吳盈儒(2011),貝氏模式選取法在考慮族群分層情況下於基因病例對照資料的應用。國立彰化師範大學統計資訊所碩士論文。林祿偉 (2012),針對 WTCCC 資料在羅吉斯混合模式下進行貝氏變數選取。國立彰化師範大學統計資訊所碩士論文。
王詩宜 (2012),比較貝氏變數選取法SSVS與RJMCMC:應用於WTCCC資料。國立彰化師範大學統計資訊所碩士論文。Albert, J. H. and Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88, 669-679.
Brooks, S. P., Giudici, P. and Roberts, G. O. (2003). Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions. Journal of the Royal Statistical Society, Ser. B, 65, 3-55.
Chen, Z. and Dunson, D. B. (2003). Random effects selection in linear mixed models. Biometrics, 59, 762-769.
Fridley, B. L. (2009). Bayesian variable and model selection methods for genetic association studies. Genetic Epidemiology, 33, 27-37.
Gelman, A., Roberts, G. O. and Gilks, W. R. (1996). Efficient Metropolis Jumping Rules. Bayesian Statistics, 5, 599-607.
Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distribution and the Bayesian restoration of image. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721-741.
George, E. I. and McCulloch, R. E. (1993). Variable Selection via Gibbs Sampling. Journal of the American Statistical Association, 88, 881-889.
Geryer, C. J. (1992). Practical Markov Chain Monte Carlo. Statistical Science, 7, 473-511.
Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711-732.
Green, P. J. (2003). Trans-dimensional Markov chain Monte Carlo. Highly structured stochastic systems. P. J. Green, N. L. Hjort and S. Richardson. Oxford, Oxford University Press, 179-198.
Holmes, C. C. and Held, L. (2006). Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Analysis, 1, 145-168.
Kinney S. K. and Dunson, D. B. (2007). Fixed and random effects selection in linear and logistic models. Biometrics, 63, 690-698.
Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38, 963-974.
Lamnisos, D., Griffin, J. E. and Steel, M. F. J. (2009). Transdimensional sampling algorithms for Bayesian variable selection in classification problems with many more variables than observations. Journal of Computational and Graphical Statistics, 18, 592-612.
Lee, K. E., Sha, N., Dougherty, E. R., Vannucci, M. and Mallick, B. K. (2003). Gene selection: a Bayesian variable selection approach. Bioinformatics, 19, 90-97.
Purves, R. D. (1992). Optimum Numerical Integration Methods for Estimation of Area-Under-the-Curve (AUC) and Area-Under-the-Moment-Curve (AUMC). Journal of Pharmacokinetics and Biopharmaceutics, 20, 211-266.
Roberts, G. O. and Rosenthal, J. S. (2001). Optimal Scaling for Various Metropolis-Hastings Algorithms. Statistical Science, 16, 351-367.
Smith, M. and Kohn, R. (1996). Nonparameteric regression using Bayesian variable selection. Journal of Econometrics, 75, 317-343.
Swets, J. A. (1961). Is there a sensory threshold? Science, New Series, 134, 168-177.
Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240, 1285-1293.
The Wellcome Trust Case Control Consortium. (2007). Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls.
Nature, 447, 661-678.
Zellner, A. and Siow, A. (1980). Posterior odds ratios for selected regression hypotheses. Bayesian Statistics, 31, 585-603.