跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/11 23:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾佩蓉
研究生(外文):Pei-Jung Chung
論文名稱:BMPR-IA結合蛋白BRAM1對EB病毒潛伏性膜蛋白一號之訊號傳遞所造成之影響
論文名稱(外文):BMPR-IA binding protein BRAM1 mediates the signal transduction of latent membrane protein 1 of Epstein-Barr virus
指導教授:孟慶樑
指導教授(外文):Ching-Liang Meng
學位類別:博士
校院名稱:國防醫學院
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:91
語文別:中文
論文頁數:116
中文關鍵詞:EB病毒潛伏性膜蛋白一號
外文關鍵詞:LMP1EBVBRAM1TNFRNFkBIkBIKKJNK
相關次數:
  • 被引用被引用:0
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Epstein-Barr病毒(EBV)是一種廣泛存在於人體的病毒,與人類數種惡性腫瘤相關,包括風土性巴克氏淋巴癌(Burkitt掇 lymphoma)、霍奇金氏症(Hodgkin掇 disease)、鼻咽癌(nasopharyngeal)及器官移植後淋巴癌(post-transplantation lymphoma)。只有少數病毒基因在腫瘤細胞中會表現,而其中潛伏性膜蛋白一號(LMP1)是潛伏性基因裡唯一典型的非淋巴細胞之致癌蛋白,它能使Rat-1纖維母細胞及NIH3T3細胞表現惡性轉型能力。LMP1是一種膜蛋白,已知與TNF接受器有部分相似,故LMP1的作用功能被認為是模擬持續活化之接受器,已知參與了細胞內數種訊號傳遞途徑。但在文獻中所瞭解之LMP1的數種結合分子對其致癌機制仍無法完全解釋,故本論文之標的是篩選出新的LMP1結合分子,希望由此增加對LMP1致癌機制之瞭解。
本論文中使用酵母菌雙雜交分析法以潛伏性膜蛋白一號之C端序列為餌,篩選出全新的LMP1的結合分子BRAM1,一BMP接受器一號之接合分子一號,並在生體內及生體外實驗上證明其皆具結合能力,加以免疫螢光染色及共軛焦顯微鏡觀察法之佐證,觀查發現其分布位置具有交集。進而以酵母菌雙雜交分析法來探究此二蛋白分別之結合區域,結果發現當BRAM1蛋白C端序列的MYND區域受到裁切或對LMP1 C端序列的CTAR2區域加以裁切破壞則兩蛋白結合能力消失,證明其結合區域正位於其上。而文獻中已知CTAR2區域對LMP1所造成之核蛋白NF-kB活化作用及JNK訊號傳遞具決定性地位。進而本論文證實BRAM1會干擾LMP1活化核蛋白NF-kB之作用,但對LMP1活化JNK訊號傳遞方面則不見影響。由於已知LMP1蛋白之CTAR2區域會和一TNF-a接受器結合死亡區域蛋白(TRADD)結合,所以本論文進而去瞭解BRAM1是否影響TNF-a的訊號傳遞途徑,結果證實對TNF-a所造成之核蛋白NF-kB活化作用及JNK訊號傳遞的確受BRAM1所干擾。進一步探究其作用机制,發現BRAM1會干擾TNF-a及LMP1所造成IkBa之磷酸化程度並延遲其崩解作用。另外,文獻中已知LMP1具有阻礙TNF-a所引發之細胞毒殺的能力,而BRAM1會干擾此項LMP1之能力。因此綜觀BRAM1對LMP1的功能而言,其應扮演一負向調節者角色。
Latent membrane protein 1 (LMP1), a major oncoprotein encoded by Epstein-Barr virus (EBV), has been shown to be involved in cellular signaling pathways. In this thesis, we tried to identify new targets of LMP1 signaling that may help to explain the role of LMP1 in non-lymphocyte cell transformation. Using yeast two-hybrid screening method with the C-terminal sequence of LMP1 as the bait, we found that BMP receptor-associated molecule 1 (BRAM1) associated with LMP1 in vitro and in vivo. This finding was supported by cotransfection experiments and examined by immunoassays and confocal microscopy. The association involves mainly the C-terminal half, the MYND domain, of BRAM1 and the CTAR2 region of LMP 1. The latter is critical for LMP1-mediated NF-kB and JNK signaling pathways, suggesting the role of BRAM1 in LMP1 signaling. To test this hypothesis, we examined the effect of BRAM1 on the induction of NF-kB and JNK activation by LMP1. We demonstrate that BRAM1 interferes with LMP1-mediated NF-kB activation in BALB/c3T3 cells. Since LMP1-induced NF-kB activation through the NIK-IKK-IkB pathway, we thus examined the protein level of total and phosphorylation form of IkBa in the presence and absence of BRAM1. The results indicated that BRAM1 decreased the phosphorylation of IkBa and delayed the degradation of total IkBa in the presence of LMP1. Since the CTAR2 region interacts with the TNF-a receptor-associated death domain protein (TRADD), it is interesting to find that BRAM1 also interferes with NF-kB activation mediated by TNF-a. Since the CTAR2 region of LMP1 is critical for LMP1-mediated JNK activation, we examined the effect of BRAM1 on the JNK activation mediated by LMP1, TNF-a treatment and overexpression of LTbR. We found that BRAM1 plays a role either in LTbR-mediated or in TNF-a mediated JNK activation but not in LMP1-mediated JNK activation. To further examine the role of BRAM1 in LMP1 signaling, we observed that BRAM1 disrupts the resistance of LMP1-expressing cells to TNF-a-induced cytotoxicity. Thus, we propose that BRAM1, a molecule uniquely associated with LMP1, functions as a negative regulator of LMP1-mediated biological functions.
1. Introduction圪圪圪圪圪圪圪?圪圪.圪圪?..圪..?
1.1 Discovery of Epstein-Barr virus (EBV)圪.圪圪.圪圪圪?.圪..1
1.2 Biology of EBV圪.圪圪.圪圪圪圪圪圪圪??..圪.1
1.2.1 General characteristics圪.圪圪.圪圪圪圪??圪圪1
1.2.2 Gene expression during latent infection圪圪圪..圪圪.圪?.2
1.2.3 Characteristics of latent gene products圪圪圪?圪圪?圪.3
1.2.3.a LMP1.圪圪.圪圪圪圪圪...圪圪圪???
1.2.3.b LMP2A, 2B?圪圪.圪圪?..圪......圪圪.圪.?
1.2.3.c EBNA1圪.圪圪.圪圪圪..圪圪.圪圪.圪...7
1.2.3.d EBNA2圪.圪圪.圪圪圪.圪圪圪圪.?...?
1.2.3.e EBNA3A, 3B, 3C圪?圪??圪?.圪?..圪圪?
1.2.3.f EBNA-LP圪.圪圪.圪圪..圪?.圪圪...???0
1.2.3.g EBERs圪.圪圪.圪圪圪???.圪??..圪.12
1.2.4 Induction of lytic infection圪.圪圪.圪圪.圪...圪圪.?2
1.3 EBV-associated malignancies圪.圪圪.圪圪?.圪?..圪圪.14
1.3.1 Burkitt掇 lymphoma圪.圪圪.圪圪圪圪.圪..圪??5
1.3.2 Nasopharyngeal carcinoma圪.圪圪.圪圪圪?圪圪?5
1.3.3 Hodgkin掇 disease圪.圪圪.圪圪圪圪?圪?.圪?6
1.3.4 T cell lymphoma圪.圪圪.圪圪圪圪圪圪圪...?.17
1.4 Characteristics of BMP receptor associated molecule 1 (BRAM1)圪圪?18
1.5 The specific aims of this thesis圪圪圪圪圪圪?圪..圪.?.21
2. Materials and methods圪圪圪圪?圪圪....圪.圪圪?.圪.23
3. Results圪圪圪圪圪圪圪?圪圪?..圪圪??圪.. 31
3.1 BRAM1 is an LMP1-interacting protein圪圪圪圪圪圪.圪?.31
3.2 The C-terminal 116-amino acid sequence of BRAM1 specifically interacts with the CTAR 2 region of LMP1圪圪圪圪圪圪圪圪..?.圪.32
3.3 Cellular localization of LMP1 and BRAM1圪圪圪?.圪圪...??3
3.4 BRAM1 associates with LMP1 in vitro圪圪圪圪圪圪圪.?...34
3.5 BRAM1 associates with LMP1 in vivo圪圪圪圪圪..圪??.....35
3.6 BRAM1 associates with TRADD圪圪圪..圪圪圪圪圪?..35
3.7 BRAM1 associates with LTbR圪圪圪圪..圪圪圪.圪圪...36
3.8 BRAM1 interferes with LMP1-mediated NF-kB activation圪圪圪圪.37
3.9 BRAM1 interferes with TNF-a-mediated NF-kB activation 圪?..圪圪37
3.10 The negative regulatory of BRAM1 involved in the TNF-a-mediated NF-kB activation is through the N-terminus of BRAM1圪圪圪?..圪.圪39
3.11 Analysis of NF-kB activity in gel shift assays圪圪圪圪圪?圪39
3.12 BRAM1 does not influence the LMP1-mediated JNK pathway圪圪??0
3.13 BRAM1 interferes with TNF-a-mediated JNK pathway圪圪?圪...?0
3.14 BRAM1 interferes with LTbR-mediated JNK pathway圪圪?圪.圪41
3.15 BRAM1 interferes with LMP1-mediated MAP kinase activation圪圪...?1
3.16 BRAM1 interferes with IkBa phosphorylation and delays its degradation induced by LMP1 and TNF-a in 3T3 cells圪圪圪圪圪?....圪42
3.17 BRAM1 interferes with TNF-a and TAK1-mediated IKK activation圪圪43
3.18 BRAM1 inhibits the resistance of LMP1-expressing cells to TNF-a-induced cytotoxicity.圪圪圪圪圪圪圪圪圪圪.圪圪圪44
3.19 BRAM1 interferes with LMP1-mediated iNOS expression in RNA level?.?5
3.20 BRAM1 is a serine residue phosphorylated protein圪圪圪圪圪?6
4. Discussion圪圪圪圪圪圪圪圪.圪圪圪圪圪圪...48
5. References圪圪圪圪圪圪圪圪?.圪圪圪?.圪...?5
6. Figures圪圪圪圪圪圪圪圪?圪圪圪圪?圪?. 75
7. Tables圪圪圪圪圪圪圪圪圪圪?圪.圪圪圪.. 115
Aasland, R., Gibson, T. J., & Stewart, A. F. (1995) The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem. Sci. 20: 56-59.
