跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/20 12:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡維隆
研究生(外文):Wei-Lung Tsai
論文名稱:高效率有機發光材料與元件研究
論文名稱(外文):Investigation of high-efficiency organic light-emitting materials and devices
指導教授:吳忠幟
指導教授(外文):Chung-Chih Wu
口試委員:季昀汪根欉蔡志宏陳重嘉謝信宏
口試委員(外文):Yun ChiKen-Tsung WongChih-Hung TsaiChung-Chia Chen
口試日期:2016-10-15
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:英文
論文頁數:91
中文關鍵詞:有機發光元件白光有機發光元件銥金屬錯合物水平電偶極矩元件可靠度熱激活化延遲螢光非摻雜式有機發光元件
外文關鍵詞:OLEDsWhite OLEDsIr complexesdipole orientationsoperation lifetimesthermally activated delayed fluorescentnon-doped OLEDs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:290
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
有機發光二極體被視為重要的次世代顯示技術與照明技術,所以元件的效率與壽命備受重視。另外近年來為了降低有機發光體的成本,國際上有研究團隊提出熱激活化延遲螢光的概念,在未使用重金屬摻雜的情形下達到比傳統螢光元件還高的效率。因此在本篇論文中,我們針對新穎磷光材料(銥金屬錯合物)與熱激活化延遲螢光材料做光物理與電性上的分析,並進一步地製作出高效率的有機發光元件。
首先論文的第一部分,利用雙三牙配位銥金屬錯合物在光物理的分析,我們得知這一系列RGB的材料具有90%以上的量子效率(PLQY),接著個別製成元件,其元件外部量子效率(EQE)皆有27%以上,甚至綠光元件更可達到31%。另外利用RGB不同波長的摻雜材料混和出各種色溫的白光元件,這些元件外部量子效率皆有25~26%。
第二部分接續磷光材料的研究,目前藍光磷光元件有著壽命短、波長不夠短等缺點,於是我們利用新穎的銥金屬錯合物材料(MS 2、MS 17、MS19)製作出高效率的藍光元件。因為這些材料在光物理的分析上具有將近100%的量子效率,並且發光層有76%左右的水平電偶極矩,因此藍光元件外部量子效率可達到31%。另外在元件可靠度的測試上,新穎的銥金屬錯合物材料的元件壽命(LT50)比起一般常用的FIrpic材料還來的長很多。
論文的最後部分,我們分析DMAC-TRZ這一分子單重態最低能階與三重態最低能階之間的能隙小至46meV,具有非常顯著的熱激活化延遲螢光現象,將其應用在OLED元件作為發光材料,最大外部量子效率可達26%,其表現足以媲美現今市售磷光有機發光二極體。此外,若應用於非摻雜式有機發光元件,元件最大外部量子效率可達到20%。
Organic light-emitting diodes (OLEDs) have attracted much attention due to their potential for future display and lighting applications. To enhance OLED performances and reduce cost for displays and lighting, we focused on the investigation of high-efficiency organic light-emitting materials in this thesis.
In the first part of this thesis, a new class of neutral bis-tridentate Ir(III) metal complexes that show nearly unitary red, green, and blue emissions are employed for the fabrication of both monochrome and white emitting organic light-emitting diodes, among which greens can device gives the external quantum efficiency exceeding 31%.
In the second part, Ir(III) complexes incorporating diazine-containing cyclometalating ligands are highly promising blue phosphorescent emitters having nearly unitary PLQYs and preferential horizontal emitting dipole orientations. Using these Ir complexes, we obtained efficient blue phosphorescent OLEDs with external quantum efficiency (EQE) exceeding 31%, small efficiency roll-off, and long operation lifetimes.
Finally, a thermally activated delayed fluorescent (TADF) emitter (DMAC-TRZ) was used either as the emitting dopant in a host or as the non-doped (neat) emitting layer to achieve high EL EQEs of up to 26.5% and 20% in OLEDs, respectively.
