跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.102) 您好!臺灣時間:2025/12/03 18:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳書嫻
研究生(外文):Chen Shu-Shian
論文名稱:上板拉升之不可互溶Hele-Shaw流場數值模擬
論文名稱(外文):Numerical Simulation of an Immiscible Lifting Hele-Shaw Flow
指導教授:陳慶耀
指導教授(外文):Chen Ching-Yao
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:63
中文關鍵詞:不可互溶流場數值模擬指狀物
外文關鍵詞:viscous fingeringImmiscible FlowHele-Shaw
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
LOCA為一台利用壓合力量,使兩平板中間含有OCR材質之膠體均勻地流佈,進而使兩平板最終能夠密合。為達此目的,吾人希望得到最初點膠時中心膠體的形狀,使得當上平板下壓時,膠體擴散到達邊界時能夠一致,其最終形狀能與基板相同,膠體分佈厚度平均且減少溢膠的情況發生。在先前關於Hele-Shaw不可互溶流場模擬的研究中,大多著重在上板拉升的情況下,當上平板拉升時兩平板間的流體會向內凹陷,這與我們上述的情況是相反的,因此吾人假設上板拉升後的圖形將會是上板下壓的最初圖形,利用上板拉升之不可互溶Hele-Shaw cell的數值模擬來研究此問題。我們發現當上板拉升時,原始圖形為矩形之內流體,隨著拉升高度增加,其矩形四邊會快速地向內凹陷,而四角也會緩慢地往內縮,最終在矩形四個角形成不穩定之指狀物圖形。
The LOCA coating machine uses stress to force two plates where OCR material is placed between close-fitting. The glue optimal pattern spreads close to its base plate and no glue should excess the plate boundary. The processes mimic the problems of compressing Hele-Shaw flows. Accordingly, we assume that the inner flow pattern formed from the pulled plate is same as the original figure which upper plate pushed down. In this study, we use computer simulation method to find out that how the viscosity ratio, the initial aspect ratio, the lifting plate velocity and the surface tension induce the optimization of glue pattern. As the result of interfacial instability, less viscous fluid displaces another fluid of higher viscosity while the height increasing. Four sides of the rectangle will rapidly shrink inward. On the contrary, the pattern will appear four fingers on the corner of the rectangle.
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VI
符號說明 IX
第一章、緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究目的 4
第二章、物理模型與數值方法 13
2-1 物理模型 13
2-2 統御方程式 14
2-3 數值方法 17
第三章、結果與討論 22
3-1 黏滯度比值對拉升後圖形之影響 23
3-2 不同初始比例大小圖形對圖形之影響 25
3-3 不同拉升方式之影響 27
3-4 隨時間變化之表面張力影響 28
第四章、結論 58
參 考 文 獻 60
[1] Saffman, P., and Taylor, G., 1985, “The penetration of a fluid into a porous medium of Hele-Shaw cell containing a more viscous liquid”, Proc. R Soc. London Ser. A, Vol. 245, pp.312-329.
[2] Thome, H., Rabaud, M., Hakim V., and Couder Y., 1989, Phys. Fluids A 1, 224.
[3] Ben Amar, M., Hakim, V., Mashaal, and Couder, Y., 1991, Phys. Fluids A 3, 1687.
[4] Lajeunesse, E., and Couder, Y., 2000, J. Fluid Mech. 419, 125.
[5] Schwartz, L.W. 1989,”Instabilities and fingering in a rotating Hele-Shaw cell or porous medium” ,Phys, Fluids A, Vol. 1,pp.167-169.
[6] Carrillo, L., Magdaleno, F. X., Casademunt J., and,Ortin J., 1996,”Experiments in a rotating Hele-Shaw cell”, Phys. Rev. E., Vol.54, pp.6260-6267.
[7] Alvarez-Lacalle, E., Ortin, J., and Casademunt, J., 2004,“Low Viscosity Contrast Fingering in a Hele-Shaw Cell”, Phys. Fluids vol. 16, No.4, pp.908-924.
[8] Buka, A., Palffy-Muhoray, P., and Racz, z., 1987, Phys. Rev. A 36, 3984.
[9] Kondic, L., Shelley, M. J., and Palffy-Muhoray, P., 1998, Phys. Rev. Lett. 80, 1433.
[10] Constantin, M., Widom, M., and Miranda, J. A., 2003, Phys. Rec. E 67, 026313.
[11] Tsebers, A. O., and Maiorov, M. M., 1980, Magnetohydrodynamics 16, 21.
[12] Jackson, D. P., Goldstein, R. E., and Cebers, A. O., 1994, “Hydrodynamics of fingering instabilities in droplet fluids” ,Phys. Rev. E 50, 1, pp.298-307.
[13] Tan, C. T., and Homsy, G. M., 1988, “Simulations of nonlinear fingering in miscible displacement”, Phys. Fluids 31, 1330.