Alfieri, C., Birkenbach, M. & Kieff, E. (1991) Early events in Epstein-Barr virus infection of human B lymphocytes. Virology 181: 595-608.
Allan, G. J., Inman, G. J., Parker, B. D., Rowe, D.T. & Farrell, P. J. (1992) Cell growth effects of Epstein-Barr virus leader protein. J. Gen.Virol. 73: 1547-1551.
Allday, M. J., Crawford, D. H., & Thomas, J. A. (1993) Epstein-Barr virus (EBV) nuclear antigen 6 induces expression of the EBV latent membrane protein and an activated phenotype in Raji cells. J. Gen. Virol. 74: 361-369.
Ambinder, R. F., Shah, W. A., Rawlins, D. R., Hayward, G. S., & Hayward, S. D. (1990) Definition of the sequence requirements for binding of the EBNA-1 protein to its palindromic target sites in Epstein-Barr virus DNA. J. Virol. 64: 2369-2379.
Ambinder, R. F., Mullen, M. A., Chang, Y. N., Hayward, G. S., & Hayward, S. D. (1991) Functional domains of Epstein-Barr virus nuclear antigen EBNA-1. J. Virol. 65: 1466-1478.
Ambinder, R. F., Browning, P. J., Lorenzana, I., Leventhal, B. G., Cosenza, H., & Mann, R. B. (1993) Epstein-Barr virus and childhood Hodgkin掇 disease in Honduras and the United States. Blood 81: 642-647.
Ansieau, S. & Leutz, A. (2002) The conserved MYND domain of BS69 binds cellular and oncoviral proteins through a common PXLXP motif. J. Biol. Chem. 277: 4906-4910.
Armstrong, A. A., Alexander, F. E., Cartwright, R., Angus, B., Krajewski, A. S., Wright, D. H., Brown, I., Lee, F., Kane, E., & Jarrett, R. F. (1998) Epstein-Barr virus and Hodgkin掇 disease: further evidence for the three disease hypothesis. Leukemia 12: 1272-1276.
Arrand, J. R., Rymo, L., Walsh, J. E., Bjorck, E., Lindahl, T., & Griffin, B. E. (1981) Molecular cloning of the complete Epstein-Barr virus genome as a set of overlapping restriction endonuclease fragments. Nucleic Acids Res. 9: 2999-3014.
Attisano, L. & Wrana, J. L. (1998) Mads and Smads in TGF-b signaling. Curr. Opin. Cell Biol. 10: 188-194.
Ayer, D. E., Lawrence, Q. A., & Eisenman, R. N. (1995) Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 80: 767-776.
Baichwal, V. R., & Sugden, B. (1988) Transformation of BALB/c 3T3 cells by the BNLF-1 gene of Epstein-Barr virus. Oncogene 2: 461-467.
Biggin, M., Bodescot, M., Perricaudet, M., & Farrell, P. (1987) Epstein-Barr virus gene expression in P3HR1-superunfected Raji cells. J Virol. 61: 3120-3132.
Bornkamm, G. W., Polack, A., & Eick, D. (1988) 涄-myc deregulation by chromosomal translocation in BL.?Cellular oncogene activation (G. Klein, Ed.), New York.
Boyle, W. J., van der Geer, P., & Hunter, T. (1991) Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol. 201: 110-149.
Brooks, L., Yao, Q. Y., Rickinson, A. B., & Young, L. S. (1992) Epstein-Barr virus latent gene transcription in nasopharyngeal carcinoma cells: coexpression of EBNA1, LMP1, and LMP2 transcripts. J. Virol. 66: 2689-2697.
Burkhardt, A. L., Bolen, J. B., Kieff, E., & Longnecker, R. (1992) An Epstein-Barr virus transformation-associated membrane protein interacts with src family tyrosine kinases. J. Virol. 66: 5161-5167.
Burkitt, D. (1958) A sarcoma involving the jaws in African children. Brit. J Surg. 45: 218-223.
Burkitt, D. (1962) A children''s cancer dependent upon climatic factors. Nature 194: 232-234.
Caldenhoven, E., Liden, J., Wissink, S., Van de Stolpe, A., Raaijmakers, J., Koenderman, L., Okret, S., Gustafsson, J. A., & Van der Saag, P. T. (1995) Negative cross-talk between RelA and the glucocorticoid receptor: a possible mechanism for the anti-inflammatory action of glucocorticoids. Mol. Endocrinol. 9: 401-412.
Chan, W. H., Yu, J. S. & Tang, S. D. (2000) Apoptotic signaling cascade in photosensitized human epidermal carcinoma A431 cells: involvement of singlet oxygen, c-Jun N-terminal kinase, caspase-3 and p21-activated kinase 2. Biochem J. 351: 221-232.
Chang, Y. N., Dong, D. L., Hayward, G. S., & Hayward, S. D. (1990) The Epstein-Barr virus Zta transactivator: a member of the bZIP family with unique DNA-binding specificity and a dimerization domain that lacks the characteristic heptad leucine zipper motif. J. Virol. 64: 3358-3369.
Chang, Y. S., Su, I. J., Chung, P. J., Shu, C. H., Ng, C. K., Wu, S. J., & Liu, S. T. (1995) Detection of an Epstein-Barr virus variant in T-cell-lymphoma tissues identical to the distinct strain observed in nasopharyngeal carcinoma in the Taiwanese population. Int. J. Cancer 62: 673-677.
Chen, H., Lee, J. M., Wang, Y., Huang, D. P., Ambinder, R. F., & Hayward, S. D. (1999a) The Epstein-Barr virus latency BamHI-Q promoter is positively regulated by STATs and Zta interference with JAK/STAT activation leads to loss of BamHI-Q promoter activity. Proc. Natl. Acad. Sci. USA 96: 9339-9344.
Chen, M. L., Tsai, C. N., Liang, C. L., Shu, C. H., Huang, C. R., Sulitzeanu, D., Liu, S. T., & Chang, Y. S. (1992) Cloning and characterization of the latent membrane protein (LMP) of a specific Epstein-Barr virus variant derived from the nasopharyngeal carcinoma in the Taiwanese population. Oncogene 7: 2131-2140.
Chevallier-Greco, A., Manet, E., Chavrier, P., Mosnier, C., Daillie, J., & Sergeant, A. (1986) Both Epstein-Barr virus(EBV)-encoded trans-acting factors, EB1 and EB2, are required to activate transcription from an EBV early promoter. EMBO J. 5: 3243-3249.
Cohen, J. I., Wang, F., & Kieff, E. (1991) Epstein-Barr virus nuclear protein 2 mutations define essential domains for transformation and transactivation. J. Virol. 65: 2545-2554.
Cohen, J. I., Wang, F., Mannick, J., & Kieff, E. (1989) Epstein-Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proc. Natl. Acad. Sci. USA 86: 9558-9562.
