-4 Preparation of carbon nanodots (CNDs) 35
4-5 Preparation of polyaniline (PANI) 36
4-5-1 Synthesis of HCl doped PANI using HCl(aq) as solvent 36
4-5-2 Synthesis of HCl doped PANI using de-ionized water as solvent 36
4-5-3 Synthesis of secondary doping PANI (PANI-sd) 37
4-6 Preparation of CNDs/PANI composites (CNDP) 38
4-6-1 Preparation of CNDP composites 38
4-6-2 Preparation of CNDP-f composites 38
4-6-3 Preparation of secondary doping CNDP composites (CNDP-sd) 39
4-7 Preparation of electrodes 40
4-8 Electrochemical measurement 40
4-9 Material characterization 41
Chapter 5 Results and discussion 42
5-1 Characterization of graphene oxide (GO) and carbon nanodots(CNDs) 42
5-1-1 Identification of FT-IR 42
5-1-2 UV-vis absorption spectra 44
5-1-3 Thermogravimetric analysis 45
5-1-4 Surface morphology of FE-SEM images 47
5-1-5 Atomic force microscope analysis 48
5-1-6 Structure analysis by XRD 49
5-2 Characterization of polyaniline (PANI) synthesis by different process 51
5-2-1 Identification of FT-IR 51
5-2-2 UV-vis absorption spectra 53
5-2-3 Thermogravimetric analysis 54
5-2-4 Surface morphology of FE-SEM images 56
5-2-5 Structure analysis by XRD 58
5-3 Characterization of carbon nanodots/polyaniline (CNDP) composites synthesis by different process 59
5-3-1 Identification of FT-IR 59
5-3-2 UV-vis absorption spectra 63
5-3-3 Themogravimetric analysis 66
5-3-4 Surface morphology of FE-SEM images 70
5-3-5 Structure analysis by XRD 75
5-4 Electrochemical properties GO, CNDs, PANIs and CNDP composites 78
5-4-1 Cyclic voltammetry curves 78
5-4-1-1 Cyclic voltammetry curves of GO and CNDs 78
5-4-1-2 Cyclic voltammetry curves of PANIs 80
5-4-1-3 Cyclic voltammetry curves of different CNDP composites 82
5-4-2 Galvanostatic charge/discharge curves 87
5-4-2-1 Galvanostatic charge/discharge curves of GO and CNDs 87
5-4-2-2 Galvanostatic charge/discharge curves of PANI synthesis with different process 89
5-4-2-3 Galvanostatic charge/discharge curves of different CNDP composites 91
5-4-3 Cycle stability 96
Conclusion 97
Reference 98


List of Figures
Fig. 2-1 A simplified Ragone plot of specific power versus specific energy for the various electrochemical energy storage devices.[13] 4
Fig. 2-2 Schematic diagrams of EDLCs charge-discharge process. 7
Fig. 2-3 Schematic diagrams of pseudo-capacitors charge-discharge process. 9
Fig. 2-4 A simplified ragone plot of specific power versus specific energy for the various electrochemical energy storage devices. 15
Fig. 2-5 The types of aniline product with different oxidation.[61] 19
Fig. 2-6 Schematic diagram of the formation mechanism for PANI synthesis by self-assembly process.[60] 20
Fig. 2-7 The SEM images of PANI with different dopant. (a) HCl, (b) H2SO4, (c) HBF4, (d) H3PO4, (e) CH3COOH and (f) oxalic acid. [60, 62] 20
Fig. 2-8 Schematic diagrams of different carbon structures. 23
Fig. 2-9 Graphene is the basic building block of other carbon structures. 23
Fig. 2-10 Schematic diagrams of (a) bottom-up and (b) top-down methods.[76] 26
Fig. 2-11 Schematic diagram of preparation of GO from graphite by modified Hummers method.[77] 26
Fig. 5-1 FT-IR spectra of (a) pristine graphite, (b) GO and (c) CNDs. 43
Fig. 5-2 The UV-vis spectra of (a) GO and (b) CNDs. 44
Fig. 5-3 Thermogracimetry curve of (a) graphite, (b) GO and (c) CNDs. 46
Fig. 5-4 FE-SEM images of GO and CNDs at different magnification. (a), (b) are the structure of GO, (c) and (d) shows the structure of CNDs. 47
Fig. 5-5 Observation of CNDs particle size with AFM. 48
Fig. 5-6 XRD diffraction patterns of (a) graphite, (b) GO and (c) CNDs. 50
Fig. 5-7 FT-IR spectra of (a) PANI, (b) PANI-f and (c) PANI-sd. 52