中文摘要 i
ABSTRACT ii
CONTENTS iii
LIST OF TABLES vi
LIST OF FIGURES vii
Chapter 1 Introduction
1.1 Overview of Organic Light-Emitting Devices 1
1.2 Organic light-emitting materials for OLEDs 3
1.3 Thesis Organization 5
Reference 6
Chapter 2 Achieving EQE Exceeding 31% in OLEDs Using Bis-Tridentate Ir(III) Complexes with Nearly Unitary RGB Phosphorescence
2.1 Introduction 8
2.2 Methods 9
2.2.1 Materials 9
2.2.2 Photophysical characteristics 9
2.2.3 Device fabrication and characteristics 10
2.3 Results and Discussions 12
2.4 Summary 17
References 18
Tables and Figures 20

Chapter 3 Iridium Complexes Having Phenyl-pyrimidine Cyclometalating Ligands for Efficient Blue Phosphorescent Organic Light Emitting Devices with Low Efficiency Roll-off and Long Operating Lifetimes
3.1 Introduction 35
3.2 Methods 37
3.2.1 Materials 37
3.2.2 Photophysical characteristics 37
3.2.3 Device fabrication and characteristics 38
3.3 Results and Discussions 40
3.4 Summary 48
References 49
Tables and Figures 53
Chapter 4 Versatile Thermally Activated Delayed Fluorescence Emitter for Both Highly Efficient Doped and Non-Doped Organic Light Emitting Devices
4.1 Introduction 63
4.2 Methods 65
4.2.1 Materials 65
4.2.2 Photophysical characteristics 65
4.2.3 Device fabrication and characteristics 66
4.3 Results and Discussions 68
4.4 Summary 74
References 75
Tables and Figures 75
Chapter 5 Summary
5.1 Summary 90
Chapter1
[1] M. Pope, H. Kallmann, and P. Magnante, J. Chem. Phys., 38, 2042, 1963.
[2] W. Helfrich and W. G. Schneider, Phys. Rev. Lett., 14, 229, 1965.
[3] C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913, 1987.
[4] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature, 347, 539, 1990.
[5] C. C. Wu, C. W. Chen, C. L. Lin, and C. J. Yang, J. Disp. Technol., 1, 248, 2005.
[6] B. W. D’ Andrade and S. R. Forrest, Adv. Mater., 16, 1585, 2004.
[7] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature, 395, 151-154, 1998.
[8] Y. Kawamura, K. Goushi, J. Brooks, J.J. Brown, H. Sasabe, and C. Adachi, Appl. Phys. Lett., 86, 071104, 2005.
[9] Y. L. Tung, S. W. Lee, Y. Chi, Y. T. Tao, C. H. Chien, Y. M. Cheng, P. T. Chou, S. M. Peng, and C. S. Liu, J. Mater. Chem., 15, 460-464, 2005.
[10] D. Tanaka, H. Sasabe, Y. J. Li, S. J. Su, T. Takeda, and J. Kido, Jpn. J. Appl. Phys., 46, L10-L12, 2007.
[11] J. C. Deaton, S. C. Switalski, D. Y. Kondakov, R. H. Young, T. D. Pawlik, D. J. Giesen, S. F. Mickenberg, and J. C. Peters, J. Am. Chem. Soc., 132, 9499–9508, 2010.
[12]O. Bolton, K. Lee, H. J. Kim, K. Y. Lin, and J. Kim, Nature Chem., 3, 205–210, 2011.
[13] D. Y. Kondakov, T. D. Pawlik, T. K. Hatwar, and J. P. Spindler, J. Appl. Phys., 106, 124510, 2009.
[14] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, Nature, 492, 234, 2012.
[15] G. Mehes, H. Nomura, Q. Zhang, T. Nakagawa, and C. Adachi, Angew. Chem. Int. Ed., 51, 11311, 2012.
[16] Q. Zhang, J. Li, K. Shizu, S. Huang, S. Hirata, H. Miyazaki, and C. Adachi, J. Am. Chem. Soc., 134, 14706, 2012.
[17] J. Li, T. Nakagawa, J. MacDonald, Q. Zhang, H. Nomura, H. Miyazaki, and C. Adachi, Adv. Mater., 2013, 25, 3319, 2013.
[18] F. B. Dias, K. N. Bourdakos, V. Jankus, K. C. Moss, K. T. Kamtekar, V. Bhalla, J. Santos, M. R. Bryce, and A. P. Monkman, Adv. Mater., 25, 3707, 2013.
[19] Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, Nat. Photon., 8, 325, 2014.
[20] H. Wang, L. Xie, Q. Peng, L. Meng, Y. Wang, Y. Yi, and P. Wang, Adv. Mater., 26, 5198, 2014.
[21] Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, and W. Huang, Adv. Mater., 26, 7931, 2014.
[22] R. Czerwieniec, K. Kowalski, and H. Yersin, Dalton Trans., 42, 9826, 2013.
[23] R. Czerwieniec, J. B. Yu, and H. Yersin, Inorg. Chem., 50, 8293, 2011.