Countryman, J., Jenson, H., Seibl, R., Wolf, H., & Miller, G. (1987) Polymorphic proteins encoded within BZLF1 of defective and standard Epstein-Barr viruses disrupt latency. J. Virol. 61: 3672-3679.
Cox, M. A., Leahy, J., & Hardwick, J. M. (1990) An enhancer within the divergent promoter of Epstein-Barr virus responds synergistically to the R and Z transactivators. J. Virol. 64: 313-321.
Dambaugh, T., Beise, C., & Hummel, M. (1980) Epstein-Barr virus DNA. VII. Molecular cloning and detailed mapping of Epstein-Barr virus (B95-8) DNA. Proc. Natl. Acad. Sci. USA 77: 2999-3003.
Delhase, M., Hayakawa, M., Chen, Y., & Karin, M. (1999) Positive and negative regulation of IkappaB kinase activity through IKK beta subunit phosphorylation. Science 284: 309-313.
Derynck, R., Zhang, Y. & Feng, X. H. (1998) Smads: transcriptional activators of TGF-b responses. Cell 95: 737-740.
Desgranges, C., Wolf, H., De-The, G., Shammugaratnam, K., Eliouz, R., Cammoun, N., Klein, G., Lennert, M., & zur Hausen, H. (1975) Nasopharyngeal carcinoma: presence of Epstein-Barr virus genome in epithelial cells of tumors from high and medium-risk areas. Int. J. Cancer 16: 7-15.
Devergne, O., Hatzivassiliou, E., Izumi, K. M., Kaye, K. M., Kleijnen, M. F. Kieff, E., & Mosialos, G. (1996) Association of TRAF1, TRAF2, and TRAF3 with an Epstein-Barr virus LMP1 domain important for B-lymphocyte transformation: role in NF-kB activation. Mol. Cell Biol. 16: 7098-7108.
DiDonato, J. A., Hayakawa, M., Rothwarf, D. M., Zandi, E. & Karin, M. (1995) A cytokine-responsive IkB kinase that activates the transcription factor NF-kB. Nature 388: 538-554.
DiDonato, J. A., Mercurio, F., Karin, M. (1995) Phosphorylation of I kappa B alpha precedes but is not sufficient for its dissociation from NF-kappa B. Mol. Cell Biol. 15: 1302-1311.
di Renzo, L., Altiok, A., Klein, G., & Klein, E. (1994) Endogenous TGF-beta contributes to the induction of the EBV lytic cycle in two Burkitt lymphoma cell lines. Int. J. Cancer 57: 914-919.
Dolyniuk, M., Pritchett, R., & Kieff, E. (1976a) Proteins of Epstein-Barr virus. I. Analysis of the polypeptides of purified enveloped Epstein-Barr virus. J. Virol. 17: 935-949.
Dolyniuk, M., Wolff, E., & Kieff, E. D. (1976b) Proteins of Epstein-Barr virus. II. Electrophoretic analysis of the polypeptides of the nucleocapsid and the glucosamine- and polysaccharide-containing components of enveloped virus. J. Virol. 18: 289-297.
Duckett, C. S., Gedrich, R. W., Gilfillan, M. C. & Thompson, C. B. (1997) Induction of nuclear factor kB by the CD30 receptor is mediated by TRAF1 and TRAF2. Mol. Cell Biol. 17: 1535-1542.
Elbashir, S. M., (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411: 494-498.
Eliopoulos, A. G., Stack, M., Dawson, C. W., Kaye, K. M., Hodgkin, L., Sihota, S., Rowe, M., & Young, L. S. (1997) Epstein-Barr virus-encoded LMP1 and CD40 mediate IL-6 production in epithelial cells via an NF-kB pathway involving TNF receptor-associated factors. Oncogene 14: 2899-2916.
Eliopoulos, A. G., & Rickinson, A. B. (1998) Epstein-Barr virus: LMP1 masque-rades as an active receptor. Curr. Biol. 12: R196-198.
Eliopoulos, A. G., & Young, L. S. (1998) Activation of the cJun N-terminal kinase (JNK) pathway by the Epstein-Barr virus-encoded latent membrane protein 1 (LMP1). Oncogene 16: 1731-1742.
Eliopoulos, A.G., Blake, S.M.S., Floettmann, J.E., Rowe, M., & Young, L.S. (1999) Epstein-Barr virus-encoded latent membrane protein 1 activates the JNK pathway through its extreme C terminus via a mechanism involving TRADD and TRAF2. J. Virol. 73: 1023-1035.
Eliopoulos, A. G., Gallagher, N. J., Blake, S. M. S., Dawson, C. W., & Young, L. S. (1999) Activation of the p38 mitogen-activated protein kinase pathway by Epstein-Barr virus-encoded latent membrane protein 1 coregulates interleukin-6 and interleukin-8 production. J. Biol. Chem. 274: 16085-16096.
Epstein, M. A., Achong, B. G., & Barr, Y. M. (1964) Virus particles in cultured lymphocytes from Burkitt''s lymphoma. Lancet 1: 702-703.
Epstein, M. A., & Barr, Y. M. (1964) Cultivation in vitro of human fibroblasts from Burkitt''s malignant lymphoma. Lancet 1: 252-253.
Epstein, M. A., Achong, B.G., & Barr, Y.M. (1965) Morphological and biological studies on a virus in cultured lymphoblasts from Burkitt''s lymphoma. J. Exp. Med. 121: 761-770.
Farrell, P. J., Bankier, A., Seguin, C., Deininger, P., & Barrell, B. G. (1983) Latent and lytic cycle promoters of the Epstein-Barr virus. EMBO J. 2: 1331-1338.
Farrell, P. J., Rowe, D. T., Rooney, C. M., & Kouzarides, T. (1989) Epstein-Barr virus BZLF1 trans-activator specifically binds to a consensus AP-1 site and is related to c-fos. EMBO J. 8: 127-132.
Finke, J., Rowe, M., Kallin, B., Ernberg, I., Rosen, A., Dillner, J., & Klein, G. (1987) Monoclonal and polyclonal antibodies against Epstein-Barr virus nuclear antigen 5 (EBNA-5) detect multiple protein species in Burkitt掇 lymphoma and lymphoblastoid cell lines. J. Virol. 61: 3870-3878.
Flemington, E., & Speck, S. H. (1990a) Autoregulation of Epstein-Barr virus putative lytic switch gene BZLF1. J. Virol. 64: 1227-1232.
Flemington, E., & Speck, S. H. (1990b) Identification of phorbol ester response elements in the promoter of Epstein-Barr virus putative lytic switch gene BZLF1. J. Virol. 64: 1217-1226.
Frech, B., Zimber-Strobl, U., Suentzenich, K. O., Pavlish, O., Lenoir, G. M., Bornkamm, G. W., & Mueller-Lantzsch, N. (1990) Identification of Epstein-Barr virus terminal protein 1 (TP1) in extracts of four lymphoid cell lines, expression in insect cells, and detection of antibodies in human sera. J. Virol. 64: 2759-2767.
Fries, K. L., Miller, W.E., & Raab-Traub, N. (1999) the A20 protein interacts with the Epstein-Barr virus latent membrane protein (LMP1) and alters the LMP1/TRAF/ TRADD complex. Virology 264: 159-166.
Gahn, T. A., & Sugden, B. (1995) An EBNA-1-dependent enhancer acts from a distance of 10 kilobase pairs to increase expression of the Epstein-Barr virus LMP gene. J. Virol. 69: 2633-2636.
Gallagher, A., Perry, J., Shield, L., Freeland, J., Mackenzie, J., & Jarrett, R. F. (2002) Viruses and Hodgkin disease: no evidence of novel herpesviruses in non-EBV-associated lesions. Int. J. Cancer 101: 259-264.
Gires, O., Zimber-Strobl, U., Gonnella, R., Ueffing, M., Marschall, G., Zeidler, R., Pich, D., & Hammerschmidt, W. (1997) Latent membrane protein 1 of Epstein-Barr virus mimics a constitutively active receptor molecule. EMBO J. 16: 6131-6140.
Given, D., Yee, D., Griem, K., & Kieff, E. (1979) DNA of Epstein-Barr virus. V. Direct repeats of the ends of Epstein-Barr virus DNA. J. Virol. 30: 852-862.
Grogan, E. A., Summers, W. P., Dowling, S., Shedd, D., Gradoville, L., & Miller, G. (1983) Two Epstein-Barr viral nuclear neoantigens distinguished by gene transfer, serology, and chromosome binding. Proc. Natl. Acad. Sci. USA 80: 7650-7653.
Grogan, E., Jenson, H., Countryman, J., Heston, L., Gradoville, L., & Miller, G. (1987) Transfection of a rearranged viral DNA fragment, Wzhet, stably converts latent Epstein-Barr viral infection to productive infection in lymphoid cells. Proc. Natl. Acad. Sci. USA 84: 1332-1336.