Fig. 5-8 The UV-vis spectra of (a) PANI, (b) PANI-f and (c) PANI-sd. 53
Fig. 5-9 Thermogravimetry curves of PANIs synthesis by different process. 55
Fig. 5-10 FE-SEM images of different synthesis process of PANI, (a)-(b) PANI, (c)-(d) PANI-f and (e)-(f) PANI-sd. 57
Fig. 5-11 XRD diffraction patterns of (a) PANI, (b) PANI-f and (c) PANI-sd. 58
Fig. 5-12 FT-IR spectra of (a) CNDs, (b) PANI, (c) CNDP5, (d) CNDP10 and (e) CNDP20. 61
Fig. 5-13 FT-IR spectra of (a) CNDs, (b) PANI-f, (c) CNDP5-f, (d) CNDP10-f and (e) CNDP20-f. 61
Fig. 5-14 FT-IR spectra of (a) CNDs, (b) PANI-sd, (c) CNDP5-sd, (d) CNDP10-sd and (e) CNDP20-sd. 62
Fig. 5-15 The UV-vis spectra of (a) PANI, (b) CNDP5, (c) CNDP10 and (d) CNDP20. 64
Fig. 5-16 The UV-vis spectra of (a) PANI-f, (b) CNDP5-f, (c) CNDP10-f and (d) CNDP20-f. 64
Fig. 5-17 The UV-vis spectra of (a) PANI-sd, (b) CNDP5-sd, (c) CNDP10-sd and (d) CNDP20-sd. 65
Fig. 5-18 Thermogravimetry curve of PANI and CNDP composites. 68
Fig. 5-19 Thermogravimetry curve of PANI-f and CNDP-f composites. 68
Fig. 5-20 Thermogravimetry curve of PANI-sd and CNDP-sd composites. 68
Fig.5-21 FE-SEM images of (a) CNDs, (b) PANI, (c) CNDP5, (d) CNDP10 and (e) CNDP20. 72
Fig.5-22 FE-SEM images of (a) CNDs, (b) PANI-f, (c) CNDP5-f, (d) CNDP10-f and (e) CNDP20-f. 73
Fig.5-23 FE-SEM images of (a) CNDs, (b) PANI-sd, (c) CNDP5-sd, (d) CNDP10-sd and (e) CNDP20-sd. 74
Fig. 5- 24 XRD diffraction patterns of (a) PANI, (b) CNDP5, (c) CNDP10 and (d) CNDP20. 76
Fig. 5- 25 XRD diffraction patterns of (a) PANI-f, (b) CNDP5-f, (c) CNDP10-f and (d) CNDP20-f. 76
Fig. 5- 26 XRD diffraction patterns of (a) PANI-sd, (b) CNDP5-sd, (c) CNDP10-sd and (d) CNDP20-sd. 77
Fig.5-27 The CV curves of GO and CNDs at scan rates 10 mV s-1 in 1 M H2SO4. 79
Fig.5-28 The CV curves of PANI synthesis by different process at scan rate 10 mV s-1 in 1 M H2SO4. 81
Fig.5-29 The CV curves of PANI and CNDP composites compared with CNDs at scan rate 10 mV s-1 in 1 M H2SO4. 85
Fig.5-30 The CV curves of PANI-f and CNDP-f composites compared with CNDs at scan rate 10 mV s-1 in 1 M H2SO4. 85
Fig.5-31 The CV curves of PANI-sd and CNDP-sd composites compared with CNDs at scan rate 10 mV s-1 in 1 M H2SO4. 85
Fig.5-32 Galvanostatic charge/discharge curves of (a) GO and (b) CNDs at current density of 0.1 A g-1. 88
Fig. 5-33 Specific capacitance of (a) GO and (b) CNDs. 88
Fig. 5-34 Galvanostatic charge/discharge curves of three kinds of PANI at current density 0.1 A g-1. 90
Fig. 5-35 Specific capacitance of PANIs at different current density. 90
Fig. 5-36 Galvanostatic charge/discharge curves of CNDs, PANI and CNDP composites at current density 0.1 A g-1. 93
Fig. 5-37 Galvanostatic charge/discharge curves of CNDs, PANI-f and CNDP-f composites at current density 0.1 A g-1. 93
Fig. 5-38 Galvanostatic charge/discharge curves of CNDs, PANI-sd and CNDP-sd composites at current density 0.1 A g-1. 93
Fig. 5-39 Specific capacitance of CNDs, PANI and CNDP composites at different current density. 94
Fig. 5-40 Specific capacitance of CNDs, PANI-f and CNDP-f composites at different current density. 94
Fig. 5-41 Specific capacitance of CNDs, PANI-sd and CNDP-sd composites at different current density. 94
Fig. 5-42 5000 charge-discharge cycle stability of CNDP10-sd composite at current density of 1 A g-1. Inset GCD curves for 15 consecutive cycles. 96


List of Tables
Table 2-1 Summary of the different materials for EDLCs 7
Table 2-2 Summary of metal oxides materials for pseudo-capacitors 10
Table 2-3 Summary of conductive polymers for pseudo-capacitors 11
Table 2-4 Summary the materials for hybrid supercapacitors 13
Table 2-5 Pseudo-capacitive performance of pristine PANI 15
Table 2-6 Application of PANI composites in supercapacitors 17