chapter2
[1] a) V. W. W. Yam and K. M. C. Wong, Chem. Commun., 47, 11579, 2011. b) G. Zhou,
W. Y. Wong and X. Yang, Chem. Asian J., 6, 1706, 2011. c) K. S. Yook and J. Y. Lee, Adv. Mater., 24, 3169, 2012. d) H. Sasabe, J. Kido, and Eur. J. Org. Chem., 2013, 7653, 2013. e) Y. Chi, B. Tong, and P. T. Chou, Coord. Chem. Rev., 281, 1, 2014. f) X. Yang, X. Xu, and G. Zhou, J. Mater. Chem. C, 3, 913, 2015.
[2] H. Yersin, A. F. Rausch, R. Czerwieniec, T. Hofbeck, and T. Fischer, Coord. Chem.
Rev., 255, 2622, 2011.
[3] M. S. Lin, S. J. Yang, H. W. Chang, Y. H. Huang, Y. T. Tsai, C. C. Wu, S. H. Chou, E. Mondal, and K. T. Wong, J. Mater. Chem., 22, 16114, 2012.
[4] a) D. Yokoyama, J. Mater. Chem., 21, 19187, 2011. b) K. H. Kim, S. Lee, C. K. Moon, S. Y. Kim, Y. S. Park, J. H. Lee, J. Woo Lee, J. Huh, Y. You, and J. J. Kim, Nat. Commun., 5, 4769, 2014. c) C. Mayr, S. Y. Lee, T. D. Schmidt, T. Yasuda, C. Adachi, and W. Brütting, Adv. Funct. Mater., 24, 5232, 2014. d) C. K. Moon, K. H. Kim, J. W. Lee, and J. J. Kim, Chem. Mater., 27, 2767, 2015.
[5] P. Liehm, C. Murawski, M. Furno, B. Lüssem, K. Leo, and M. C. Gather, Appl. Phys. Lett., 101, 253304, 2012.
[6] M. J. Jurow, C. Mayr, T. D. Schmidt, T. Lampe, P. I. Djurovich, W. Brutting, and M. E. Thompson, Nat. Mater., 15, 85-91, 2016.
[7] C. W. Chen, Y. J. Lu, C. C. Wu, E. H. E. Wu, C. W. Chu, and Y. Yang, Appl. Phys. Lett., 87, 241121, 2005.
[8] a) H. Sasabe, K. Minamoto, Y. J. Pu, M. Hirasawa, and J. Kido, Org. Electron., 13, 2615, 2012. b) T. Fleetham, J. Ecton, Z. Wang, N. Bakken, and J. Li, Adv. Mater., 25, 2573, 2013. c) C. W. Lee and J. Y. Lee, Adv. Mater., 25, 5450, 2013. d) Q. Wang, I. W. H. Oswald, X. Yang, G. Zhou, H. Jia, Q. Qiao, Y. Chen, J. Hoshikawa-Halbert, and B. E. Gnade, Adv. Mater., 26, 8107, 2014. e) D. Xia, B. Wang, B. Chen, S. Wang, B. Zhang, J. Ding, L. Wang, X. Jing, and F. Wang, Angew. Chem. Int. Ed., 53, 1048, 2014. f) Y. Wang, S. Wang, N. Zhao, B. Gao, S. Shao, J. Ding, L. Wang, X. Jing, and F. Wang, Polym. Chem., 6, 1180, 2015.

chapter3
[1] T. Duan, T. K. Chang, Y. Chi, J. Y. Wang, Z. N. Chen, W. Y. Hung, C. H. Chen, and G. H. Lee Dalton Trans., 44, 14613, 2015.
[2] T. Y. Li, X. Liang, L. Zhou, C. Wu, S. Zhang, X. Liu, G. Z. Lu, L. S. Xue, Y. X. Zheng, and J. L. Zuo. Inorg. Chem., 54, 161, 2015.