Gross, C. T., & McGinnis, W. (1996) DEAF-1, a novel protein that binds an essential region in a deformed response element. EMBO J. 15: 1961-1970.
Gruffat, H., Duran, N., Buisson, M., Wild, F., Buckland, R., & Sergeant, A. (1992) Characterization of an R-binding site mediating the R-induced activation of the Epstein-Barr virus BMLF1 promoter. J. Virol. 66: 46-52.
Guan, M., Romano, G., & Henderson, E. E. (1999) Epstein-Barr virus (EBV)-induced long-term proliferation of CD4+ lymphocytes leading to T lymphoblastoid cell lines carrying EBV. Anticancer Res. 19: 3007-3018.
Gutensohn, N., & Cole, P. (1980) Epidemiology of Hodgkin''s disease. Semin. Oncol. 7: 92-102.
Guttridge, D. C., Albanese, C., Reuther, J. Y., Pestell, R. G., & Baldwin, A. S. (1999) NF-kB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol. Cell Biol. 19: 5785-5799.
Hailstones, D., & Gunning, P. (1994) Regulation of nonmuscle myosin light chain 3 gene expression in response to exogenous MLC3nm mRNA. Cell. Mol. Biol. Res. 40: 53-62.
Hammerschmidt, W., & Sugden, B. (1989) Genetic analysis of immortalizing function of Epstein-Barr virus in human B lymphocytes. Nature 340: 393-397.
Han, I., Harada, S., Weaver, D., Xue, Y., Lane, W., Orstavik, S., Skalhegg, B., & Kieff, E. (2001) EBNA-LP associates with cellular protein including DNA-PK and HA95. J. Virol. 75: 2475-2481.
Harada, S. & Kieff, E. (1997) Epstein-Barr virus nuclear protein LP stimulates EBNA-2 acidic domain-mediated transcriptional activation. J. Virol. 71: 6611-6618.
Hardwick, J. M., Lieberman, P. M., & Hayward, S. D. (1988) A new Epstein-Barr virus transactivator, R, induces expression of a cytoplasmic early antigen. J. Virol. 62: 2274-2284.
Hateboer, G., Gennissen, A., Ramos, Y. F. M., Kerkhoven, R. M., Sonntag-Buck, V., Stunnenberg, H. G., & Bernards, R. (1995) BS69, a novel adenovirus E1A-asssociated protein that inhibits E1A transctivation. EMBO J. 14: 3159-3169.
Hatfull, G., Bankier, A. T., Barrell, B. G., & Farrell, P. J. (1988) Sequence analysis of Raji Epstein-Barr virus DNA. Virology 164: 334-340.
Hayward, S. D., Nogee, D. L., & Hayward, G. S. (1980) Organization of repeated regions within the Epstein-Barr virus DNA molecule. J. Virol. 33: 507-521.
He, Z., Xin, B., Yang, X., Chan, C., & Cao, L. (2000) Nuclear factor-kappaB activation is involved in LMP1-mediated transformation and tumorigenesis of rat-1 fibroblasts. Cancer Res. 60: 1845-1848.
Heldin, C.H., Miyazono, K., & ten Dijke, P. (1997) TGF-b signaling from cell membrane to nucleus through SMAD proteins. Nature 390: 465-471.
Henle, G., & Henle, W. (1966) Immunofluorescence in cells derived from Burkitt''s lymphoma. J. Bacteriol. 91: 1248-1256.
Henle, W., & Henle, G. (1979) 浿eroepidermiology of the virus.In.? The Epstein-Barr virus (Epstein, M.A., and A. BG., Eds.) Spring-Verlag, Berlin.
Herrero, J.A., Mathew, P., & Paya, C. V. (1995) LMP-1 activates NF-kB by targeting the inhibitory molecule IkBa. J. Virol. 69: 2168-2174.
Hinz, M. D., Krappmann, D., Eichten, A., Heder, A., Scheidereit, C., & Strauss, M. (1999) NF-kB function in growth control: regulation of cyclinD1 expression and G0/G1-to-S-phase transition. Mol. Cell Biol. 19, 2690-2698.
Howe, J. G., & Steitz, J. A. (1986) Localization of Epstein-Barr virus-encoded small RNAs by in situ hybridization. Proc. Natl. Acad. Sci. USA 83: 9006-9010.
Hsieh, J. J. & Hayward, S. D. (1995) Masking of the CBF1/RBPJ kappa transcriptional repression domain by Epstein-Barr virus EBNA2. Science 268: 560-563.
Hsu, H., Xiong, J. & Goeddel, D. V. (1995) The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 81: 495-504.
Hsu, H., Shu, H. B., Pan, M. G. & Goeddel, D. V. (1996) TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signaling transduction pathways. Cell 84: 299-308.
Huen, D. S., Henderson, S. A., Croom-Carter, D. & Rowe, M. (1995) The Epstein-Barr virus latent membrane protein-1 (LMP1) mediates activation of NF-kB and cell surface phenotype via two effector regions in its carboxy-terminal cytoplasmic domain. Oncogene 10: 549-560.
Izumi, K. M., Mcfarland, E. C., Ting, A. T., Riley, E. A., Seed, B., & Kieff, E. (1999) The Epstein-Barr virus oncoprotein latent membrane protein 1 engages the tumor necrosis factor receptor-associated proteins TRADD and receptor-interacting protein (RIP) but does not induce apoptosis or require RIP for NF-kB activation. Mol. Cell Biol. 19: 5759-5767.
Jaattela, M., Mouritzen, H., Elling, F., & Bastholm, L. (1996) A20 zinc finger protein inhibits TNF and IL-1 signaling. J. Immunol. 156: 1166-1173.
Janowski, B. A., Willy, P. J., Devi, T. R., Flack, J. R., & Mangelsdort, D. J. (1996) An oxysterol signaling pathway mediated by the nuclear receptor LXRa. Nature 383: 728-731.
Jarrett, R. F. (2002) Viruses and Hodgkin掇 lymphoma. Ann. Oncol. 13: 23-29.
Jiang, W. Q., Szekely, L., Wendel-Hansen, V., Ringertz, N., Klein, G., & Rosen, A. (1991) Co-localization of the retinoblastoma protein and the Epstein-Barr virus-encoded nuclear antigen EBNA-5. Exp. Cell Res. 197: 314-318.
Jiang, Y., Woronicz, J. D., Liu, W., & Goeddel, D. V. (1999) Prevention of constitutive TNF receptor 1 signaling by silencer of death domains. Science 283: 543-546.
Jones, J. F., Shurin, S., Abramowsky, C., Tubbs, R. R., Sciotto, C. G., Wahl, R., Sands, J., Gottman, D., Katz, B. Z., & Sklar, J. (1988) T-cell lymphomas containing Epstein-Barr viral DNA in patients with chronic Epstein-Barr virus infections. New Engl. J. Med. 318: 733-741.
Karin, M. & Delhase, D. (1998) JNK or IKK, AP-1 or NF-kB, which are the targets for MEK kinase 1 action? Proc. Natl. Acad. Sci. USA 95: 9067-9069.
Karin, M., & Ben-Neriah, Y. (2000) Phosphorylation meets ubiquitination: the control of NF-[kappa] B activity. Annu. Rev. Immunol. 18: 621-663.
Kawaguchi, Y., Nakajima, K., Igarashi, M., Morita, T., Tanaka, M., Suzuki, M., Yokoyama, A., Matsuda, G., Kato, K., Kanamori, M., & Hirai, K. (2000) Interaction of Epstein-Barr virus nuclear antigen leader protein (EBNA-LP) with HS1-associated protein X-1: implication of cytoplasmic function of EBNA-LP. J. Virol. 74: 10104-10111.
Kaye, K. M., Izumi, K. M., Mosialos, G., & Kieff, E. (1995) The Epstein-Barr virus LMP1 cytoplasmic carboxy terminus is essential for B-lymphocyte transformation; fibroblast cocultivation complements a critical function within the terminal 155 residues. J. Virol. 69: 675-683.
Kaye, K. M., Devergne, O., Harada, J. N., Izumi, K. M., Yalamanchili, R., Kieff, E. & Mosialos, G. (1996) Tumor necrosis factor associated factor 2 is a mediator of NF-kappa B activation by latent infection membrane protein 1, the Epstein-Barr virus transforming protein. Proc. Natl. Acad. Sci. USA 93: 11085-11090.
Kaykas, A., Worringer, K. & Sugden, B. (2001) CD40 and LMP-1 both signal from lipid rafts but LMP-1 assembles a distinct, more efficient signaling complex. EMBO J. 20: 2641-2654.
