跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.169) 您好!臺灣時間:2025/10/30 10:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡志鴻
研究生(外文):Chih-Hung Tsai
論文名稱:均勻混摻型電洞傳輸層之高穩定性有機電激發光元件
論文名稱(外文):Highly Stable Organic Light Emitting Devices with a Uniformly Mixed Hole Transport Layer
指導教授:陳金鑫陳金鑫引用關係
指導教授(外文):Chin Hsin Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:83
中文關鍵詞:有機發光二極體元件壽命
外文關鍵詞:OLEDstability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,成功地運用2-methyl-9,10-di(2-naphthyl)anthracene (MADN) 和N,N’-bis(1-naphthyl)-N,N’-diphenyl,1,1’-biphenyl-4,4’- diamine (NPB)依3:7比例所組成之均勻混摻型電洞傳輸層(UM-HTL)來達成高穩定性有機發光二極體元件。在10-(2-benzothiazolyl) -1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-benzo[l]-pyrano[6,7,8-ij]quinolizin-11-one (C-545T)摻雜的綠光元件中,採用UM-HTL和傳統結構之元件相比,元件半衰期(亮度換算成100 nits)可被大幅提升將近3倍(52200小時),而且重要的是元件的驅動電壓、發光效率和發光顏色依舊保有原本優越表現。這樣優越之穩定度改良結果最主要可以歸因於UM-HTL成功抑制正電荷在發光層的累積,使得元件穩定度可以明顯獲得改善。此外,再將UM-HTL運用在以MADN為主的藍光系統中,元件穩定度亦可以顯著提升至少有1.5倍之多,且藍光元件本身的優越特性和發光顏色均不受影響。這便可以證明UM-HTL是可以被運用於增進各個光色元件的穩定度,而且不會影響到其元件自身的發光特性。其次,UM-HTL更擁有優異的薄膜熱性質,可以解決ㄧ般電洞傳輸材料低Tg問題。這些優勢都使得UM-HTL具備有取代各個光色元件中的傳統電洞傳輸層的潛力。
In this thesis, highly stable organic light emitting devices was made by using a uniformly mixed hole transport layer (UM-HTL) composed of a mixture of 2-methyl-9,10-di(2-naphthyl)anthracene (MADN) and N,N’-bis(1-naphthyl)-N,N’-diphenyl,1,1’-biphenyl-4,4’-diamine (NPB) in a 3:7 (MADN:NPB) ratio. In 10-(2-benzothiazolyl)-1,1,7,7-tetramethyl- 2,3,6,7-tetrahydro-1H,5H,11H-benzo[l]-pyrano[6,7,8-ij]quinolizin-11-one (C-545T) doped green device, the stability of device with a UM-HTL can be greatly improved to 3 times (initial luminance normalized to 100 nits, 52200 hrs) longer than that of the conventional NPB based HTL without deteriorating on its driving voltage, current efficiency and emissive color significantly. This improvement in stability can be attributed to the fact that the accumulations of positive charge in emission layer have been effectively suppressed. Moreover, using UM-HTL in MADN based blue device systems, the stability of device also can be greatly improved to at least 1.5 times longer than that of the conventional NPB based HTL without deteriorating on its driving voltage, current efficiency and emissive color significantly. These results indicated that UM-HTL can improve the stability of device with any kind of emission color without affecting its emission property. Furthermore, UM-HTL has good thin film thermal property to solve the issue of low Tg in conventional HTL materials. Hence, this made UM-HTL a potential candidate to replace the conventional HTL for each emission color.
目 錄
中文摘要 ........................................... Ⅰ
英文摘要 ........................................... Ⅲ
謝誌 ........................................... Ⅴ
目錄 ........................................... Ⅶ
表目錄 ........................................... Ⅷ
圖目錄 ........................................... Ⅸ
第一章 緒論....................................... 1
1-1 前言....................................... 1
1-2 有機發光二極體之簡介....................... 2
1-3 文獻回顧................................... 6
1-3.1 非本質劣化因素........................... 6
1-3.2 本質劣化因素............................. 14
第二章 實驗動機................................... 35
2-1 前言....................................... 35
2-2 先前技藝................................... 36
2-3 實驗動機................................... 42
第三章 實驗部分................................... 45
3-1 實驗材料................................... 45
3-2 實驗儀器................................... 46
3-3 元件製造程序............................... 49
第四章 結果與討論................................. 52
4-1 MADN 混摻濃度對元件之影響................ 52
4-2 電洞單載子元件(Hole-only device).............. 57
4-3 UM-HTL對電洞傳輸能力之影響機制........... 59
4-3.1 電子單載子元件(Electron-only device)......... 61
4-3.2 不同成分之UM-HTL發光光譜比較.......... 64
4-4 AFM的薄膜表面分析........................ 67
4-5 UM-HTL在不同HTL部位中之影響............ 70
4-6 UM-HTL應用在藍光元件..................... 74
第五章 結論....................................... 77
第六章 參考文獻................................... 78
1. W. Helfrich and G. Schneider, Phys. Rev. Lett. 14, 229 (1965).
2. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).