[3] a) C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson, and S. R. Forrest, Appl. Phys Lett., 79, 2082, 2001. b) H. R. Park, Y. Y. Yi, and Y. Ha, Molecular Crystals and Liquid Crystals, 567, 156, 2012. c) S. Y. Ahn and Y. Ha, Molecular Crystals and Liquid Crystals, 504, 59, 2009. d) T. Sajoto, P. I. Djurovich, A. B. Tamayo, J. Oxgaard, W. A. Goddard III, and M. E. Thompson, J. Am. Chem. Soc., 131, 9813, 2009. e) A. F. Rausch, M. E. Thompson, and H. Yersin. Inorg. Chem., 48, 1928, 2009. f) H. R. Park, D. H. Lim, Y. K. Kim, and Y. Ha, Journal of Nanoscience and Nanotechnology, 12, 668, 2012. g) A. B. Tamayo, S. Garon, T. Sajoto, P. I. Djurovich, I. M. Tsyba, R. Bau, and M. E. Thompson Inorg. Chem., 44, 8723, 2005. h) C. H. Chang, C. C. Chen, C. C. Wu, C. H. Yang, and Y. Chi, Organic Electronics, 10, 1364, 2009. i) S. J. Yeh, M. F, Wu, C, T. Chen, Y. H. Song, Y. Chi, M. H., Ho, S. F. Hsu, and C.H. Chen Adv. Mater., 17, 285, 2005. j) C. H. Yang, Y. M. Cheng, Y. Chi, C. J. Hsu, F. C. Fang, K. T. Wong, P. T. Chou, C. H. Chang, M. H. Tsai, and C. C. Wu Angew. Chem. Int. Ed., 46, 2418, 2007. k) C. H. Yang, S. W. Li, and Y. Chi, Inorg. Chem., 44, 7770, 2005. l) Y. Chi and P. T. Chou, Chem. Soc. Rev., 39, 638, 2010. m) M. J. Jurow, C. Mayr, T. D. Schmidt, T. Lampe, P. I. Djurovich, W. Brütting, and M. E. Thompson, Nature, 15, 85, 2016.
[4] L. Ding, S. C. Dong, Z. Q. Jiang, H. Chen, and L. S. Liao Adv. Funct. Mater., 25, 645, 2015.
[5] a) C. D. Sunesh, K. Shanmugasundaram, M. S. Subeesh, R. K. Chitumalla, J. Jang, and Y. Choe, ACS Appl. Mater. Interfaces, 7, 7741, 2015 (b) S. Lamansky, P. Djurovich, D. Murphy, F. A. Razzaq, H. E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest, and M. E. Thompson, J. Am. Chem. Soc., 123, 4304, 2001.
[6] a) M. S. Lin, S. J. Yang, H. W. Chang, Y. H. Huang, Y. T. Tsai, C. C. Wu, S. H. Chou, E. Mondal, and K. T. Wong, J. Mater. Chem., 22, 16114, 2012.
[7] a) J. S. Kim, P. K. H. Ho, N. C. Greenham, and R. H. Friend, J. Appl. Phys., 88, 1073, 2000 . b) P. K. H. Ho, J. S. Kim, J. H. Burroughes, H. Becker, S. F. Y. Li, T. M. Brown, F. Cacialli, and R. H. Friend, Nature, 404, 481, 2000. c) L. H. Smith, J. A. E. Wasey, I. D. W. Samuel, W. L. Barnes , Adv. Funct. Mater., 15, 1839, 2005. d) J. M. Ziebarth and M. D. McGehee, J. Appl. Phys., 97, 064502, 2005. e) M. Flämmich, M. C. Gather, N. Danz, D. Michaelis, A. H. Brauer, K. Meerholz, and A. Tunnermann, Org. Electron., 11, 1039, 2010. f) H. W. Lin, C. L. Lin, H. H. Chag, Y. T. Lin, C. C. Wu, Y. M. Chen, R. T. Chen, Y. Y. Chien, and K. T. Wong, J. Appl. Phys., 95, 881, 2004. g) H. W. Lin, C. L. Lin, C. C. Wu, T. C. Chao, and K. T. Wong, Org. Electron., 8, 189, 2007. h) D. Yokoyama, A. Sakaguchi, M. Suzuki, and C. Adachi, Org. Electron., 10, 127, 2009. i) D. Yokoyama, H. Sasabe, Y. Furukawa, C. Adachi, and J. Kido, Adv. Funct. Mater., 21, 2011, 1375. j) J. Frischeisen, D. Yokoyama, A. Endo, C. Adachi, and W. Brütting, Org.Electron., 12 , 809, 2011. k) M. Flämmich, J. Frischeisen, D. S. Setz, D. Michaelis, B. C. Krummacher, T. D. Schmidt, W. Brütting, and N. Danz, Org. Electron., 12, 1663, 2011. l) T. D. Schmidt, D. S. Setz, M. Flämmich, J. Frischeisen, D. Michaelis, B. C. Krummacher, N. Danz, and W. Brütting, Appl. Phys. Lett., 99, 163302, 2011. m) L. Penninck, F. Steinbacher, R. Krause, and K. Neyts, Org. Electron., 13, 3079, 2012. n) P. Liehm, C. Murawski, M. Furno, B. Lüssem, K. Leo, and M. C. Gather, Appl. Phys. Lett., 25, 253304, 2012. o) W. Brütting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, and C. Mayr, Phys. Status Solidi A, 210, 44, 2013. p) S. Y. Kim, W. I. Jeong, C. Mayr, Y. S. Park, K. H. Kim, J. H. Lee , C. K. Moon, W. Brütting, and J. J. Kim Adv. Funct. Mater., 23, 3896, 2013.