[14] Chen, C.-Y., and Meiburg, E., 1998, “Miscible Porous media Flows in the Quarter Five-Spot configuration. Part 1: The Homogeneous Case”, J. Fluid Mech, 371, pp.233-268, 1988; ibid. 371, pp.269-299.
[15] Chen, C.-Y., and Wang, L. L., and Meiburg, E., 2001, “Miscible droplet in a porous medium and the effects of Korteweg stresses”, Phys. Fluids, 13, pp.2447-2456.
[16] Chen, C.-Y., Wang, S. W., 2002, “Interfacial instabilities of miscible fluids in a rotating Hele-Shaw cell”, Fluid Dyn. Res. 30, PP.315-330.
[17] Chen, C.-Y., 2003,”Numerical Simulations of Fingering Instabilities in Miscible Magnetic Fluids in a Hele-Shaw Cell and the Effects of Korteweg Stresses”, Phys. Fluids, 15, 4, pp.1086-1089.
[18] S. Ramezani, S. Aniss, and M. Souhar, C. R., 2002, Mec. 330, 633.
[19] S. L. Waters and L. J. Cummings, 2005, Phys. Fluids 17, 048101.
[20] E. Alvarez-Lacalle, H. Gadelha, and J. A. Miranda, 2008, Phys. Rev. E 78, 026305.
[21] Chen, C.-Y., Huang, C.-W., H. Gadelha, and J. A. Miranda, 2008, Phys. Rev. E 78, 016306.
[22] J. A. Miranda and E. Alvarez-Lacalle, 2005, Phys. Rev. E 72, 026306.
[23] D. P. Jackson and J. A. Miranda, 2003, Phys. Rev. E 67, 017301.
[24] B. J. Tefft, A. M. Kopacz, W. K. Liu, and S. Q. Liu, 2013, “Experimental and Computational Validation of Hele-Shaw Stagnation Flow with Varying Shear Stress”, Comput. Mech., 52, pp. 1463-1473.
[25] L. Paterson., 1981, “Radial Fingering in a Hele-Shaw Cell”, Fluid Mech., 113, pp.513-529.
[26] J. D. Chen, 1987, “Radial Viscous Fingering Pattern in Hele-Shaw Cells”, Exp. Fluids, 5, pp. 363-371.
[27] J. D. Chen, 1989, “Growth of Radial Viscous Fingers in a Hele-Shaw Cell”, Fluid Mech., 201, pp 223-242.
[28] H. Thome, M, Rabaud, V. Hakim, and Y. Couder, 1989,”The Staffman-Taylor Instability: From the Linear to the Circular Geometry”, Phys, Fluids A, 1, pp. 224-240.
[29] O. Praud and H. L. Swinney., 2005, “Fractal Dimension and Unscreened Angles Measured for Radial Viscous Fingering”, Phys. Rev. E, 72, 0111406.
[30] S. B. Gorell and G. M. Homsy., 1983, “A Theory of the Optimal Policy of Oil Recovery by Secondary Displacement Processes”, SIAM J. Appl. Math., 43, pp. 79-98.
[31] Chen, C.-Y., and Meiburg, E., 1998, “Miscible Porous media Flows in the Quarter Five-Spot configuration. Part 2: Effect of Heterogeneities”, J. Fluid Mech, 371, pp.233-268, 1988; ibid. 371, pp.269-299.
[32] Ben-Jacob, E., Godbey, R., Goldenfeld, N, D., Koplik, J., Levine, H., Mueller, T., and Sander, L. M., 1985, Phys. Rev. Lett. 55, 1315.
[33] Zhang, S.-Z., Louis, E., Pla, O., and Guinea, F., 1997, “Linear stability analysis of the Hele-Shaw cell with lifting plate”, Eur. Phys. J. B, pp. 123-127.
[34] Shelley, M. J., Tina, F-R., and Wlodarski, K., 1997, “Hele-Shaw flow and pattern formation in a time-dependent gap”, Nonlinearity, Vol. 10, pp.1471-1495.
[35] Sinha, S., KAbiraj, S. K., Dutta, T., and Tarafdar, S., 2003, “Finger velocities in the lifting Hele-Shaw Cell”, Physica A, 328, pp.305-314.
[36] Miranda, J. A., and Olivera, R. M., 2004, “Time-dependent gap Hele-Shaw Cell with a ferrofluid: evidence for an interfacial singularity inhibition by a magnetic field”, Phys. Rev. E, 69, 066312.
[37] Derks, D., Lindner, A., Creton, C., and Bonn, D., 2003, “Cohesiv failure of thin layers of soft model adhesives under tension”, J. Appl. Phys. 93, pp.1557-1566.
[38] Welsh, R. D., 2001, M.Sc. thesis, Massachusetts Institute of Technology.
[39] K.Glasner., 2003 “A Diffuse Interface Approach to Hele-Shaw Flow”, Nonlinearity, 16, pp. 49-66.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top