Table 2-7 Assignments for IR absorption bands of PANI[58] 21
Table 2-8 Summary of typical synthesis methods of CNDs 27
Table 2-9 Application of CNDs-based materials in supercapacitors 29
Table 5-1 The weight loss of graphite, GO and CNDs 46
Table 5-2 The weight loss of PANIs with different synthesis process 55
Table 5-3 The weight loss of CNDs, PANI and CNDP composites synthesis by different process 69
Table 5-4 Specific capacitance of GO and CNDs at different scan rate 79
Table 5-5 Specific capacitance of three kinds of PANI at different scan rate 81
Table 5-6 Specific capacitance of CNDs, PANI and CNDP composites at different scan rate 86
Table 5-7 Specific capacitance (Csp) of GO and CNDs at different current density 88
Table 5-8 Specific capacitance (Csp) of PANI at different current density 90
Table 5-9 Specific capacitance (Csp) of CNDs, PANI and CNDP composites at different current density 95


1. Ashok Kumar, et al., Electrochemical supercapacitors from conducting polyaniline-graphene platforms. Chemical Communications, 2014. 50(48): p. 6298-6308.
2. Usman, M., et al., Enhanced electrochemical supercapacitor properties with synergistic effect of polyaniline, graphene and AgxO. Applied Surface Science, 2016. 370: p. 297-305.
3. Ates, M., et al., Supercapacitor behaviors of polyaniline/CuO, polypyrrole/CuO and PEDOT/CuO nanocomposites. Polymer Bulletin, 2015. 72(10): p. 2573-2589.
4. Dai, W., et al., Fabrication of sandwich nanostructure graphene/polyaniline hollow spheres composite and its applications as electrode materials for supercapacitor. Materials Research Bulletin, 2016. 76: p. 344-352.
5. Chen, Q., et al., Graphene quantum dots-three-dimensional graphene composites for high-performance supercapacitors. Physical Chemistry Chemical Physics, 2014. 16(36): p. 19307-19313.
6. Luk, C.M., et al., Optically and electrically tunable graphene quantum dot-polyaniline composite films. Journal of Materials Chemistry C, 2014. 2(23): p. 4526-4532.
7. Mondal, S., et al., Graphene quantum dot-doped polyaniline nanofiber as high performance supercapacitor electrode materials. Chemical Communications, 2015. 51(62): p. 12365-12368.
8. Lai, S.K., et al., Photoresponse of polyaniline-functionalized graphene quantum dots. Nanoscale, 2015. 7(12): p. 5338-5343.
9. Zhang, K., et al., Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes. Chemistry of Materials, 2010: p. 1392-1401.
10. Zhang, S.L. and N. Pan, Supercapacitors Performance Evaluation. Advanced Energy Materials, 2015. 5(6): p. 19.
11. Rakhi, R.B., et al., Enhanced Rate Performance of Mesoporous Co3O4 Nanosheet Supercapacitor Electrodes by Hydrous RuO2 Nanoparticle Decoration. Acs Applied Materials & Interfaces, 2014. 6(6): p. 4196-4206.
12. Huang, Y., et al., An Overview of the Applications of Graphene-Based Materials in Supercapacitors. Small, 2012. 8(12): p. 1805-1834.
13. Yu, G.H., et al., Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy, 2013. 2(2): p. 213-234.
14. Ghouri, Z.K., et al., Supercapacitors based on ternary nanocomposite of TiO2&Pt@graphenes. Journal of Materials Science-Materials in Electronics, 2016. 27(4): p. 3894-3900.
15. Xiao, D.B., et al., Synthesis and Electrochemical Properties of Two Transition Metal Coordination Complexes Based on 4-Pyridyl-Substituted TTF Ligand. Synthesis and Reactivity in Inorganic Metal-Organic and Nano-Metal Chemistry, 2016. 46(7): p. 1059-1064.
16. Huo, P.F., et al., Quaternary ammonium functionalized poly(arylene ether sulfone)/poly(vinylpyrrolidone) composite membranes for electrical double layer capacitors with activated carbon electrodes. Journal of Membrane Science, 2016. 505: p. 148-156.