Keating, S., Prince, S., Jones, M., & Rowe, M. (2002) The lytic cycle of Epstein-Barr virus is associated with decreased expression of cell surface major histocompatibility complex class I and class II molecules. J. Virol. 76, 8179-8188.
Kelliher, M. A., Grimm, S., Ishida, Y., Kuo, F., Stanger, B. Z., & Leder, P. (1998) The death domain kinase RIP mediates the TNF-induced NF-kappa B signal. Immunity 8: 297-303.
Kerr, B. M., Lear, A. L., Rowe, M., Croom-Carter, D., Young, L. S., Rookes, S. M., Gallimore, P. H., & Rickinson, A. B. (1992) Three transcriptionally distinct forms of Epstein-Barr virus latency in somatic cell hybrids: cell phenotype dependence of virus promoter usage. Virology 187: 189-201.
Kieff, E., & Liebowitz, D. (1990) 浺pstein-Barr virus and its replication.?2nd ed. Fundamental Virology (B. Fields, and D. Knipe, Eds.) Raven Press, New York.
Kikuta, H., Taguchi, Y., Tomizawa, K., Kojima, K., Kawamura, N., Ishizaka, A., Sakiyama, Y., Matsumoto, S., Imai, S., & Kinoshita, T. (1988) Epstein-Barr virus genome positive T lymphocytes in a boy with chronic active EBV infection associated with Kawasaki-like disease. Nature 333: 455-457.
Kitay, M. K., & Rowe, D. T. (1996) Protein-protein interactions between Epstein-Barr virus nuclear antigen-LP and cellular gene products: binding of 70-kilodalton heat shock proteins. Virology 220: 91-99.
Kleinert, H., Euchenhofer, C., Ihrig-Biedert, I., & Forstermann, U. (1996) In murine 3T3 fibroblasts, different second messenger pathways resulting in the induction of NO synthase II (iNOS) converge in the activation of transcription factor NF-kappa B. J. Biol. Chem. 271:6039-6044.
Knutson, J. C. (1990) The level of c-fgr RNA is incresed by EBNA-2, an Epstein-Barr virus gene required for B-cell immortalization. J. Virol. 64: 2530-2536.
Komano, J., Maruo, S., Kurozumi, K., Oda, T., & Takada, K. (1999) Oncogenic role of Epstein-Barr virus-encoded RNAs in Burkitt''s lymphoma cell line Akata. J. Virol. 73: 9827-9831.
Kouzarides, T., Packham, G., Cook, A., & Farrell, P. J. (1991) The BZLF1 protein of EBV has a coiled coil dimerisation domain without a heptad leucine repeat but with homology to the C/EBP leucine zipper. Oncogene 6: 195-204.
Kurozumi, K., Nishita, M., Yamaguchi, K., Fujita, T., Ueno, N., & Shibuya, H. (1998) BRAM1, a BMP receptor-associated molecule involved in BMP signaling. Genes to Cells 3: 257-264.
La Rosa, F. A., Pierce, J. W., & Sonenshein, G. E. (1994) Differential regulation of the c-myc oncogene promoter by the NF-kB rel family transcription factors. Mol. Cell Biol. 14: 1039-1044.
Laherty, C. D., Hu, H. M., Opipari, A. W., Wang, F. & Dixit, V. M. (1992) The Epstein-Barr virus LMP1 gene product induces A20 zinc finger protein expression by activating nuclear factor kappa B. J. Biol. Chem. 267: 24157-24160.
Lanier, A. P., Bornkamm, G. W., Henle, W., Henle, G., Bender, T. R., Talbot, M. L., & Dohan, P. H. (1981) Association of Epstein-Barr virus with nasopharyn-geal carcinoma in Alaskan native patients: serum antibodies and tissue EBNA and DNA. Int. J. Cancer 28: 301-305.
Laux, G., Perricaudet, M., & Farrell, P. (1988) A spliced Epstein-Barr virus gene expressed in latently transformed lymphocytes is created by circularisation of the linear vfral genome. EMBO J. 7: 769-774.
Li, S. N., Chang, Y. S. & Liu, S. T (1996) Effect of a 10-amino acid deletion on the oncogenic activity of latent membrane protein 1 of Epstein-Barr virus. Oncogene 12: 2129-2135.
Li, Z. W., Chu, W., Hu, Y., Delhase, M., Deerinck, T., Ellisman, M., Johnson, R. & Karin, M. (1999) The IKK beta subunit of Ikappa B kinase (IKK) is essential for nuclear factor kappa B activation and prevention of apoptosis. J. Exp. Med. 189: 1839-1845.
Liang, C. L., Tsai, C. N., Chung, P. J., Chen, J. L., Sun, C. M., Chen, R. H., Hong, J. H., & Chang, Y. S. (2000) Transcription of Epstein-Barr virus-encoded nuclear antigen 1 promoter Qp is repressed by transforming growth factor-b via Smad4 binding element in human BL cells. Virology 277, 184-192.
Liang, C. L., Chen, J. L. Hsu, Y. P. P., Ou, J. T. & Chang, Y. S. (2002) Epstein-Barr virus BZLF1 gene is activated by transforming growth factor-b through cooperativity of Smads and c-Jun/c-Fos proteins. J. Biol. Chem. 277: 23345-23357.
Ling, L., Cao, Z., & Goeddel, D.V. (1998) NF-kappaB-inducing kinase activates IKK-alpha by phosphorylation of Ser-176. Proc. Natl. Acad. Sci. USA 95: 3792-3797.
Ling, P. D., Rawlins, D. R., & Hayward, S. D. (1993) The Epstein-Barr virus immortalizing protein EBNA-2 is targeted to DNA by a cellular enhancer-binding protein. Proc. Natl. Acad. Sci. USA 90: 9237-9241.
Liu, Z. G., Hsu, H., Goeddel, D. V., & Karin, M. (1996) Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappa B activation prevents cell death. Cell 87: 565-576.
Liu, S. M., Chow, K. C., Chiu, C. F., & Tseng, C. H. (1998) Expression of Epstein-Barr virus in patients with Hodgkin掇 disease in Taiwan. Cancer 83: 367-371.
Longnecker, R., & Kieff, E. (1990) A second Epstein-Barr virus membrane protein (LMP2) is expressed in latent infection and colocalizes with LMP1. J. Virol. 64: 2319-2326.
Longnecker, R., Druker, B., Roberts, T. M., & Kieff, E. (1991) An Epstein-Barr virus protein associated with cell growth transformation interacts with a tyrosine kinase. J Virol. 65: 3681-3692.
Longnecker, R. (2000) Epstein-Barr virus latency: LMP2, a regulator or means for Epstein-Barr virus persistence? Adv. Cancer 79: 175-200.
Luftig, M. A., Cahir-McFarland, E., Mosialos, G., & Kieff, E. (2001) Effects of the NIK aly mutation on NF-kB activation by the Epstein-Barr virus latent infection membrane protein, lymphotoxin b receptor, and CD 40 J. Biol. Chem. 276: 14602-14606.
Lutterbach, B., Sun, D., Schuetz, J. & Hiebert, S.W. (1998) The MYND motif is required for repression of basal transcription from the multidrug resistance 1 promoter by the t (8;21) fusion protein. Mol. Cell Biol. 18: 3604-3611.
Mackay, F., Majeau, G. R., Hochman, P. S., & Browning, J. L. (1996) Lymphotoxin beta receptor triggering induces activation of the nuclear factor kappaB transcription factor in some cell types. J. Biol. Chem. 271: 24934-24938.
Mann, K. P., Staunton, D. & Thorley-Lawson, D. A. (1985) Epstein-Barr virus-encoded protein found in plasma membranes of transformed cells. J. Virol. 55: 710-720.
Mannick, J., Cohen, J. I., Birkenback, M., Marchini, A. & Kieff, E. (1991) The Epstein-Barr virus nuclear protein encoded by the leader of the EBNA RNAs is important in B-lymphocyte transformation. J. Virol. 65: 6826-6837.
Mannick, J., Tong, X., Hemnes, A., & Kieff, E. (1995) The Epstein-Barr virus nuclear antigen leader protein associates with hsp72/hsc73. J. Virol. 69: 8169-8172.
Mannick, J. B., Asano, K., Izumi, K., Kieff, E., & Stamler, J. S. (1994) Nitric oxide produced by human B lymphocytes inhibits apoptosis and Epstein-Barr virus reactivation. Cell 79: 1137-1146.
Martin, J. M., Veis, D., Korsmeyer, S. J. & Sugden, B. (1993) Latent membrane protein of Epstein-Barr virus induces cellular phenotypes independently of expression of Bcl-2. J. Virol. 67: 5269-5278.
