跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/25 17:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾云威
論文名稱:添加界面活性劑對於硫磺菌液態醱酵生產多醣體之影響
論文名稱(外文):Enhancement of biomass and exopolysaccharide production by supplementation of surfactants in submerged cultures of Laetiporus sulphureu
指導教授:龍明有
學位類別:碩士
校院名稱:明新科技大學
系所名稱:化學工程與材料科技系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:123
中文關鍵詞:硫磺菌Span 80液態培養多醣體界面活性劑
外文關鍵詞:Laetiporus sulphureusSpan 80submerged culturesexopolysaccharidesurfactants
相關次數:
  • 被引用被引用:0
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
硫磺菌(Laetiporus sulphureus),為珍稀品種之一,是一種傳統藥用菇類。在治療中可作為乳腺癌、前列腺癌之輔助食物。過去研究顯示,硫磺菌多醣與其萃取物均具有許多生物活性功能,其中包括:抗氧化、抗腫瘤、增加免疫能力、降血糖等。本實驗利用液態醱酵培養硫磺菌,探討不同界面活性劑之添加以促進硫磺菌液態醱酵之多醣體產量,以期待生產高產率之胞外多醣。
在搖瓶試驗中分別添加 0.5 g L-1 之各種界面活性劑包括PEG 系列(4000、6000)、Tween 系列(20、40、80、85)及Span 系列(20、80)於搖瓶中,置於28 ℃、150 rpm之恆溫培養箱培養12天。分別測定硫磺菌液態醱酵之菌絲體及多醣體含量。篩選出對硫磺菌液態醱酵生產菌絲體及多醣體有益之界面活性劑。由實驗結果得知添加Span 80可得最大菌絲體及多醣含量為7.13 g L-1及240 mg L-1。
在搖瓶試驗中分別添加不同濃度(0、0.2、0.4、0.6、0.8、1.0、1.2 g L-1)之Span 80於搖瓶中,置於28 ℃、150 rpm之恆溫培養箱培養12天。分別測定硫磺菌液態醱酵之菌絲體及多醣含量。篩選出對硫磺菌液態醱酵生產菌絲體及多醣體之最佳濃度。由實驗結果得知在0.6 g L-1 Span 80時有最大之菌絲體及多醣含量,分別為9.33 g L-1及130 mg L-1。
利用5-L攪拌式醱酵槽改變不同濃度(0、0.2、0.4、0.6、0.8、1.0 g L-1)之Span 80培養條件醱酵培養,實驗結果顯示,攪拌式醱酵槽在0.2 g L-1可得到最大之菌絲體4.08 g L-1,在0.6 g L-1可得到最高胞外多醣體含量為213.43 mg L-1。此外,並在20-L攪拌式醱酵槽進行放大培養,由最適化培養條件0.6 g L-1培養所得之硫磺菌多醣產量為120.88 mg L-1。本研究亦針對硫磺菌醱酵產物進行分子量和蛋白質分析,在5-L醱酵槽中0.6 g L-1Span 80液態醱酵所得之胞外多醣其算術平均分子量及蛋白質含量為2.94×104和6.64 %。在20-L醱酵槽中0.6 g L-1Span 80液態醱酵所得之胞外多醣平均分子量及蛋白質含量為5.54×105和6.39 %。在5-L醱酵槽中0.6 g L-1Span 80液態醱酵所得之胞內多醣其算術平均分子量及蛋白質含量為5.30×104和7.76 %。在20-L醱酵槽中0.6 g L-1Span 80液態醱酵所得之胞內多醣平均分子量及蛋白質含量為1.03×105和6.62 %。此外,硫磺菌醱酵產物萃取液之抗氧化特性分析,硫磺菌醱酵產物萃取液包括:(硫磺菌菌絲乾燥物熱水萃取、硫磺菌菌絲乾燥物乙醇萃取、硫磺菌醱酵液乾燥物乙醇萃取、硫磺菌醱酵液胞外多醣、硫磺菌醱酵菌絲乾燥物胞內多醣),不同濃度對硫磺菌醱酵菌絲體乾燥物萃取以及醱酵液乾燥物萃取之抗氧化特性評估,以EC50為評估依據,菌絲體乾燥物乙醇萃取、熱水萃取,胞內多醣和醱酵液乾燥物乙醇萃取及胞外多醣,其中在還原力方面以醱酵液乾燥物乙醇萃取濃度0.6 g L -1Span80,其EC50為0.06 mg mL-1;清除DPPH能力以菌絲體乾燥物熱水萃取濃度0.8 g L -1Span80,其EC50為0.09 mg mL-1;螯合亞鐵離子以醱酵液乾燥物乙醇萃取濃度0.4 g L -1Span80,其EC50為0.04 mg mL-1;清除超氧陰離子菌絲體乾燥物熱水萃取0.8 g L -1Span80,其EC50為0.22 mg mL-1。

Abstract