3. L. S. Hung, L. R. Zheng, and M. G. Mason, Appl. Phys. Lett. 78, 673 (2001).
4. S. A. VanSlyke, C. H. Chen, and C. W. Tang, Appl. Phys. Lett. 69, 2160 (1996).
5. J. McElvain, H. Antoniadis, M. R. Hueschen, J. N. Miller, D. M. Roitman, J. R. Sheats, and R. L. Moon, J. Appl. Phys. 80, 6002 (1996).
6. P. N. M. dos Anjos, H. Aziz, N. –X. Hu, and Z. D. Popovic, Organic Electronics 3, 9 (2002).
7. M. Fujihira, L. –M. Do, A. Koike, and E. –M. Han, Appl. Phys. Lett. 68, 1787 (1996).
8. H. Aziz, Z. D. Popovic, C. P. Tripp, N. Hu, A. Hor, and G. Xu, Appl. Phys. Lett. 72, 2642 (1998).
9. H. Aziz, Z. D. Popovic, S. Xie, A. Hor, N. Hu, C. P. Tripp, and G. Xu, Appl. Phys. Lett. 72, 756 (1998).
10. V. N. Savvateev, A. H. Yakimov, D. Davidov, R. M. Pogreb, R. Neumann, and Y. Avny, Appl. Phys. Lett. 71, 3344 (1997).
11. L. M. Do, K. Kim, T. Zyung, H. K. Shim, and J. J. Kim, Appl. Phys. Lett. 70, 3470 (1997).
12. M. Kawaharada, M. Ooishi, T. Saito, and E. Hasegawa, Synth. Met. 91, 113 (1997).
13. L. S. Liao, J. He, X. Zhou, M. Lu, Z. H. Xiong, Z. B. Deng, X. Y. Hou, and S. T. Lee, J. Appl. Phys. 88, 2386 (2000).
14. W. Wang, S. F. Lim, and S. J. Chua, J. Appl. Phys. 91, 5712 (2002).
15. S. F. Lim, L. Ke, W. Wang, and S. J. Chua, Appl. Phys. Lett. 78, 2116 (2001).
16. S. F. Lim, W. Wang, and S. J. Chua, Mater. Sci. Eng. B85, 154 (2001).
17. D. Kolosov, D. S. English, V. Bulovic, P. F. Barbara, S. R. Forrest, and M. E. Thompson, J. Appl. Phys. 90, 3242 (2001).
18. L. S. Hung, C. W. Tang, and M. G. Mason, Appl. Phys. Lett. 70, 152 (1997).
19. H. Ishi, K. Sungiyama, E. Ito, and K. Seki, Adv. Mater. 11, 605 (1999).
20. E. I. Haskal, A. Unoni, P. F. Seidler, and W. Androni, Appl. Phys. Lett. 71, 1151 (1997).
21. Z. D. Popovic, and H. Aziz, IEEE Journal on Selected Topics in Quantum Electronics, 8, 362 (2002).
22. E. Han, L. Do, N. Yamamoto, and M. Fujihira, Thin Solid Films 273, 202 (1996).
23. S. Tokito, H. Tanaka, and Y. Taga, Appl. Phys. Lett. 69, 878 (1996).
24. Y. Shirota, K. Okumoto, and H. Inada, Synth. Met. 111-112, 387 (2000).
25. D. F. O’Brien, P. Burrows, S. R. Forrest, B. E. Koene, D. E. Loy, and M. E. Thompson, Adv. Mater. 10, 1108 (1998).
26. F. Steuber, J. Staudigel, M. Stossel, J. Simmerer, A. Winnacker, H. Spreitzer, F. Weissortel, and J. Salbeck, Adv. Mater. 12, 130 (2000).