Massague, J. (2000) How cells read TGF-b signal. Nature Rev. Mol. Cell Biol. 1: 169-178.
Masselink, H., & Bernards, R. (2000) The adenovirus E1A binding protein BS69 is a corepressor of transcription through recruitment of N-CoR. Oncogene 19: 1538-1546.
Matsushima, A., Kaisho, T., Renner, P. D., Nakano, H., Kurosawa, K., Uchida, D., Takeda, K., Akira, S., & Matsumoto, M. (2001) Essential role of nuclear factor (NF)-kappaB-inducing kinase and inhibitor of kappaB (IkappaB) kinase alpha in NF-kappaB activation through lymphotoxin beta receptor, but not through tumor necrosis factor receptor I. J. Exp. Med. 193: 631-636.
Mercurio, F., Zhu, H., Murray, B. W., Shevchenko, A., Bennett, B. L., Li, J., Young, D. B., Barbosa, M., Mann, M., Manning, A., & Rao, A. (1997) IKK-1 and IKK-2: cytokine-activated IkB kinases essential for NF-kB activation. Science 278: 860-866.
Miller, C. L., Longnecker, R., & Kieff, E. (1993) Epstein-Barr virus latent membrane protein 2A blocks calcium mobilization in B lymphocytes. J. Virol. 67: 3087-3094.
Miller, G. (1990). 浺pstein-Barr virus: biology, pathogenesis, and medical aspects.?2nd ed. Virology (B. N. Fields, and D. M. Knipe, Eds.) Raven, New York.
Mitchell, T. & Sugden, B. (1995) Stimulation of NF-kB-mediated transcription by mutant derivatives of the latent membrane protein of Epstein-Barr virus. J. Virol. 69: 2968-2976.
Morita, K., Shimizu, M., Shibuya, H. & Ueno, N. (2001) A DAF-1-binding protein BRA-1 is a negative regulator of DAF-7 TGF-b signaling. Proc. Natl. Acad. Sci. USA 98: 6284-6288.
Mosialos, G., Birkenbach, M., Yalamanchili, R., VanArsdale, T., Ware, C., & Kieff, E. (1995) The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell 80: 389-399.
Mueller, N., Evans, A., Harris, N. L., Comstock, G. W., Jellum, E., Magnus, K., Orentreich, N., Polk, B. F., & Vogelman, J. (1989) Hodgkin''s disease and Epstein-Barr virus. Altered antibody pattern before diagnosis. New Engl. J. Med. 320: 689-695.
Mueller-Lantzsch, N., Georg, B., Yamamoto, N., & zur Hausen, H. (1980) Epstein-Barr virus-induced proteins. III. Analysis of polypeptides from P3HR-1-EBV-superinfected NC37 cells by immunoprecipitation. Virology 102: 231-233.
Mukaida, N., Morita, M., Ishikawa, Y., Rice, N., Okamoto, S., Kasahara, T., & Matsushima, K. (1994) Novel mechanism of glucocorticoid-mediated gene repression. Nuclear factor-kappa B is target for glucocorticoid-mediated interleukin 8 gene repression. J. Biol. Chem. 269: 13289-13295.
Munoz, N., Davidson, R. J., Witthoff, B., Ericsson, J. E., & De-The, G. (1978) Infectious mononucleosis and Hodgkin''s disease. Int. J. Cancer 22: 10-13.
Nagy, L., Kao, H. Y., Charkravarti, D., Lin, R. J., Hassig, C. A., Ayer, D. E., Schreiber, S. L., & Evans, R. M. (1997) Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89: 373-380.
Nakano, H., Oshima, H., Chung, W., Williams-Abbott, L., Ware, C. F., Yagita, H. & Okumura, K. (1996) TRAF5, an activator of NF-kappaB and putative signal transducer for the lymphotoxin-beta receptor. J. Biol. Chem. 271: 14661-14664.
Neri, A., Barriga, F., Inghirami, G., Knowles, D. M., Neequaye, J., Magrath, I. T., & Dalla-Favera, R. (1991) Epstein-Barr virus infection precedes clonal expansion in Burkitt''s and acquired immunodeficiency syndrome-associated lymphoma. Blood 77: 1092-1095.
Niedobitek, G., Young, L. S., Lau, R., Brooks, L., Greenspan, D., Greenspan, J. S., & Rickinson, A. B. (1991) Epstein-Barr virus infection in oral hairy leukoplakia: virus replication in the absence of a detectable latent phase. J. Gen. Virol. 72: 3035-3046.
Nitsche, F., Bell, A., & Rickinson, A. (1997) Epstein-Barr virus leader protein enhances EBNA-2-mediated transactivation of latent membrane protein 1 expression: a role for the W1W2 repeat domain. J. Virol. 71: 6619-6628.
Nonkwelo, C., Ruf, I. K., & Sample, J. (1997) Interferon-independent and -induced regulation of Epstein-Barr virus EBNA-1 gene transcription in Burkitt lymphoma. J. Virol. 71: 6887-6897.
Old, L. J., Boyse, E. A., Oettgen, H. F., Haven, E. d., Geering, G., Willin, B., & Clifford, P. (1966) Precipitating antibody in human serum to antigen present in cultured Burkitt''s lymphoma cells. Proc. Natl. Acad. Sci. USA 56: 1699-1704.
Padgett, R. W., Das, P & Krishna, S. (1998) TGF-b signaling, Smads, and tumor suppressors. Bioessays. 20: 382-390.
Pagano, J. S., Huang, C. H., Klein, G., de-The, G., Shanmugaratnam, K., & Yang, C. S. (1975) Homology of Epstein-Barr virus DNA in nasopharyngeal carcinomas from Kenya, Taiwan, Singapore and Tunisia. IARC Sci. Publ. 11: 179-190.
Pallesen, G, Hamilton-Dutoit, S. J., Rowe, M., & Young, L. S. (1991) Expression of Epstein-Barr virus latent gene products in tumor cells of Hodgkin掇 disease. Lancet 337: 320-322.
Pallesen, G., Hamilton-Dutoit, S. J., & Zhou, X. (1993) The association of Epstein-Barr virus (EBV) with T cell lymphoproliferations and Hodgkin''s disease: two new developments in the EBV field. Adv. Cancer Res. 62: 179-239.
Panousis, C. G., & Rowe, D. T. (1997) Epstein-Barr virus latent membrane protein 2 associates with and is a substrate for mitogen-activated protein kinase. J. Virol. 71: 4752-4760.
Peh, S. C., Looi, L. M., & Pallesen, G. (1997) Epstein-Barr virus (EBV) and Hodgkin掇 disease in a multi-ethnic population in Malaysia. Histopathlogy 30: 227-233.
Peng, R., Gordadze, A. V., Panana, E. M. F., Wang, F., Zong, J., Hayward, G. S., Tan, J., & Ling, P. D. (2000a) Sequence and functional analysis of EBNA-LP and EBNA-2 proteins from nonhuman primate lymphocryptoviruses. J. Virol. 74: 379-389.
Peng, R., Tan, J., & Ling, P. D. (2000b) Conserved region in the Epstein-Barr virus leader protein define distinct domains required for nuclear localization and transcriptional cooperation with EBNA-2. J. Virol. 74: 9953-9963.
Petti, L., Sample, C., & Kieff, E. (1990) Subnuclear localization and phosphorylation of Epstein-Barr virus latent infection nuclear proteins. Virology 176: 563-574.
Preciado, M. V., De Matteo, E., Diez, B., & Grinstein, S. (1995) Epstein-Barr virus (EBV) latent membrane protein (LMP) in tumor cells of Hodgkin掇 disease in pediatric patients. Med. Pediatr. Oncol. 24: 1-5.
Quinlivan, E. B., Holley-Guthrie, E., Mar, E. C., Smith, M. S., & Kenney, S. (1990) The Epstein-Barr virus BRLF1 immediate-early gene product transactivates the human immunodeficiency virus long terminal repeat by a mechanism which is enhancer independent. J. Virol. 64: 1817-1820.
Raab-Traub, N. (1996) Pathogenesis of Epstein-Barr virus and its associated malignancies. Sem. Virol. 7: 315-323.
Ragoczy, T., Heston, L., & Miller, G. (1998) The Epstein-Barr virus Rta protein activates lytic cycle genes and can disrupt latency in B lymphocytes. J. Virol. 72: 7978-7984.
Ragoczy, T., & Miller, G. (1999) Role of the epstein-barr virus RTA protein in activation of distinct classes of viral lytic cycle genes. J. Virol. 73: 9858-9866.
Ray, A., & Prefontaine, K. E. (1994) Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor. Proc. Natl. Acad. Sci. USA 91: 752-756.