Laetiporus sulphureus, one of the rare species, is a traditional medicinal mushrooms. The mushroom can be used as adjuvant food during the treatment of breast cancer and prostate cancer. Previous studies indicated that polysaccharides and extracts from Laetiporus sulphureus posses various biological activities such as anti-oxidant, anti-tumor, increasing immune ability, reducing blood sugar and so on. In this study, effect of supplementation of surfactants in submerged cultures on biomass and exopolysaccharide (EPS) production of Laetiporus sulphureus was investigated to promote biomass and exopolysaccharide formation. In the shake flask experiments, various surfactants (0.5 g L-1), including PEG series (4000, 6000), Tween series (20, 40, 80, 85) and Span series (20, 80), were added into basal medium in shake flasks , and cultivated at 28 ℃, 150 rpm for 12 days. The results indicated that Span 80 showed the maximum biomass and exopolysaccharoide production with 7.29 g L-1 and 0.178 g L-1, respectively. To find the optimal Span 80 concentration different span 80 concentration (0 , 0.2 , 0.4 , 0.6 , 0.8 ,1.0 , 1.2 g L-1) where cultured in the shake flask at 28 ℃ , 150 rpm for 12 days. The results revealed that the maximum biomass (9.33 g L-1) and exopolysaccharide production (0.13 g L-1) was found to be at 0.6 g L-1 of Span 80. For a 5-L stirred tank fermenter test, experimental results showed that the maximum mycelium (4.08 g L-1) was obtained at 0.2 g L-1 Span 80 and the maximum exopolysaccharide production was 213.43 mg L-1 at 0.6 g L-1 Span 80. In addition, the average EPS molecular weights and protein content in EPS at 0.6 g L-1 Span 80 in 5-L stirred tank fermenter were 2.94×104 and 6.64 %. The average EPS molecular weights and protein content in EPS at 0.6 g L-1 Span 80 in 20-L stirred tank fermenter were 5.54×104 and 6.39 %. Moreover, the average IPS molecular weights and protein content in IPS at 0.6 g L-1 Span 80 in 5-L stirred tank fermenter were 5.30×104 and 7.76 %. Tthe average IPS molecular weights and protein content in IPS at 0.6 g L-1 Span 80 in 20-L stirred tank fermenter were 1.03×105 and 6.62 %. The lowest EC50 values are described as follows: for antioxidant activity. For reducing power, EC50 values of ethanol extract from broth by L. sulphureus submerged culture at 0.6 g L-1 Span 80 