[8] a) L. Xiao, S. J. Su, Y. Agata, H. Lan, and J. Kido, Adv. Mater., 21, 1271, 2009. b) D. Tanaka, T. Takeda, T. Chiba, S. Watanabe, and J. Kido, Chem. Lett., 36, 262, 2007. c) M. S. Lin, S.-J. Yang, H. W. Chang, Y. H. Huang, Y. T. Tsai, C. C. Wu, S. H. Chou, E. Mondal, and K. T. Wong, J. Mater. Chem., 22, 16114, 2012. d) C. C. Wu, Y. T. Lin, K. T. Wong, R. T. Chen, and Y. Y. Chien, Adv. Mater., 16, 61–65, 2004. e) D. Liu, H. Ren, L. Deng, and T. Zhang, ACS Appl. Mater. Interfaces, 5, 4937, 2013.
[9] a) L. S. Cui, Y. Liu, X. Y. Liu, Z. Q. Jiang, and L. S. Liao, ACS Appl. Mater. Interfaces, 7, 11007−11014, 2015. b) B. Tong, Q. Mei, D. Chen, M. Lu, Synth. Met., 162, 1701, 2012.

chapter4
[1] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, M. E. Thompson, and S. R. Forrest, Nature, 395, 151-154, 1998.
[2] C. Fan and C. Yang, Chem. Soc. Rev., 43, 6439-6469, 2014.
[3] S. Gong, Y. Chen, J. Luo, C. Yang, C. Zhong, J. Qin, and D. Ma, Adv. Funct. Mater., 21, 1168-1178, 2011.
[4] A. Endo, M. Ogasawara, A. Takahashi, D. Yokoyama, Y. Kato, and C. Adachi, Adv. Mater., 21, 4802-4806, 2009.
[5] T. Nakagawa, S. Y. Ku, K. T. Wong, and C. Adachi, Chem. Commun., 48, 9580-9582, 2012.
[6] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, Nature., 492, 234-238, 2012.
[7] H. Tanaka, K. Shizu, H. Miyasaki, and C. Adachi, Chem. Commun., 48, 11392-11394, 2012.
[8] H. Wang, L. Xie, Q. Peng, L. Meng, Y. Wang, Y. Yi, and P. Wang, Adv. Mater., 26, 5198-5204, 2014.
[9] Q. Zhang, Bo. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, Nature Photonics, 8, 326-332, 2014.
[10] J. I. Nishide, H. Nakanotani, Y. Hiraga, and C. Adachi, Appl. Phys. Lett., 104, 233304, 2014.
[11] B. S. Kim and J. Y. Lee, Adv. Funct. Mater., 24, 3970-3977, 2014.
[12] C. C. Wu, Y. T. Lin, K. T. Wong, R. T. Chen, and Y. Y. Chien, Adv. Mater., 16, 61-65, 2004.
[13] Q. Wang, L. W. H. Oswald, X. Yang, G. Zhou, H. Jia, Q. Qiao, Y. Chen, J. Hoshikawa-Halbert, and B. E. Gnade, Adv. Mater., 26, 8107-8113, 2014.
[14] Q. Zhang, D. Tsang, H. Kuwabara, Y. Hatae, B. Li, T. Takahashi, Y. Lee, T. Yasuda, and C. Adachi, Adv. Mater., 27, 2096-2100, 2015.
[15] K. Albrecht, K. Matsuoka, K. Fujita, and K. Yamamoto, Angew. Chemie., 127, 5769-5774, 2015.
[16] M. S. Lin, S. J. Yang, H. W. Chang, Y. H. Huang, Y. T. Tsai, C. C. Wu, S. H. Chou, E. Mondal, and K. T. Wong, J. Mater. Chem., 22, 16114-16120, 2012.
[17] C. C. Wu, Y. T. Lin, K. T. Wong, R. T. Chen, and Y. Y. Chien, Adv. Mater., 16, 61-65, 2004.
[18] L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, and J. Kido, Adv. Mater., 23, 926-952, 2011.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top