Regnier, C. H., Song, H. Y., Gao, X., Goeddel, D. V., Cao, Z., & Rothe, M. (1997) Identification and characterization of an IkB kinase. Cell 90: 373-383.
Reisman, D., & Sugden, B. (1986) Trans activation of an Epstein-Barr viral transcriptional enhancer by the Epstein-Barr viral nuclear antigen 1. Mol. Cell Biol. 6: 3838-3846.
Roberts, M. L., & Cooper, N.R. (1998) Activation of a ras-MAPK-dependent pathway by Epstein-Barr virus latent membrane protein 1 is essential for cellular transformatin. Virology 240: 93-99.
Robertson, E. S., Lin, J., & Kieff, E. (1996) The amino-terminal domains of Epstein-Barr virus nuclear proteins 3A, 3B, and 3C interact with RBPJ(kappa). J. Virol. 70: 3068-3074.
Robertson, K. D., Hayward, S. D., Ling, P. D., Samid, D., & Ambinder, R. F. (1995) Transcriptional activation of the Epstein-Barr virus latency C promoter after 5-azacytidine treatment: evidence that demethylation at a single CpG site is crucial. Mol. Cell Biol. 15: 6150-6159.
Rodriguez, A., Armstrong, M., Dwyer, D., & Flemington, E. (1999) Genetic dissection of cell growth arrest functions mediated by the Epstein-Barr virus lytic gene product, Zta. J. Virol. 73: 9029-9038.
Rosenzweig, B. L., Imamura, T., & Okadome, T. (1995) Cloning and characterization of a human type II receptor for bone morphogenetic proteins. Proc. Natl. Acad. Sci. USA 92: 7632-7636.
Rothe, M., Sarma, V., Dixit, V. M, & Goeddel, D. V. (1995) TRAF2-mediated activation of NF-kB by TNF receptor 2 and CD40. Science 269: 1424-1427.
Rowe, D., Heston, L., Metlay, J., & Miller, G. (1985) Identification and expression of a nuclear antigen from the genomic region of the Jijoye strain of Epstein-Barr virus that is missing in its nonimmortalizing deletion mutant, P3HR-1. Proc. Natl. Acad. Sci. USA 82: 7429-7433.
Rowe, M., Lear, A. L., Croom-Carter, D., Davies, A. H., & Rickinson, A. B. (1992) Three pathways of Epstein-Barr virus gene activation from EBNA1-positive latency in B lymphocytes. J. Virol. 66: 122-131.
Rowe, M., Rowe, D. T., Gregory, C. D., Young, L. S., Farrell, P. J., Rupani, H., & Rickinson, A. B. (1987) Differences in B cell growth phenotype reflect novel patterns of Epstein-Barr virus latent gene expression in Burkitt''s lymphoma cells. EMBO J. 6: 2743-2751.
Rowe, M., Young, L. S., Cadwallader, K., Petti, L., Kieff, E., & Rickinson, A. B. (1989) Distinction between Epstein-Barr virus type A (EBNA 2A) and type B (EBNA 2B) isolates extends to the EBNA 3 family of nuclear proteins. J. Virol. 63: 1031-1039.
Sample, J., Henson, E. B., & Sample, C. (1992) The Epstein-Barr virus nuclear protein 1 promoter active in type I latency is autoregulated. J. Virol. 66: 4654-4661.
Sample, J., Liebowitz, D., & Kieff, E. (1989) Two related Epstein-Barr virus membrane proteins are encoded by separate genes. J. Virol. 63: 933-937.
Sandberg,M., Hammerschmidt,W., & Sugden,B. (1997) Characterization of LMP-1掇 association with TRAF1, TRAF2, and TRAF3. J. Virol. 71: 4649-4656.
Sandberg, M., Kaykas A., & Sugden, B. (2000) Latent membrane protein 1 of Epstein-Barr virus inhibits as well as stimulates gene expression. J. Virol. 74: 9755-9761.
Schaefer, B. C., Strominger, J. L., & Speck, S. H. (1995). Redefining the Epstein-Barr virus-encoded nuclear antigen EBNA-1 gene promoter and transcription initiation site in group I Burkitt lymphoma cell lines. Proc. Natl. Acad. Sci. USA 92: 10565-10569.
Scheinman, R. I., Gualberto, A., Jewell, C. M., Cidlowski, J. A. & Baldwin, A. S. Jr. (1995) Characterization of mechanisms involved in transrepression of NF-kappa B by activated glucocorticoid receptors. Mol. Cell Biol. 15: 943-53.
Schepers, A., Pich, D., Mankertz, J., & Hammerschmidt, W. (1993) cis-acting elements in the lytic origin of DNA replication of Epstein-Barr virus. J. Virol. 67: 4237-4245.
Schreiber-Agus, N., Chin, L., Chen, K., Torres, R., Rao, G., Guida, P., Skoultchi, A. I., & DePinho, R. A. (1995) An amino-terminal domain of Mxi1 mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3. Cell 80: 777-786.
Schroepfer, G. J. Jr. (2000) Oxysterols: modulators of cholesterol metabolism and other processes. Physiol. Rev. 80: 361-554.
Schultheiss, U., Puschner, S., Kremmer, E., Mak, T. W. Engelmann, H., Hammerschmidt, W., & Kieser, A. (2001) TRAF6 is a critical mediator of signal transduction by the viral oncogene latent membrane protein 1. EMBO J. 20: 5678-5691.
Schwartzman, R. A., & Cidlowski, J. A. (1993) Mechanism of tissue-specific induction of internucleosomal deoxyribonucleic acid cleavage activity and apoptosis by glucocorticoids. Endocrinology 133: 591-599.
Schwarzmann, F., Prang, N., Reichelt, B., Rinkes, B., Haist, S., Marschall, M., & Wolf, H. (1994) Negatively cis-acting elements in the distal part of the promoter of Epstein-Barr virus trans-activator gene BZLF1. J. Gen. Virol. 75: 1999-2006.
Shah, W. A., Ambinder, R. F., Hayward, G. S., & Hayward, S. D. (1992) Binding of EBNA-1 to DNA creates a protease-resistant domain that encompasses the DNA recognition and dimerization functions. J. Virol. 66: 3355-3362.
Shanmugaratnam, K. (1991) 浠orld Health Organization series International histological classification of tumours.?2nd edition ed. The second edition of histological typing of tumours of the upper respiratory tract and ear.
Sharp, P. A. (1999) RNAi and double-strand RNA.Genes Dev 13: 139-141.
Sharp, T. V., Schwemmle, M., Jeffrey, I., Laing, K., Mellor, H., Proud, C. G., Hilse, K., & Clemens, M. J. (1993) Comparative analysis of the regulation of the interferon-inducible protein kinase PKR by Epstein-Barr virus RNAs EBER-1 and EBER-2 and adenovirus VAI RNA. Nucleic. Acids Res. 21: 4483-4490.
Shibuya, H., Yamaguchi, K., & Shirakabe, K. (1996) TAB1: an activator of the TAK1 MAPKKK in TGF-b signal transduction. Science 272: 1179-1182.
Shibuya, H., Iwata, H., Masuyama, N., Gotoh, Y., Yamaguchi, K., Irie, K., Matsumoto, K., Nishida, E. & Ueno, N. (1998) Role of TAK1 and TAB1 in BMP signaling in early Xenopus development. EMBO J. 17: 1019-1028.
Sinclair, A. J., Palmero, I., Peters, G., & Farrell, P. J. (1994) EBNA-2 amd EBNA-LP cooperate to cause G0 to G1 transition during immortalization of resting human B lymphocytes by Epstein-Barr virus. EMBO J. 13: 3321-3328.
Song, H.Y., Rothe, M., & Goeddel, D.V. (1996) The tumor necrosis factor-induced zinc finger protein A20 intercts with TRAF1/TRAF2 and inhibits NF-kB activation. Proc. Natl. Acad. Sci. USA 93: 6721-6725.
Stanger, B. Z., Leder, P., Lee, T. H., Kim, E., & Seed, B. (1995) RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 81: 513-523.
Sugawara, K., Morita, K., Ueno, N., & Shibuya, H. (2001) BIP: a BRAM-interacting protein involved in TGF-b signaling, regulates body length in Caenorhabditis elegans. Genes to cells 6: 599-606.
Su, I. J., & Hsieh, H. C. (1992) Clinicopathological spectrum of Epstein-Barr virus-associated T cell malignancies Leuk. Lymphoma 7:47-53.
Sung, N. S., Wilson, J., Davenport, M., Sista, N. D., & Pagano, J. S. (1994) Reciprocal regulation of the Epstein-Barr virus BamHI-F promoter by EBNA-1 and an E2F transcription factor. Mol. Cell Biol. 14: 7144-7152.