are 0.06 mg mL-1. For scavenging DPPH effects, EC50 values of ethanol extract from broth by L. sulphureus submerged culture at 0.4 g L-1 Span 80 are 0.09 mg mL-1. For chelating ability, EC50 values of ethanol extract from broth by L. sulphureus submerged culture at 0.4 g L-1 Span 80 are 0.04 mg mL-1. For scavenging superoxide radical ability, EC50 values of hot water extract from mycelia by L. sulphureus submerged culture at 0.8 g L-1 Span 80 are 0.22 mg mL-1.

目錄
摘 要 I
Abstract III
誌謝 V
目錄 VI
表目錄 X
圖目錄 XI
第一章 緒論 1
1.1研究動機與背景 1
1.2研究目的 2
第二章 文獻回顧 3
2.1菇類的介紹和機能性 3
2.1.1 菇類的應用 4
2.1.2 菇類食品生理活性 6
2.1.3 菇類多醣的生理活性 9
2.2 硫磺菌介紹 10
2.3 多醣體介紹 13
2.3.1 多醣體之分類 14
2.3.2 多醣體之作用 14
2.3.3 多醣體及其抗腫瘤機制 15
2.3.4 多醣體之機能性 16
2.4 醱酵深層培養技術介紹 18
2.4.1深層醱酵培養的定義及培養基的成份和功能 18
2.4.2影響深層醱酵培養的其他物理化學因子 22
2.4.3 培養基滅菌 27
2.5 多醣體之分離與純化 28
2.5.1 透析法 28
2.5.2 酒精沉澱法 28
2.5.3 冷凍離心法 28
2.6 自由基與抗氧化介紹 28
2.6.1 自由基如何產生 29
2.6.2 自由基對細胞造成的傷害 29
2.6.3 抗氧化物質(Antioxidant) 29
2.6.4 抗氧化性質分析 30
2.7界面活性劑 31
第三章 材料與方法 33
3.1實驗架構 33
3.2 實驗材料 34
3.2.1 實驗菌株 34
3.2.2 實驗藥品 34
3.2.3 實驗設備與儀器 37
3.2.4 實驗裝置 38
3.3 實驗方法 45
3.3.1 菌株保存 45
3.3.2 培養基成分 45
3.3.3 操作條件 47
3.3.4 單因子液態搖瓶實驗 48
3.4 分析方法 50
3.4.1 醱酵產物分析流程 50
3.4.2 菌體乾重測定 51
3.4.3 粗多醣含量測定 51
3.4.4 殘糖分析 (DNS method) 52
3.4.5 硫磺菌醱酵物之製備 53
3.4.6 硫磺菌醱酵胞外多醣及胞內多醣分子量分析 55
3.4.7 硫磺菌醱酵物萃取之抗氧化性質分析 56
第四章 結果與討論 58
4.1 硫磺菌菌絲型態 58
4.1.1 固態培養 58
4.1.2種瓶培養 59
4.1.3搖瓶液態培養 59
4.1.4攪拌式醱酵槽 60
4.2液態搖瓶培養實驗 61
4.2.1不同界面活性劑對硫磺液態醱酵之生物質量(Biomass)及胞外多醣含量 61
4.2.2 不同濃度界面活性劑Span 80對硫磺菌菌絲生長(Biomass)及生產胞外多醣(EPS)之影響 62
4.3攪拌式醱酵槽實驗 65
4.3.1不同濃度界面活性劑Span 80對硫磺菌菌絲生長(Biomass)及生產胞外多醣(EPS)之影響 65
4.3.2 20L醱酵槽放大液態培養硫磺菌生產菌絲及胞外多醣 70
4.4 硫磺菌醱酵物萃取之抗氧化特性分析 73
4.4.1 硫磺菌醱酵物萃取之還原能力 73
4.4.2 硫磺菌醱酵物萃取之清除 1,1-diphenyl-2-picry- lhydr- azyl (DPPH)自由基能力 77
4.4.3 硫磺菌醱酵物萃取之螯合亞鐵離子能力 81
4.4.4 硫磺菌醱酵物萃取之清除超氧陰離子能力 85
4.5硫磺菌硫磺菌醱酵物萃取之EC50值 89
4.5.1 不同濃度對硫磺菌硫磺菌醱酵物萃取之EC50值 89
4.6 硫磺菌醱酵胞外多醣、胞內多醣分子量含量分析 94
4.7硫磺菌多醣體與蛋白質含量影響 95
第五章 結論與建議 96
5.1 結論 96
5.2 建議 98
參考文獻 99
作者簡介 110




表目錄
表2-1 菇類機能性 4
表2-2 菇類的藥效成分 8
表2-3 Tween 系列界面活性劑 32
表2-4 Span 系列界面活性劑 32
表3- 1 實驗藥品全目錄 34
表3- 2實驗儀器及設備全目錄 37
表3-3 實驗裝置全目錄 39
表3-4 硫磺菌固態培養基之組成 46
表3-5 硫磺菌種瓶培養基之組 46
表3-6 硫磺菌液態培養基之組成 47
表3-7 硫磺菌醱酵槽液態培養基之組成 47
表4- 1 不同濃度操作於(5L)攪拌式醱酵槽培養之結果 69
表4-2 最適化於(20L)攪拌式醱酵槽培養之結果 71