17. Largeot, C., et al., Relation between the ion size and pore size for an electric double-layer capacitor. Journal of the American Chemical Society, 2008. 130(9): p. 2730-+.
18. Yao, L., et al., Three-dimensional beehive-like hierarchical porous polyacrylonitrile-based carbons as a high performance supercapacitor electrodes. Journal of Power Sources, 2016. 315: p. 209-217.
19. Zhang, H., et al., One-step synthesis of hierarchically porous carbons for high-performance electric double layer supercapacitors. Journal of Power Sources, 2016. 315: p. 120-126.
20. Wei, L., et al., Three-dimensional porous hollow microspheres of activated carbon for high-performance electrical double-layer capacitors. Microporous and Mesoporous Materials, 2016. 227: p. 210-218.
21. An, G.-H., et al., Activated mesoporous carbon nanofibers fabricated using water etching-assisted templating for high-performance electrochemical capacitors. Physical Chemistry Chemical Physics, 2016. 18(9): p. 6587-6594.
22. Liu, R., et al., Nitrogen-doped Carbon Microfiber with Wrinkled Surface for High Performance Supercapacitors. Scientific Reports, 2016. 6.
23. Hu, N.T., et al., Three-dimensional skeleton networks of graphene wrapped polyaniline nanofibers: an excellent structure for high-performance flexible solid-state supercapacitors. Scientific Reports, 2016. 6: p. 10.
24. Dar, R.A., et al., Performance of palladium nanoparticle-graphene composite as an efficient electrode material for electrochemical double layer capacitors. Electrochimica Acta, 2016. 196: p. 547-557.
25. Sharma, P., et al., A review on electrochemical double-layer capacitors. Energy Conversion and Management, 2010. 51(12): p. 2901-2912.
26. Wang, P., et al., Supported ultrafine ruthenium oxides with specific capacitance up to 1099 F g(-1) for a supercapacitor. Electrochimica Acta, 2016. 194: p. 211-218.
27. Zhang, H., et al., Hierarchical porous MnO2/CeO2 with high performance for supercapacitor electrodes. Chemical Engineering Journal, 2016. 286: p. 139-149.
28. Wang, W., et al., Electrosynthesis and Performance of Poly(aniline/pyrrole) Copolymer. International Journal of Electrochemical Science, 2016. 11(5): p. 4000-4006.
29. Xie, Y., et al., Supercapacitance performance of polypyrrole/titanium nitride/polyaniline coaxial nanotube hybrid. Journal of Alloys and Compounds, 2016. 665: p. 323-332.
30. Tuyen, N., et al., Cathodic electrodeposition and electrochemical response of manganese oxide pseudocapacitor electrodes. International Journal of Hydrogen Energy, 2015. 40(46): p. 16355-16364.
31. Tuyen, N., et al., Hydrogen bubbling-induced micro/nano porous MnO2 films prepared by electrodeposition for pseudocapacitor electrodes. Electrochimica Acta, 2016. 202: p. 166-174.
32. Wang, K., et al., Fabrication of Co3O4 pseudocapacitor electrodes from nanoscale cobalt-organic frameworks. Polyhedron, 2016. 109: p. 26-32.
33. Wang, Z., et al., Nickel foam supported hierarchical mesoporous MnO2/Ni(OH)(2) nanosheet networks for high performance supercapacitor electrode. Materials Letters, 2016. 171: p. 10-13.
34. Chen, Y., et al., The preparation and electrochemical properties of PEDOT:PSS/MnO2/PEDOT ternary film and its application in flexible micro-supercapacitor. Electrochimica Acta, 2016. 193: p. 199-205.
35. Reddy, B.N., et al., A Poly(3,4-ethylenedioxypyrrole)-Au@WO3-Based Electrochromic Pseudocapacitor. Chemphyschem, 2015. 16(2): p. 377-389.
36. Ryu, K.S., et al., Symmetric redox supercapacitor with conducting polyaniline electrodes. Journal of Power Sources, 2002. 103(2): p. 305-309.
37. He, Y., et al., Holey graphene/polypyrrole nanoparticle hybrid aerogels with three-dimensional hierarchical porous structure for high performance supercapacitor. Journal of Power Sources, 2016. 317: p. 10-18.
38. Chauhan, N.P.S., et al., High-performance supercapacitors based on polyaniline-graphene nanocomposites: Some approaches, challenges and opportunities. Journal of Industrial and Engineering Chemistry, 2016. 36: p. 13-29.
39. Pedros, J., et al., Polyaniline nanofiber sponge filled graphene foam as high gravimetric and volumetric capacitance electrode. Journal of Power Sources, 2016. 317: p. 35-42.
