跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/26 09:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李容瑄
研究生(外文):Jung-Hsuan Lee
論文名稱:Reeb定理上的Morse理論及其推廣
論文名稱(外文):Morse Theory to Reeb''s Theorem and its Generalization
指導教授:余成義
指導教授(外文):Cherng-Yih Yu
口試委員:謝忠村林吉田
口試日期:2013-06-26
學位類別:碩士
校院名稱:淡江大學
系所名稱:數學學系碩士班
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:27
中文關鍵詞:Morse引理Morse定理Reeb定理
外文關鍵詞:Morse lemmaMorse TheoremReeb&apos&aposs Therem
相關次數:
  • 被引用被引用:0
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文先介紹可微流型之定理及各種基本性質,也初略介紹具Riemann測度之可微流型。
本文主要內容在使用Morse引理及Morse定理,重新述明Reeb定理之證明。這裡我們使用Surgery引理,處理邊界問題。

In this thesis, we want to use Morse Theorem to prove Reeb''s Theorem. Before showing the proof of these theorems, we need to review some basic properties of a differentiable manifold M with a differentiable structure. In general, if we define some functions from M (or its subspace) to real value, the difference between manifold and coordinate space should be considered. Every point we choose must send to a coordinate subspace first. So defining a coordinate system is helpful to deal with any functions on manifold M.
The main result we review is to prove Reeb''s Theorem using Morse Lemma and Morse Theorem. Here we use a surgery lemma to prove disjoint union of two spaces, matched along their common boundary.
We also show how to construct a homotopy equivalence between manifold M and a n-sphere, for all dimension n is larger or equal to 1.

Contents
0 Introduction 1
1 Di erentiable manifold 3
2 Non-degenerate Critical Point And Hessian 7
3 Smooth Vector Field on Manifold 9
4 Homotopy 13
5 Morse Lemma 15
6 Main Theorem 18
7 State of Reeb''s Theorem(construct a homeomorphism between M and S^n) 23
8 Conclusion and Remarks 26

[1] William M. Boothby. An Introduction to Differentiable Manifolds and Rieman-
nian Geometry. ACADEMIC PRESS,INC, Orlando,Florida, second edition,
1986.
[2] J.Milnor. On manifolds homeomorphic to the 7-sphere. Annals of Mathematics,
64:399{405, 1956.
[3] James R. Munkres. Elements of Algebraic Topology. rst edition.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top