表4-3不同濃度對硫磺菌醱酵產物還原化能力EC50値 90
表4-4不同濃度對硫磺菌醱酵產物清除DPPH自由基能力EC50値 91
表4-5不同濃度對硫磺菌醱酵產物螯合亞鐵離子能力EC50値 92
表4-6不同濃度對硫磺菌醱酵產物清除超氧陰離子能力EC50値 93


圖目錄
圖2-1為硫磺菌之子實體型態 11
圖2-2 胞外多醣合成流程圖 13
圖2-3 β-葡聚糖結晶結構 15
圖2-4 由β-葡聚醣投藥產生之寄主免疫反應 17
圖2-5 各種常見之醱酵槽(Chisti, 1989) 23
圖3-1實驗架構 33
圖3-2 攪拌式生物反應設備( 5L ) 39
圖3-3 攪拌式生物反應設備( 20L ) 40
圖3-4 高壓滅菌釜 40
圖3-5 無菌操作台 41
圖3-6 菌絲均勻機 41
圖3-7 微生物培養箱 42
圖3-8 分光光度計 42
圖3-9 減壓濃縮機 43
圖3-10 高效率液相層析設備 43
圖3-11 冷凍離心機 44
圖3-13 超低溫冷凍櫃 44
圖3- 14 醱酵產物分析流程圖 50
圖3- 15 多醣檢量線 51
圖3- 16 殘糖檢量線 52
圖3- 17 胞內多醣製備之實驗流圖 54
圖3- 18 多醣分子量檢量線 55
圖4-1 硫磺菌固態培養生長圖 58
圖4-2 硫磺菌錐形瓶種瓶培養生長圖 59
圖4-3 硫磺菌錐形瓶培養生長圖 59
圖4-4 磺菌在攪拌式醱酵槽中生長之型態 60
圖4-5不同的界面活性劑對硫磺菌菌絲體含量之影響 61
圖4-6不同的界面活性劑對硫磺菌胞外多醣產量影響 62
圖4-7不同濃度Span 80對硫磺菌菌體產量影響 63
圖4-8不同濃度Span 80對硫磺菌胞外多醣產量影響 64
圖4-10硫磺菌醱酵槽生長曲線圖(0.2 g L-1 Span 80) 66
圖4-11硫磺菌醱酵槽生長曲線圖(0.4 g L-1 Span 80) 67
圖4-12硫磺菌醱酵槽生長曲線圖(0.6 g L-1 Span 80) 67
圖4-13硫磺菌醱酵槽生長曲線圖(0.8 g L-1 Span 80) 68
圖4-14硫磺菌醱酵槽生長曲線圖(1.0 g L-1 Span 80) 68
圖4-15硫磺菌於20L醱酵槽生長曲線圖(0.6 g L-1 Span 80) 71
圖4-16硫磺菌醱酵液胞外多醣之還原力 74
圖4-17硫磺菌醱酵菌絲體乾燥物乙醇萃取之還原力 74
圖4-18硫磺菌醱酵液乾燥物乙醇萃取之還原力 75
圖4-19硫磺菌醱酵菌絲體乾燥物熱水萃取之還原力 75
圖4-20硫磺菌醱酵菌絲體胞內多醣之還原力 76
圖4-21 20L硫磺菌醱酵產物之還原力 76
圖4-22硫磺菌醱酵液胞外多醣之清除DPPH自由基之能力 78
圖4-23硫磺菌醱酵菌絲體乾燥物乙醇萃取之清除DPPH自由基之能力 78
圖4-24硫磺菌醱酵液乾燥物乙醇萃取之清除DPPH自由基之能力 79
圖4-25硫磺菌醱酵菌絲體乾燥物熱水萃取之清除DPPH自由基之能力 79
圖4-26硫磺菌醱酵菌絲體胞內多醣之清除DPPH自由基之能力 80
圖4-27 20L硫磺菌醱酵產物之清除DPPH自由基之能力 80
圖4-28硫磺菌醱酵液胞外多醣之螯合亞鐵離子能力 82
圖4-29硫磺菌醱酵菌絲體乾燥物乙醇萃取之螯合亞鐵離子能力 82
圖4-30硫磺菌醱酵液乾燥物乙醇萃取之螯合亞鐵離子能力 83
圖4-31硫磺菌醱酵菌絲體乾燥物熱水萃取之螯合亞鐵離子能力 83
圖4-32硫磺菌醱酵菌絲體胞內多醣之螯合亞鐵離子能力 84
圖4-33 20L硫磺菌醱酵產物之螯合亞鐵離子能力 84
圖4-34硫磺菌醱酵液胞外多醣之捕捉超氧陰離子 86
圖4-35硫磺菌醱酵菌絲體乾燥物乙醇萃取之捕捉超氧陰離子 86
圖4-36硫磺菌醱酵液乾燥物乙醇萃取之捕捉超氧陰離子 87
圖4-37硫磺菌醱酵菌絲體乾燥物熱水萃取之捕捉超氧陰離子 87
圖4-38硫磺菌發酵菌絲體胞內多醣之捕捉超氧陰離子 88
圖4-39 20L硫磺菌發酵產物之捕捉超氧陰離子 88


1. . 王伯徹,“藥用真菌系列報導”,食品工業,第22期,33~38,1990。
2. 王伯徹、陳啟楨、華傑,“食藥用菇類的培養與應用”,財團法人食品工業發展研究所,1998。
3. 王謙, “茯苓的醱酵研究及動物免疫學觀察”,中國食用菌,第21期,第2卷,41~42,2002。
4. 卯曉嵐,“中國大型真菌”,河南科學技術版社,437,2000。
5. 李士瑛、黃進發、廖啟成,天然抗氧化素材GSH、SOD及Astazanthin之開發與應用,生物產業,11: 155~163,2000。
6. 杜巍、李元瑞、袁靜,“食薬用菌多醣生物活性與鍵結的關係”,中國食用菌,21(3), 28~29,2002。
7. 沈業壽,洪毅,“蜜環菌多糖分離純化及其部分理化性質”,中國食用菌,第18期,第1卷,38~40,1999。
8. 林秀卿,“食藥用菇類之呈味品質和抗氧化性質之評估,國立中興大學,食品科學系碩士論文,1999。
9. 林家如,浸液醱酵培養基與培養條件對藥用真菌茯苓菌絲體及胞外多醣體升成之影響,大葉大學食品工程研究所碩士論文,2002。
10. 施益民、呂鋒州.1989.自由基與各種疾病.當代醫學 16: 54~62.
