跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/11 11:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳奕翔
研究生(外文):Yi-HsiangChen
論文名稱:雙分系統糾纏參數的研究
論文名稱(外文):A study of entanglement measures in bipartite systems
指導教授:許祖斌
指導教授(外文):Cho-Pin Soo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:物理學系碩博士班
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:39
中文關鍵詞:高維度糾纏參數二乘三系統
外文關鍵詞:higher dimensionalentanglement parametersqubit-qutrit system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:261
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
在更高維度的純態雙分系統裡我們展示了糾纏的精細描述。除了二乘二系
統以外,我們需要一個以上的參數來描述糾纏。一個系統非糾纏性的充分必要
條件是所有的糾纏參數都為零的狀況,每個糾纏參數都可視為一個二乘二系統
的糾纏。這邊將探討這些糾纏參數的各種性質,而且重點放在二乘三的系統,
此種系統是需要多於一個糾纏參數的最簡單的系統。其中探討了糾纏參數的對
稱性、可交換與非交換Hopf纖維化和糾纏參數的精確對應、糾纏參數的測
量,最後提供明確的物理系統來展示這些糾纏參數的表現行為。
Finer characterizations of entanglement have been shown to exist in higher dimensional pure bipartite systems. Beyond qubit-qubit systems, more than one parameter is necessary to capture the entanglement. The necessary and suffi cient condition for separability is equivalent to the vanishing of a set of entanglement parameters, each of which can be associated with a qubit-qubit entanglement. Properties of these entanglement parameters are investigated, and attention is focussed on the qubit-qutrit system-the simplest system which requires more than one parameter of entanglement.Symmetries in the entanglement parameters, and the precise parametrization of entanglement in Abelian and non-Abelian Hopf brations of the Hilbert space are also
discussed. Measurement of the entanglement parameters is also addressed, and explicit physical examples are used to verify and exemplify the behavior of the entanglement parameters.
Contents
1 Introduction and overview ... 3
2 A brief review of ner entanglement parameters for pure bipartite systems ... 4
3 Symmetries of entanglements ... 5
3.1 Entanglements symmetry on 2 by m system ... 5
3.2 Symmetry on total entanglement of n by m state ... 6
4 Finer characterizations of entanglement parameters: Explicit examples ... 10
4.1 6-state Hopf bration and entanglement ... 10
4.2 Abelian Hopfbration ... 11
4.3 Non-abelian quaternionic Hopf bration ... 12
5 Measurement of entanglement parameters ... 15
6 Entanglement of spin-spin interaction: 4 and 6-state examples ... 20
7 Example of 6-state decomposition from total spin state to bipartite qubit-qutrit system ... 24
7.1 Rotating magnetic eld couple with two spin ... 24
7.2 Clebsch-Gordan division into bipartite state ... 28
7.3 Calculation on entanglement parameters ... 30
7.4 Time dependence of the entanglement parameters ... 31
8 Concluding remarks ... 38
References ... 39
[1] E. Schrodinger, Discussion of Probability Relations between Separated Systems, Proceedings
of the Cambridge Philosophical Society 31, 555-563, (1935).
[2] Che-Shu Lee, Finer Characterizations of Pure Bipartite Entanglement, M. Sc. thesis,
Dept. of Physics, National Cheng Kung University (2012).
[3] Huei-Chen Lin, A study of the geometric phase in quantum mechanics, M. Sc. thesis,
Dept. of Physics, National Cheng Kung University (2009).
[4] Jung-Bin Wang, Non-abelian Geometric Phase and Quaternionic Hopf Fibration,
M. Sc. thesis, Dept. of Physics, National Cheng Kung University (2011).
[5] Kai-Siang Neo, A study of the Clauser-Horne-Shimony-Holt relation, M. Sc. thesis,
Dept. of Physics, National Cheng Kung University (2005).
[6] Chang-Kuo Liang, Qubit-qubit Entanglement and Its Analysis, M. Sc. thesis, Dept.
of Physics, National Cheng Kung University (2010).
[7] J. J. Sakurai, Modern Quantum Mechanics(Revised Edition), by Addison-Wesley
Publishing Company, p.4-6, p.210-217, (1994).
[8] W. R. Hamilton, On quaternions, or on a new system of imaginaries in algebra,
Philosophical Magazine, Vol. 25, n 3, p.489-495. (1844).
[9] W. R. Hamilton, Elements of quaternions, Edited by W. E. Hamilton, University
of Dublin Press(1866).
[10] John F. Clauser, Michael A. Horne, Abner Shimony, and Richard A. Holt, Pro-
posed Experiment to Test Local Hidden-Variable Theories, Phys. Rev. Lett. 23,
880-884 (1969).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top