40. Memon, M.A., et al., Conjunction of Conducting Polymer Nanostructures with Macroporous Structured Graphene Thin Films for High-Performance Flexible Supercapacitors. Acs Applied Materials & Interfaces, 2016. 8(18): p. 11711-11719.
41. Ahmed, M.M.M., et al., Electrochemical properties of a thermally expanded magnetic graphene composite with a conductive polymer. Physical Chemistry Chemical Physics, 2016. 18(15): p. 10400-10410.
42. Mao, L., et al., Bendable graphene/conducting polymer hybrid films for freestanding electrodes with high volumetric capacitances. Rsc Advances, 2016. 6(4): p. 2951-2957.
43. Handbook of organic conductive molecules and polymers, H.S. Nalwa, Editor. 1997, Wiley: Chichester ;.
44. Kulkarni, S.B., et al., High-performance supercapacitor electrode based on a polyaniline nanofibers/3D graphene framework as an efficient charge transporter. Journal of Materials Chemistry A, 2014. 2(14): p. 4989-4998.
45. Anbalagan, A.C., et al., Brine solution-driven synthesis of porous polyaniline for supercapacitor electrode application. Polymer, 2016. 87: p. 129-137.
46. Wu, W., et al., Facile fabrication of polyaniline nanotubes using the self-assembly behavior based on the hydrogen bonding: a mechanistic study and application in high-performance electrochemical supercapacitor electrode. Electrochimica Acta, 2015. 152: p. 126-134.
47. Lin, Y.-C., et al., Preparation and Application of Polyaniline Doped with Different Sulfonic Acids for Supercapacitor. Acta Physico-Chimica Sinica, 2016. 32(2): p. 474-480.
48. Sumboja, A., et al., Investigation of Charge Transfer Kinetics of Polyaniline Supercapacitor Electrodes by Scanning Electrochemical Microscopy. Advanced Materials Interfaces, 2015. 2(1).
49. Tran, C., et al., Polyaniline-coated freestanding porous carbon nanofibers as efficient hybrid electrodes for supercapacitors. Journal of Power Sources, 2015. 293: p. 373-379.
50. Mensing, J.P., et al., Novel surfactant-stabilized graphene-polyaniline composite nanofiber for supercapacitor applications. Composites Part B-Engineering, 2015. 77: p. 93-99.
51. Gedela, V., et al., A unique solar radiation exfoliated reduced graphene oxide/polyaniline nanofibers composite electrode material for supercapacitors. Materials Letters, 2015. 152: p. 177-180.
52. Yang, C., et al., Flexible and foldable supercapacitor electrodes from the porous 3D network of cellulose nanofibers, carbon nanotubes and polyaniline. Materials Letters, 2015. 155: p. 78-81.
53. Khosrozadeh, et al., A high-capacitance solid-state supercapacitor based on free-standing film of polyaniline and carbon particles. Applied Energy, 2015. 153: p. 87-93.
54. Lei, D., et al., Flexible polyaniline-decorated carbon fiber nanocomposite mats as supercapacitors. Materials Letters, 2015. 154: p. 173-176.
55. Liang, B.L., et al., Poly(aniline-co-pyrrole) on the surface of reduced graphene oxide as high-performance electrode materials for supercapacitors. Electrochimica Acta, 2015. 177: p. 335-342.
56. Sapurina, I.Y., et al., Oxidative Polymerization of Aniline: Molecular Synthesis of Polyaniline and the Formation of Supramolecular Structures. New Polymers for Special Applications. 2012.
57. Stejskal, J., et al., Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure and Applied Chemistry, 2002. 74(5): p. 857-867.
58. Kang, E.T., et al., Polyaniline: A polymer with many interesting intrinsic redox states. Progress in Polymer Science, 1998. 23(2): p. 277-324.
59. Kulkarni, M.V., et al., Synthesis and characterization of polyaniline doped with organic acids. Journal of Polymer Science Part a-Polymer Chemistry, 2004. 42(8): p. 2043-2049.
60. Zhang, Z.M., et al., Nanostructures of polyaniline doped with inorganic acids. Macromolecules, 2002. 35(15): p. 5937-5942.
61. Tran, H.D., et al., The oxidation of aniline to produce "polyaniline": a process yielding many different nanoscale structures. Journal of Materials Chemistry, 2011. 21(11): p. 3534-3550.
62. Ayad, M., et al., Nanostructured crosslinked polyaniline with high surface area: Synthesis, characterization and adsorption for organic dye. Chemical Engineering Journal, 2012. 204: p. 79-86.