11. 香川綾(監修),“四訂食品成分表”,榮養大學出版部,181-184,日本東京,1989。
12. 高馥君、李敏雄 ,食品保存與抗氧化劑,食品工業30(12):17~24,1998。
13. 張春生,“菇類保健食品技術開發”,南台科技大學,生技產品試量產暨產品功能性評估技術研發中心。
14. 陳雯賢,“不同碳源對樟芝液態培養生產菌絲體及胞外多醣之影響”,明新科技大學,化學工程研究所碩士論文,2006。
15. 中國醫學科學院藥物研究所藥理室新藥組,“天麻水劑及蜜環菌醱酵液對神經系統的藥理作用”,中華醫學雜誌,第8期,470~472,1977。
16. 中藥雜誌,第26期,第6卷,381~384,2001。
17. 黃正良,“我國天麻的藥理研究及臨床應用現狀”,中西醫結合雜誌,第5期,第4卷,251~254,1985。
18. 黃偉仲,硫磺菌醱酵生產多醣體及其生物活性之研究,明新科技大學,化學工程研究所碩士論文,2009。
19. 楊芳鏘、楊明哲,“菌絲狀真菌之深層培養技術”,化工技術,176~182,2001,。
20. 楊新美,“中國食用菌栽培學”,農業出版社,540~549,1988。
21. 楊新美,“中國食用菌栽培學”,農業出版社,543~546,1988。
22. 鄒容,康冀川,“蜜環菌研究進展”,山地農業生物學報,第24期,第3卷, 260~264,2005。
23. 劉 波,“中國藥用真菌”,山西人民出版社,1976。
24. 蔡介中,桑黃醱酵產物及其抗氧化特性研究,明新科技大學,化學工程研究所碩士論文,2007。
25. 蔡淑瑤,“靈芝與柳松菇之抗氧化性質和其對腫瘤細胞之毒性及柳松菇之抗致突變性質”,國立中興大學食品科學所碩士論文,2002。
26. 蔡雁暉,“樟芝深層培養液及其多醣體之抗氧化特性,國立中興大學,食品科系碩士論文,2002。
27. 賴慶亮譯,水野卓、川合正允原著,“菇類的化學、生化學”,國立編譯館,1997。
28. 謝秋蘭,杜仲水萃取物抗氧化機能性之研究。國立中興大學食品科學研究所博士論文,2000。

29. Abuja, P. M.,, Albertini, R. Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins. Clinica Chimica Acta, 306:1-17, 2001.
30. Ames, B. N., Shigenaga, M. K., Hagen, T. M. Oxidants, antioxidants, and the degenerative diseases of aging. Process Natural Acad. Scienc. USA, 90:7915-7922, 2009
31. Appleton RE, Jan JE and Kroeger PD.. Laetiporus sulphureus causing visual hallucinations and ataxia in child. Canadian Medical Association Journal 139(1):48-49. 1998.
32. Babitskaya V.G., Shcherba V.V., Puchkova T.A., Smirnov D.A., “Polysaccharides of Ganoderma lucidu : Factors Affecting Their Production.”, Applied Biochemistry and Microbiology, 169-173, 2005.
33. Bobek P, Galbavý S, “Hypocholesterolemic and antiatherogenic effect of oyster mushroom (Pleurotus ostreatus) in rabbits”, Nahrung, 43: 339-342, 1999.
34. Bohn J. A., BeMiller J. N., “(1→3)-β-Glucans as biological response modifiers: a review of structure-functional activity relationships”, Carbohydrate Polymers, 28: 3-14, 1995.
35. Boonstra V. H, Mulder P. G, De Jong F. H, Hokken-Koelega A. C., “Serum dehydroepiandrosterone sulfate levels and pubarche in short children born small for gestational age before and during growth hormone treatment”, Journal of Clinical Endocrinology and Metabolism, 89 : 712-717, 2004.
36. Branen, A. L. Toxicology and biochemistry of butylated hydroxyl anisole and butylated hydroxytoluene. Journal of agricultural and Food chemistry, 52:59-63, 1975.
37. Carpenter, A. P. Determination of tocopherols in vegetableoils. Journal of American Oil Chemical Society, 56:668-672, 1979
38. Chain, E. B., Gualandi, G.Morisi, G., Aeration studies. IV. Aeration condition in 3000-liter submerged fermentation with various micro organisms. Biotechnology and Bioengineering, 8: 595-619, 1966.