Szekely, L. G., Selovanova, G., Magnusson, K. P., Klein, G. & Wiman, K. G. (1993) EBNA-5, an Epstein-Barr virus-encoded nuclear antigen, binds to the retinoblastoma and p53 proteins. Proc. Natl. Acad. Sci. USA 90: 5455-5459.
Tanaka, M., Yokoyama, A., Igarashi, M., Matsuda, G., Kato, K., Kanamori, M., Hirai, K., Kawaguchi, Y. & Yamanashi, Y. (2002) Conserved region CR2 of Epstein-Barr virus nuclear antigen leader protein is a multifunctional domain that mediates self-association as well as nuclear localization and nuclear matrix association. J. Virol. 76: 1025-1032.
Taunton, J., Hassig, C. A., & Schreiber, S. L. (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272: 408-411.
Ting, A. T., Pimentel-Muinos, F., & Seed, B. (1996) RIP mediates tumor necrosis factor receptor 1 activation of NF-kB but not Fas/APO-1 initiated apoptosis. EMBO J. 15: 6189-6196.
Tsai, C. N., Liu, S. T., & Chang, Y. S. (1995) Identification of a novel promoter located within the Bam HI Q region of the Epstein-Barr virus genome for the EBNA 1 gene. DNA Cell Biol. 14: 767-76.
Tsai, C. N., Tsai, C. L., Tse, K. P., Chang, H. Y., & Chang, Y. S. (2002) The Epstein-Barr virus oncogene product, latent membrane protein 1, induces the down-regulation of E-cadherin gene expression via activation of DNA methyl-transferases. Proc. Natl. Acad. Sci. USA 99: 10084-10089.
Tsitsikov, E. N., Wright, D. A., & Geha, R. S. (1997) CD30 induction of human immunodeficiency virus gene transcription is mediated by TRAF2. Proc. Natl. Acad. Sci. USA 94: 1390-1395.
Van Antwerp, D. J., Martin, S. J. Kafri, T. Green, D. R. & Verma, I. M. (1996) Suppression of TNF-a-induced apoptosis by NF-kB. Science 274: 787-789.
Van Arsdale, T. L., Van Arsdale, S. L., Force, W. R., Walter, B. N., Mosialos, G., Kieff, E., Reed, J. C., Ware, C. F. (1997) Lymphotoxin-beta receptor signaling complex : role of tumor necrosis factor receptor-associated factor 3 recruitment in cell death and activation of nuclear factor kappaB. Proc. Natl. Acad. Sci. USA 94: 2460-2465.
Wang, F., Petti, L., Braun, D., Seung, S., & Kieff, E. (1987) A bicistronic Epstein-Barr virus mRNA encodes two nuclear proteins in latently infected, growth transformed lymphocytes. J. Virol. 61: 945-954.
Wang, C. Y., Mayo, M. W. & Baldwin, A. S. Jr. (1996) TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kB. Science 274: 784-787.
Wang, C. Y., Mayo, M. W., Korneluk, R. G., Goeddel, D. V. & Baldwin, A. S. Jr. (1998) NF-kB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281: 1680-1683.
Watry, D., Hedrick, J. A., Siervo, S., Rhodes, G., Lamberti, J. J., Lambris, J. D., & Tsoukas, C. D. (1991) Infection of human thymocytes by Epstein-Barr virus. J. Exp. Med. 173: 971-980.
Weiss, L. M., Strickler, J. G., Warnke R. A., Purtilo, D. T., & Sklar, J. (1987) Detection of Epstein-Barr viral genomes in tissue in Hodgkin掇 disease. Am. J. Pathol. 129: 86-91.
Whitman, M. (1998) Smads and early developmental signaling by the TGF-b superfamily. Genes Dev. 12: 2445-2462.
Woisetschlaeger, M., Yandava, C. N., Furmanski, L. A., Strominger, J. L., & Speck, S. H. (1990) Promoter switching in Epstein-Barr virus during the initial stages of infection of B lymphocytes. Proc. Natl. Acad. Sci. USA 87: 1725-1729.
Wysokenski, D. A., & Yates, J. L. (1989) Multiple EBNA1-binding sites are required to form an EBNA1-dependent enhancer and to activate a minimal replicative origin within oriP of Epstein-Barr virus. J. Virol. 63: 2657-2666.
Xu, J., Ahmad, A., & Menezes, J. (2002) Preferential localization of the Epstein-Barr virus (EBV) oncoprotein LMP1 to nuclei in human T cells: implications for its role in the development of EBV genome-positive T-cell lymphomas. J. Virol. 76: 4080-4086.
Yamaguchi, K., Shirakabe, K. & Shibuya, H. (1995) Identification of a member of the MAPKKK family as a potential mediator of TGF-b signal transduction. Science 270: 2008-2011.
Yates, J. L., Warren, N., Reisman, D. & Sugden, B. (1984) A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc. Natl. Acad. Sci. USA 81: 3806-3810.
Yates, J. L., Warren, N., & Sugden, B. (1985) Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature 313: 812-815.
Yeh, T. S., Li, S. N., Wu, C. J., Liu, S. T., Meng, C. L. & Chang, Y. S. (1997) Sequence variations between two Epstein-Barr virus LMP1 variants have no effect on the activation of NF-kB activity. DNA Cell Biol. 16: 1311-1319.
Yin, L., Wu, L., Wesche, H., Arthur, C. D., White, J. M., Goeddel, D. V., & Schreiber, R. D. (2001) Defective lymphotoxin-beta receptor-induced NF-kappaB transcriptional activity in NIK-deficient mice. Science 291: 2162-2165.
Yokoyama, A., Tanaka, M., Matsuda, G., Kato, K., Kanamori, M., Kawasaki, H., Hirano, H., Kitabayashi, I., Ohki, M., Hirai, K., & Kawaguchi, Y. (2001a) Identification of major phosphorylation sites of Epstein-Barr virus nuclear antigen leader protein (EBNA-LP): the function of EBNA-LP to induce latent membrane protein 1 cooperatively with EBNA-2 is regulated by phosphorylation. J. Virol. 75: 5119-5128.
Yokoyama, A., Kawaguchi, Y., Kitabayashi, I., Ohki, M., & Hirai, K. (2001b) The conserved domain CR2 of Epstein-Barr virus nuclear antigen leader protein is responsible not only for nuclear matrix association but also for nuclear localization. Virology 279: 401-413.
Yoshiyama, H., Shimizu, N., & Takada, K. (1995) Persistent Epstein-Barr virus infection in a human T-cell line: unique program of latent virus expression. EMBO J. 15: 3706-3711.
Yu, J. S., Tsai, H. C., Wu, C. C., Weng, L. P., Li, H. P., Chung, P. J., & Chang, Y.S. (2002) Induction of inducible nitric oxide synthase by Epstein-Barr virus B95-8-derived LMP1 in Balb/3T3 cells promotes stress induced cell death and impairs LMP1-mediated tranformation. Oncogene, in press
Zalani, S., Holley-Guthrie, E., & Kenney, S. (1996) Epstein-Barr viral latency is disrupted by the immediate-early BRLF1 protein through a cell-specific mechanism. Proc. Natl. Acad. Sci. USA 93: 9194-9199.
Zhang, L., & Pagano, J. S. (1997) IRF-7, a new interferon regulatory factor associated with Epstein-Barr virus latency. Mol. Cell Biol. 17: 5748-5757.
Zhang, L., & Pagano, J. S. (1999) Interferon regulatory factor 2 represses the Epstein-Barr virus BamHI Q latency promoter in type III latency. Mol. Cell Biol. 19: 3216-3223.
Zhao, B., & Sample, C. E. (2000) Epstein-Barr virus nuclear antigen 3C activates the latent membrane protein 1 promoter in the presence of Epstein-Barr virus antigen 2 through sequences encompassing an spi-1/Spi-B binding site. J. Virol. 74: 5151-5160.
Zhou, S., Fujimuro, M., Hsieh, J. J., Chen, L., & Hayward, S. D. (2000) A role for SKIP in EBNA2 activation of CBF1-repressed promoters. J. Virol. 74: 1939-1947.
Zhou, S. & Hayward, S. D. (2001) Nuclear localization of CBF1 is regulated by interactions with the SMRT corepressor complex. Mol. Cell Biol. 21: 6222-6232.
zur Hausen, H., & Schulte-Holthausen, H. (1970) Presence of EB virus nucleic acid homology in a "virus-free" line of Burkitt tumour cells. Nature 227: 245-248.
zur Hausen, H., Schulte-Holthausen, H., Klein, G., Henle, W., Henle, G., Clifford, P., & Santesson, L. (1970) EBV DNA in biopsies of Burkitt tumours and anaplastic carcinomas of the nasopharynx. Nature 228: 1056-1058.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top