63. Qin, H., et al., Near-UV-emitting graphene quantum dots from graphene hydrogels. Carbon, 2015. 94: p. 181-188.
64. Park, S.Y., et al., Eco-friendly carbon-nanodot-based fluorescent paints for advanced photocatalytic systems. Scientific Reports, 2015. 5: p. 8.
65. Nirala, N.R., et al., Colorimetric detection of cholesterol based on highly efficient peroxidase mimetic activity of graphene quantum dots. Sensors and Actuators B-Chemical, 2015. 218: p. 42-50.
66. Umrao, S., et al., Microwave bottom-up route for size-tunable and switchable photoluminescent graphene quantum dots using acetylacetone: New platform for enzyme-free detection of hydrogen peroxide. Carbon, 2015. 81: p. 514-524.
67. Gupta, V., et al., Graphene Quantum Dot-Based Organic Solar Cells. Quantum Dot Solar Cells, ed. J. Wu and Z.M. Wang. Vol. 15. 2014. 255-268.
68. Lu, W., et al., High-quality water-soluble luminescent carbon dots for multicolor patterning, sensors, and bioimaging. Rsc Advances, 2015. 5(22): p. 16972-16979.
69. Matsuoka, K.-i., et al., Modulation of electrochemical property of carbon nanodot by post-chemical reductions. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2015. 470: p. 15-21.
70. Mitchell Bacon, et al., Graphene Quantum Dots. Particle & Particle Systems Characterization, 2013. 31(4): p. 415-428.
71. Li, L.L., et al., Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale, 2013. 5(10): p. 4015-4039.
72. Yang, F., et al., Influence of pH on the fluorescence properties of graphene quantum dots using ozonation pre-oxide hydrothermal synthesis. Journal of Materials Chemistry, 2012. 22(48): p. 25471-25479.
73. Shinde, D.B., et al., Electrochemical Preparation of Luminescent Graphene Quantum Dots from Multiwalled Carbon Nanotubes. Chemistry-a European Journal, 2012. 18(39): p. 12522-12528.
74. Lin, L., et al., Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes. Chemical Communications, 2012. 48(82): p. 10177-10179.
75. Pan, D., et al., Cutting sp2clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence. Journal of Materials Chemistry, 2012. 22(8): p. 3314-3318.
76. Silva, G.A., Neuroscience nanotechnology: Progress, opportunities and challenges. Nature Reviews Neuroscience, 2006. 7(1): p. 65-74.
77. Song, Y., et al., Bioimaging based on fluorescent carbon dots. RSC Advances, 2014. 4(52): p. 27184-27200.
78. Jiang, F., et al., Eco-friendly synthesis of size-controllable amine-functionalized graphene quantum dots with antimycoplasma properties. Nanoscale, 2013. 5(3): p. 1137-1142.
79. Li, L.L., et al., A Facile Microwave Avenue to Electrochemiluminescent Two-Color Graphene Quantum Dots. Advanced Functional Materials, 2012. 22(14): p. 2971-2979.
80. Chen, S., et al., Unusual emission transformation of graphene quantum dots induced by self-assembled aggregation. Chemical Communications, 2012. 48(61): p. 7637-7639.
81. Zhu, S., et al., Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chemical Communications, 2011. 47(24): p. 6858-6860.
82. Tang, L.B., et al., Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots. Acs Nano, 2012. 6(6): p. 5102-5110.
83. Wu Kun, et al., Graphene Quantum Dots Enhanced Electrochemical Performance of Polypyrrole as Supercapacitor Electrode. JOURNAL OF ELECTROCHEMISTRY, 2013.
84. Zhang, Z.J., et al., Nitrogen-doped nanoporous carbon materials derived from folic acid: Simply introducing redox additive of p-phenylenediamine into KOH electrolyte for greatly improving the supercapacitor performance. Journal of Electroanalytical Chemistry, 2016. 764: p. 45-55.
85. Hassan, M., et al., Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance. Nanoscale, 2014. 6(20): p. 11988-11994.
86. Wang, J., et al., Size-controllable polypyrrole nanospheres synthesized in the presence of phosphorylated chitosan and their size effect in different applications. Journal of Nanoparticle Research, 2015. 17(5): p. 9.
87. Li, Y., et al., Binding-induced internal-displacement of signal-on photoelectrochemical response: A glyphosate detection platform based on graphitic carbon nitride. Sensors and Actuators B-Chemical, 2016. 224: p. 798-804.
88. Janaky, C., et al., Conducting polymer-based hybrid assemblies for electrochemical sensing: a materials science perspective. Analytical and Bioanalytical Chemistry, 2013. 405(11): p. 3489-3511.
89. Peng, C., et al., Carbon nanotube and conducting polymer composites for supercapacitors. Progress in Natural Science-Materials International, 2008. 18(7): p. 777-788.