39. Chang, C.-N. Antioxidant and antimutagenic properties of Grifola frondosa, Morchella esculenta and Termitomyces albuminosus mycelia. Master s Thesis, National Chung-Hsing University,Taichung, Taiwan.2002
40. Chang, H. L., Chao, G. R., Chen, C. C., Mau, J. L. Non-volatile taste components of Agaricus blazei, Antrodia camphorata and Cordyceps militaris mycelia. Food Chem, 74:203-207, 2001.
41. Chang, Preliminary Studies of Components of Ficus awkeotsang Makino with Antioxidative Activity Graduate. Institute of Food Science, 2008
42. Charles A. J., Paul T., Mark W., and Mark J. S., “Principles of innate and adaptive immunity”, In: Immuno Biology (6th), Garland Science Press, 14-16, 2005.
43. Cheung P. C. K., “Dietary fiber content and composition of some cultivated edible mushroom fruiting bodies and mycelia”, Food Chemistry, 44: 468-471, 1996.
44. Cheung P. C. K., “Dietary fiber content and composition of some cultivated edible mushroom fruiting bodies and mycelia”, Food Chemistry, 44: 468-471, 1996.
45. Dziezak, J. D. Preservatives: antioxidant. Food Techno,. 40:94-10, 1986.
46. Eyal J., “Mushroom mycelium growth in submerged culture-potential food applications”, In:Biotechnology and Food Ingeredints,. R., Van Nostrand Reinhold, 31-64,1991.
47. Forage R.G., Harrison D.E.F., Pitt. D.E., “Effect of environment on microbial activity., Comprehensive Biotechnology, 1:253-279, 1985.
48. Fruehauf J. P., Bonnard G. D., Herberman R. B., “The effect of letinan on production of interleukin-1 by human monocytes”, Immunpharnacolog, 5:65-74, 1982.
49. Godron M. H., “The Mechanism of Antioxidant Action in Vitro”, Food Antioxidants, 1-18, 1990.
50. Halliwell B., Gutteridge J. M. C., “Free Radicals in Biology and Medicine (Third edition)”, Oxford University Press, 123-126 , 1999.
51. Halliwell B., Gutteridge J. M. C., “Free Radicals in Biology and Medicine (Third edition)”, Oxford University Press, 123-126 , 1999.
52. Harrison D.E.F., Pitt. D.E., “Effect of environment on microbial activity.”,
53. Herre J., Marshall A. S., Caron E., Edwards A. D., Williams D. L., Schweighoffer E., Tybulewicz V., Reise Sousa C., Gordon S., Brown G. D., “Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages”, Blood, 104: 4038-4045, 2004.
54. Hikino H., Ishiyama M., Suzuki Y., Konne C., “Mechanisms of hypoglycemic activity of Ganoderma B: a glycan of Ganoderma lucidum fruit bodies”, Planta Medica, 55 : 423-428, 1989.
55. Hsu I.C., Chou P.F., Shu C.H., “Effects of morphology and oxygen supply on schizophyllan formation by Schizophyllum commune using a pellet size controlling bioreactor.”, Journal Chemistry Technol Biotechnol, 80:1383-1388.2005.
56. Huang, L.C. Antioxidant properties and polysaccharide composition analysis of Antrodia camphorata and Agaricus blazei. Master’s Thesis, National Chung-Hsing University, Taichung, Taiwan, 2000.
57. Imada, K. Fujikawa, K. Yahara, Nakamura T., “Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion”, Journal of agricultural and Food chemistry, 40:945-948, 1992.
58. Jeng-Leun Mau a, Chieh-No Chang a, Shih-Jeng Huang a, Chin-Chu Chen.” Antioxidant properties of methanolic extracts from Grifola frondosa,Morchella esculenta and Termitomyces albuminosus mycelia” Department of Food Science, National Chung-Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan, ROC. 31 October 2003.
59. Ju L.K., Ho C.S., Shanahan J.F., “Effects of Carbon Dioxide on the Rheological Behavior and Oxygen Transfer in Submerged Penicillin Fermentations.”, Biotechnology and Bioengineering, 38:1223-1232, 1991.
60. Kang, A., Wang, Y., Harvey, L.M., McNeil B., “Effect of air flow rate on scleroglucan synthesis by Sclerotium glucanicum in an airlift bioreactor with an internal loop.”, Bioprocess Engineering, 23:69-74, 2002.
61. Kawagishi H., Inagake R., Kanao T., Mizuno T., Shimura K., Ito H., Hagiwara, T., & Nakamura, T., “Formolysis of a potent Antitumor complex from Agaricus blazei fruiting bodies and antitumor”, Carbohydrate Research, 183: 150-154, 1989.
62. Kiho T., I. Yoshida, K. Nagai and S. Ukai., “(1→3)-β-D-glucan from an alkaline extract of Agrocybe cylindracea, and antitumor activity of its ο-(carboxy-methyl) ated derivatives”, Carbohydrate Research, 189: 273-279, 1989.