27. Y. Hamada, T. Sano, K. Shibata, and K. Kuroki, Jpn. J. Appl. Phys. 34, L824 (1995).
28. Y. Sato, and H. Kanai, Mol. Cryst. Liq. Cryst. 253, 143 (1994).
29. A. Rudin, Polymer Science and Engineering. 2nd ed. (Academic Press, San Diego, 1999). P. 401.
30. B. W. D’Andrade, S. R. Forrest, and A. B. Chwang, Appl. Phys. Lett. 83, 3858 (2003).
31. Y. Kim, and W. B. IM, Phys. Stat. Sol. (a)201. No. 9. 2148 (2004).
32. S. Tokito, H. Tanaka, K. Noda, A. Okada, and Y. Taga, IEEE Trans. Elec. Dev. 44, 1239 (1997).
33. C. Adachi, K. Nagai, and N. Tamoto, Appl. Phys. Lett. 66, 2679 (1995).
34. T. Mori, T. Mitsuoka, M. Ishii, H. Fujikawa, and Y. Taga, Appl. Phys. Lett. 80, 3895 (2002).
35. C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, Appl. Phys. Lett. 70, 1348 (1997).
36. F. Steuber, J. Staudigel, M. Stossel, J. Simmerer, and A. Winnacker, Appl. Phys. Lett. 74, 3558 (1999).
37. Y. Shirota, Y. Kuwabara, and H. Inada, Appl. Phys. Lett. 65, 807 (1994).
38. J. Shi, and C. W. Tang, Appl. Phys. Lett. 70, 1665 (1997).
39. F. Li, J. Feng, and S. Liu, Synth. Met. 137, 1103 (2003).
40. J. Shen, D. Wang, E. Langlois, W. A. Barrow, P. J. Green, C. W. Tang, and J. Shi, Synth. Met. 111-112, 233 (2000).
41. T. Tsujioka, Y. Hamada, and H. Takahashi, Jpn. J. Appl. Phys. 39, 3463 (2000).
42. S. T. Lee, Z. Q. Gao, and L. S. Hung, Appl. Phys. Lett. 75, 1404 (1999).
43. W. Hu, K. Manabe, T. Furukawa, and M. Matsumura, Appl. Phys. Lett. 80, 2640 (2002).
44. Y. Shen, D. B. Jacobs, G. G. Malliaras, G. Koley, M. G. Spencer, and A. Ioannidis, Adv. Mat. 13, 1235 (2001).
45. H. Aziz, Z. D. Popovic, N. X. Hu, A. M. Hor, and G. Xu, Science 283, 1900 (1999).
46. Z. D. Popovic, H. Aziz, A. Ioannidis, N. Hu, and P. N. M. dos Anjos, Synth. Met. 123, 179 (2001).
47. Z. D. Popovic, H. Aziz, N. Hu, A. Ioannidis, and P. N. M. dos Anjos, J. Appl. Phys. 89, 4673 (2001).
48. Z. D. Popovic, S. Xie, N. Hu, A. Hor, D. Fork, D. Fork, G. Anderson, and C. Tripp, Thin Solid Film 363, 6 (2000).
49. J. Yang, and J. Shen, J. Appl. Phys. 84, 2105 (1998).
50. H. Aziz, and Z. D. Popovic, Appl. Phys. Lett. 80, 2180 (2002).
51. A. Gyoutoku, S. Hara, T. Komatsu, M. Shirinashihama, H. Iwanaga, and K. Sakanoue, Synth. Met. 91 73 (1997).
52. D. Y. Kondakov, J. R. Sandifer, C. W. Tang, and R. H. Young, J. Appl. Phys. 93, 1108 (2003).
53. J. Shen, D. Wang, E. Langlois, W. A. Barrow, P. J. Green, C. W. Tang, and J. Shi, Synth. Met. 111-112, 233 (2000).
54. M. Matsumura, A. Ito, and Y. Miyamae, Appl. Phys. Lett. 75, 1042 (1999).
55. M. Matsumura, and Y. Jinde, Synth. Met. 91, 197 (1997).
56. E. W. Forsythe, M. A. Abkowitz, and Y. Gao, J. Phys. Chem. B 104, 3948 (2000).
57. N. von Malm, J. Steiger, R. Schmechel, and H. von Seggern, J. Appl. Phys. 89, 5559, (2004).
58. H. H. Fong, K. C. Lun, and S. K. So, Chem. Phys. 353, 407 (2002).
59. H. Aziz, and Z. D. Popovic, Appl. Phys. Lett. 80, 2180 (2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top