90. Endrodi, B., et al., Challenges and Rewards of the Electrosynthesis of Macroscopic Aligned Carbon Nanotube Array/Conducting Polymer Hybrid Assemblies. Journal of Polymer Science Part B-Polymer Physics, 2015. 53(21): p. 1507-1518.
91. Lu, S., et al., Tuning surface properties of graphene oxide quantum dots by gamma-ray irradiation. Journal of Luminescence, 2016. 175: p. 88-93.
92. McAllister, M.J., et al., Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of Materials, 2007. 19(18): p. 4396-4404.
93. Ding, J., et al., Highly efficient photocatalytic hydrogen evolution of graphene/YInO3 nanocomposites under visible light irradiation. Nanoscale, 2014. 6(4): p. 2299-2306.
94. Li, H., et al., Carbon nanodots: synthesis, properties and applications. Journal of Materials Chemistry, 2012. 22(46): p. 24230-24253.
95. Dhand, C., et al., Preparation, characterization and application of polyaniline nanospheres to biosensing. Nanoscale, 2010. 2(5): p. 747-754.
96. Hu, F., et al., Effect of Graphene Oxide as a Dopant on the Electrochemical Performance of Graphene Oxide/Polyaniline Composite. Journal of Materials Science & Technology, 2014. 30(4): p. 321-327.
97. Valuru Jagadeesh Badu, et al., Conducting polyaniline-electrical charge transportation. scientific Research, 2012.
98. Cardoso, M.J.R., et al., Polyaniline synthesized with functionalized sulfonic acids for blends manufacture. Materials Research, 2007. 10(4): p. 425-429.
99. Price, W.E., et al., Effect of thermal treatment on the electroactivity of polyaniline. Polymer, 1996. 37(6): p. 917-923.
100. Lee, K., et al., Highly porous nanostructured polyaniline/carbon nanodots as efficient counter electrodes for Pt-free dye-sensitized solar cells. Journal of Materials Chemistry A, 2015. 3(37): p. 19018-19026.
101. Srivastava, S., et al., Characterization of gas sensing behavior of multi walled carbon nanotube polyaniline composite films. International Journal of Hydrogen Energy, 2009. 34(19): p. 8444-8450.
102. Zeghioud, H., et al., Preparation and characterization of a new polyaniline salt with good conductivity and great solubility in dimethyl sulphoxide. Journal of the Serbian Chemical Society, 2015. 80(11): p. 1435-1448.
103. Pang, Z., et al., Effect of CSA Concentration on the Ammonia Sensing Properties of CSA-Doped PA6/PANI Composite Nanofibers. Sensors, 2014. 14(11): p. 21453-21465.
104. Parmar, M., et al., PANI and Graphene/PANI Nanocomposite Films - Comparative Toluene Gas Sensing Behavior. Sensors, 2013. 13(12): p. 16611-16624.
105. Wang, X., et al., Facile synthesis of polyaniline/carbon dot nanocomposites and their application as a fluorescent probe to detect mercury. Rsc Advances, 2015. 5(52): p. 41914-41919.
106. Feng, X.M., et al., Polyaniline/Au composite hollow spheres: Synthesis, characterization, and application to the detection of dopamine. Langmuir, 2006. 22(9): p. 4384-4389.
107. Tang, S.-J., et al., Polymerization of aniline under various concentrations of APS and HCl. Polymer Journal, 2011. 43(8): p. 667-675.
108. Mao, Y., et al., pH-switched luminescence and sensing properties of a carbon dot-polyaniline composite. Rsc Advances, 2013. 3(16): p. 5475-5482.
109. Yang, N., et al., Layered nanostructures of polyaniline with graphene oxide as the dopant and template. Synthetic Metals, 2010. 160(15-16): p. 1617-1622.
110. Mitra, M., et al., Reduced graphene oxide-polyaniline composites-synthesis, characterization and optimization for thermoelectric applications. Rsc Advances, 2015. 5(39): p. 31039-31048.
111. Yang, C.Y., et al., Thermal stability of polyaniline networks in conducting polymer blends. Synthetic Metals, 1996. 79(1): p. 27-32.
112. Liu, Y., et al., Carboxyl-functionalized graphene oxide-polyaniline composite as a promising supercapacitor material. Journal of Materials Chemistry, 2012. 22(27): p. 13619-13624.
113. Abdolahi, A., et al., Synthesis of Uniform Polyaniline Nanofibers through Interfacial Polymerization. Materials, 2012. 5(8): p. 1487-1494.