63. Kojima T., Tabata. K., Itoh W., Yanaki T., “Molecular weight dependence of the antitumor activity of Schizophyllan”, Agricultural and Biological Chemistry, 50: 231-232, 1986.
64. Kurakata Y., Sakagami H., Sato A., Kikuchi K., Takeda M., Asano K., Sato T.,
65. Lee J.H., Kim J.H., Zhu I.H., Zhan X.B., Lee J.W., Shin D.H., Kim S.K., “Optimization of conditions for the production of pullulan and high molecular weight pullulan by Aureobasidium pullulans.”, Biotechnol, 23:817-820, 2001.
66. Lingnert H., Vallentin K., Eriksson C. E., “Measurement of antioxidant effect in model system”, journal of food protection, 3:87-103, 1979.
67. Lingnert, H., Vallentin, K., Eriksson, C. E. Measurement of antioxidant effect in model system. J. Food Proceedings Presv, 3:87-103, 1979.
68. Litchfield J. H., “Submerged Culture of Mushroom Mycelium” In: Microbiology Technology, Peppler, H. J., Reinhold Publishing Corporation, 107-144, 1967.
69. Litchfield J. H., Peppler H. J., Perlmam D., eds., “Production of single cell protein for use in food and feed”, Microbial Technology, 11: 93-145, 1979.
70. Liu F., Ooi V.E. C., Chang S.T., “Free radical scavenging activity of mushroom polysaccharide extracts.”, Life Science., 60:763-771, 1997.
71. Lull C,WichersHJ.,Savelkoul HF. 2005. Antiinflammatory and immunomodulating properties of fungal metabolites. Mediators of Inflammation, 2:63-80, 2005.
72. Lung M.Y., “Exopolysaccharide production and antioxidant property of Antrodia camphorata in batch fermentation”, Doctor’s Thesis, National Central University, Chungli, 2004.
73. Lung M.Y., “Exopolysaccharide production and antioxidant property of Antrodia camphorata in batch fermentation”, Doctor’s Thesis, National Central University, Chungli, 2004
74. Mau J. L., C. N. Chang, S. J. Huang,, C. C. Chen., “Antioxidant properties of methanolic extracts from Grifola frondosa, Morchella esculenta and Termitomyces albuminosus mycelia”, Food Chemistry, 87:111-118, 2004.
75. Metz B., Kossen N.W.F., “The growth of molds in the form of pellets:Literature review.”, Biotechnology and Bioengineering, 19:178-179, 1977.
76. Mizuno T., “Biomolocules of mushroom: Food function and medicinal effect of mushroom fungi”, Food Reviews International, 11: 7-12, 1995.
77. Mizuno T., Saito H., Nishitoba T., Kawagishi H., “Antitumor-active substances from mushroom.”, Food Reviews International, 11: 23-61, 1995.
78. Mizuno, T. Biomolocules of mushroom: Food function and medicinal effect of mushroom fungi. Food Reviews Internationa, 11:7-12, 1995.
79. Moraine, R. A., Rogovin, P., Kinetics of the xanthan fermentation .Biotechnology and Bioengineering, 15:225-237, 1973.
80. Morrissey, P. A., O'Brien, N. M. (1998). Dietary antioxidants in health and disease. International Dairy Journal, 8:463-472, 1998.
81. Nestel, P. J. The role of antioxidants in preventing coronary disease. Food
82. Niki, E. (1992). Active oxygens and free radicals in biology. Journal of Clinical Endocrinology and Metabolism, 41:379-390, 1992.
83. nis T. C. P., Maseira V. M. C., Almeida L. M., “Action of phenolic derivatives as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers”, Archives of Biochemistry and Biophysics, 315:161-169, 1994.
84. Oh J.Y., Cho E.J., Nam S.H., Choi J.W., Yun J.W., “Production of polysaccharide–peptide complexes by submerged mycelial culture of an entomopathogenic fungus Cordyceps sphecocephala.”, Process Biochemistry, 42:352-362, 2007.
85. Ohno N., Miura N. N., Chiba N., Adachi Y., Yadomae T., “Enhancement of LPS triggered TNF-α (tumor necrosis factor-α) production by (1→3)-β-D-glucans in mice”, Biological and Pharmaceutical Bulletin, 18: 126-133, 1995.
86. Oyaizu M., “Antioxidative activity of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography”, Nippon Shokuhin Kogyo Gakkaishi, 35:771-775, 1986.
87. Peters H.U.,Herbst H.,Hesselink P.G.M.,Lunsdort H.,Schumpe A.,Deckwer W. D., “The influence of agitation rate on Xanthan production by Xanthomonas campestris.”, Biotechnology and Bioengineering, 34:1393-1397, 1989.