114. Zakaria, Z., et al., Effect of Hydrochloric Acid Concentration on Morphology of Polyaniline Nanofibers Synthesized by Rapid Mixing Polymerization. Journal of Nanomaterials, 2015.
115. Hatchett, D.W., et al., Acid doping of polyaniline: Spectroscopic and electrochemical studies. Journal of Physical Chemistry B, 1999. 103(50): p. 10992-10998.
116. Bai, X., et al., Synthesis of cluster polyaniline nanorod via a binary oxidant system. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2007. 27(4): p. 695-699.
117. Yu, H., et al., Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties. Journal of Materials Chemistry, 2012. 22(40): p. 21679-21685.
118. Gawli, Y., et al., 3D Polyaniline Architecture by Concurrent Inorganic and Organic Acid Doping for Superior and Robust High Rate Supercapacitor Performance. Scientific Reports, 2016. 6.
119. Chen, S.A., et al., POLYANILINE PLASTICIZED WITH 1-METHYL-2-PYRROLIDONE - STRUCTURE AND DOPING BEHAVIOR. Macromolecules, 1993. 26(13): p. 3254-3261.
120. Rodriguez, J.M.D., et al., Determination of the real surface area of Pt electrodes by hydrogen adsorption using cyclic voltammetry. Journal of Chemical Education, 2000. 77(9): p. 1195-1197.
121. de la Garza, L., et al., Surface states of titanium dioxide nanoparticles modified with enediol ligands. Journal of Physical Chemistry B, 2006. 110(2): p. 680-686.
122. Zhao, Y., et al., Nano-network MnO2/polyaniline composites with enhanced electrochemical properties for supercapacitors. Materials & Design, 2016. 97: p. 512-518.
123. Dou, P., et al., Rapid synthesis of hierarchical nanostructured Polyaniline hydrogel for high power density energy storage application and three-dimensional multilayers printing. Journal of Materials Science, 2016. 51(9): p. 4274-4282.
124. Zu, L., et al., Preparation and Electrochemical Characterization of Mesoporous Polyaniline-Silica Nanocomposites as an Electrode Material for Pseudocapacitors. Materials, 2015. 8(4): p. 1369-1383.
125. Ghenaatian, H.R., et al., Electrochemical investigations of self-doped polyaniline nanofibers as a new electroactive material for high performance redox supercapacitor. Synthetic Metals, 2009. 159(17-18): p. 1717-1722.
126. Cong, H.-P., et al., Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy & Environmental Science, 2013. 6(4): p. 1185-1191.
127. Wang, L., et al., Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Reduced Graphene Oxide Sheets for Supercapacitors. Scientific Reports, 2013. 3.
128. Lee, Y.W., et al., Iodine vapor doped polyaniline nanoparticles counter electrodes for dye-sensitized solar cells. Synthetic Metals, 2013. 174: p. 6-13.
129. Trevisan, R., et al., PEDOT Nanotube Arrays as High Performing Counter Electrodes for Dye Sensitized Solar Cells. Study of the Interactions Among Electrolytes and Counter Electrodes. Advanced Energy Materials, 2011. 1(5): p. 781-784.
130. Wu, J., et al., High-performance polypyrrole nanoparticles counter electrode for dye-sensitized solar cells. Journal of Power Sources, 2008. 181(1): p. 172-176.
131. Ke, Q., et al., 3D Nanostructure of Carbon Nanotubes Decorated Co3O4 Nanowire Arrays for High Performance Supercapacitor Electrode. Electrochimica Acta, 2015. 163: p. 9-15.
132. Kumar, R., et al., Self-Assembled Hierarchical Formation of Conjugated 3D Cobalt Oxide Nanobead-CNT-Graphene Nanostructure Using Microwaves for High-Performance Supercapacitor Electrode. Acs Applied Materials & Interfaces, 2015. 7(27): p. 15042-15051.
133. Wang, Q., et al., Conductive polyaniline composite films from aqueous dispersion: Performance enhancement by multi-walled carbon nanotube. Synthetic Metals, 2015. 199: p. 1-7.
134. Shu, D., et al., Enhanced Capacitance and Rate Capability of Nanocrystalline VN as Electrode Materials for Supercapacitors. International Journal of Electrochemical Science, 2013. 8(1): p. 1209-1225.
135. Chen, G.Z., Understanding supercapacitors based on nano-hybrid materials with interfacial conjugation. Progress in Natural Science-Materials International, 2013. 23(3): p. 245-255.
136. Tai, Z., et al., Three-Dimensional Graphene/Polyaniline Composite Hydrogel as Supercapacitor Electrode. Journal of the Electrochemical Society, 2012. 159(10): p. A1702-A1709.
137. Wang, H., et al., A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale, 2010. 2(10): p. 2164-2170.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