88. Rau U., Gura E., Olszewski E., Wagner F., “Enhanced glucan formation of filamentous fungi by effective mixing, oxygen limitation and fed-batch processing.”, Journal of Industrial Microbiology, 9:19-26, 1992.
89. Robak J., R. J. Gryglewski, “Flavonoids are scavengers of superoxide anions”, Biochemical Pharmacology, 37:837-841, 1988.
90. Sarangi I., Ghosh D., Bhutia S.K., Mallick S.K., Maiti T.K., “Anti-tumor and immunomodulating effects of Pleurotus ostreatus mycelia - derived proteoglycans ”, International Immunopharmacology, 6:1287-1297, 2006
91. Schindler C., Darnell J. E., Jr., “Transcriptional responses to polypeptide ligands: the JAK-STAT pathway”, Annunal Review Biochemistry, 64:621-651, 1995.
92. Smith. M.D., Ho. C.S., “The Effect of Dissolved Carbon Dioxide on Penicillin production: Mycelial Morphology.”, Journal of Biotechnol, 2:347-363, 1985.
93. Staments P.. Novel Antimicrobials from Mushrooms, HerbalGram, American Botanical Council. 54:28-33. 2002
94. Su C.H., Sun C.S., Juan S.W., Hu C.H., Ke W.T., Sheu M.T., “Fungal mycelia as the source of chitin and polysaccharide and their applications as skin substitutes.”, Biomaterials., 18:1169-1174, 1997.
95. Tam S. C., K. P. Yip, K. P. Fung ., S. T. Chang, “Hypotensive and renal effects of extract of the edible mushroom Pleurotus sajor-caju”, Life Science, 38: 1155-1161, 1986.
96. Thomas, M., J. The role of free radicals and antioxidants: how do we know that they are working. Food Science. Nutral, 35:21-39, 1995.
97. Tseng CC, Hattori Y, Kasai K, et al. Decreased production of nitric oxide by LPS-treated J774 macrophages in high-glucose medium. Life Science, 60:99-106, 1997.
98. Wang Y., McNeil B., “Dissolved oxygen and scleroglucan fermentation process.”, Biotechnol. Lett, 17:257-262, 1995.
99. Wang, Y., McNeil, B., pH effects on exopolysaccharide and oxlicacid production in cultures of Sclerotium glucanium. Enzyme and Microbial Technolog,. 17:124-130, 1995.
100. Wang, Y., McNeil, B.,” pH effects on exopolysaccharide and oxlicacid production in cultures of Sclerotium glucanium.” Enzyme and Microbial Technology, 17:124-130, 1995.
101. Wasser S. P., Weis A. L., “Medicinal properties of substances occurring in higher basidomycetes mushrooms: current perspectives”, International Journal of Medicinal Mushrooms, 1: 31-62, 1999.
102. Wasser, S.P., Weis, A.L.” Medicinal properties of substances occurring in higher basidomycetes mushrooms: current perspectives (review)”Mushroom, 1: 31-62, 1999.
103. Weldman A. D., Maddox I. S., “Exopolysaccharides from lactic acid bacteria: Perspectives and challenges”, Trends Biotechnloog, 21: 269-274, 2003.
104. Wu, S.J., Tsai, J.Y., Lai, M.N., Ng, L.T.,Armillariella mellea shows antiinflammatory activity by inhibiting the expression of NO, iNOS, COX-2 and cytokines in THP-1 cells. The American Journal of ChineseMedicine, 35:507-516, 2007.
105. Yamaguchi N., Y. Okada, “Browning reaction products produced by the reaction between sugars and amino acids”, VII. Decomposition of lipid hydroperoxide by the browning products, Nippon Shokuhin Kogyo Gakkaishi, 15:187-191, 1968.
106. Yamaguchi N., Y. Okada, “Browning reaction products produced by the reaction between sugars and amino acids”, VII. Decomposition of lipid hydroperoxide by the browning products, Nippon Shokuhin Kogyo Gakkaishi, 15:187-191, 1968.
107. Yang F.C., Liau C.B., “The influence of inviromental conditions on polysaccharide formation by Ganoderma lucidum in submerged culture.”, Process biochemistry, 33:547-553, 1998.
108. Yang Q. Y., S. C. Joung, “Medical Mushroom in Chin”, Muchroom Science, 12: 631-643, 1987.
109. Young S. H, Jacobs R. R., “Sodium hydroxide-induced conformational change in Schizophyllan detected by the fluorescence dye, aniline blue”, Carbohydrate Research, 310:91-99, 1998.
110. Zhang L., Tizard I. R., “Activation of a mouse macrophage cell line by acemannan: The major carbohydrate fraction from Aloe vera gel”, Immunopharmacology, 35: 119-128, 1996.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top