跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/20 12:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林于庭
研究生(外文):Yu-Ting Lin
論文名稱:短波長有機發光材料與元件
論文名稱(外文):Short-Wavelength Organic Light-Emitting Materials and Devices
指導教授:吳忠幟
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:163
中文關鍵詞:短波長有機發光元件發光材料發光元件
外文關鍵詞:organicshort wavelengthlight emitting deviceslight emitting materials
相關次數:
  • 被引用被引用:0
  • 點閱點閱:292
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
短波長有機發光材料與元件,具有高度應用於照明燈源及全彩化顯示器上之潛力。
在本論文中,首先我們探討含嘧啶環寡聚物,其具有良好的薄膜形態穩定性,高螢光量子產率及寬能隙等特性,可作為藍光有機發光元件之發光層材料或主體材料,而據以製作之藍光有機發光元件在直流電源驅動時,可承受高電流密度,產生高亮度之藍光。
接著,我們探討三聚芴化合物,其所具有罕見之高螢光量子產率及雙極性載子傳輸特性,將其應用於藍光有機發光元件時,會因為元件結構而影響元件特性。經由雙層異質結構之元件設計,大幅地提昇元件之發光效率,未摻雜客體發光物之藍光元件具有低操作電壓及相當高的外部量子效率等特性,其所發出的藍光光色相當地純且色彩飽和。
最後,我們探討二聚芴化合物作為紫外光有機發光元件之發光層材料,由於二聚芴化合物在固態薄膜時,具有良好的形態穩定性、高螢光量子產率及良好之雙極性載子傳輸特性,搭配雙層異質結構,成功地製作出具有高外部量子效率、低操作電壓及低亮度起始電壓值之電特性的紫外光有機發光元件。
Organic light-emitting devices (OLEDs) have been the subjects of intense investigation in recent years due to their applications in displays and lighting. In all these applications, the short-wavelength emitting materials and devices with high efficiency, good color purity and thermal stability have been essential. In this thesis, we investigate of various device architectures to study the optical and electrical properties of the short-wavelength emitting materials.
In the first part of the work, we employed an efficient and morphologically stable pyrimidine-containing spirobifluorene-cored oligoaryl, as a blue emitter or emitting host for blue OLEDs. These devices exhibit unique endurance for high currents, leading to a very high brightness under dc driving.
In the second part of the work, we investigate various device architectures of OLEDs incorporating highly efficient blue-emitting and ambipolar carrier-transport ter(9,9-diarylfluorene)s, and their influences on device characteristics. Using the double heterostructure that provides effective double confinement on both carriers and excitons, results in a high EL external quantum efficiency, low-voltage, and very saturated blue emission without doping the emitting layer.
Finally, we studied a series of UV emitter based on ambipolar carrier-transport bi(9,9-diaryfluorene)s that exhibited promising physical properties including high morphological and thermal stability, and high neat-film quantum yields for UV emission. The UV OLEDs using the double heterostructure can exhibit high EL external quantum efficiency, low device voltage, and UV emission without emissive dopants.
Chapter 1: 緒論 ……………………………………………… 1
1-1有機發光二極體元件 ………………………………………… 1
1-2短波長及寬能隙發光材料與元件 …………………………… 3
1-3論文結構 ……………………………………………………… 5
參考文獻 ………………………………………………………… 7

Chapter 2: 實驗方法 ……………………………………………… 12
2-1簡介 ………………………………………………………… 12
2-2材料準備與分析 ……………………………………………… 12
2-2.1材料純化 ……………………………………………… 12
2-2.1熱物理性質量測 ………………………………………… 13
2-2.1光物理性質量測 ………………………………………… 15
2-3發光元件之製作 ……………………………………………… 16
2-4發光元件之量測 ……………………………………………… 17
參考文獻 ………………………………………………………… 19

Chapter 3: 含嘧啶環寡聚物之藍光有機發光二極體 ………… 20
3-1緒論 …………………………………………………………… 20
3-2發光材料之介紹 ……………………………………………… 20
3-3發光材料之特性 ……………………………………………… 22
3-3.1熱物理性質 ……………………………………………… 22
3-3.2光物理性質 ……………………………………………… 23
3-4發光元件結構 ………………………………………………… 27
3-5發光元件之結果與討論 ……………………………………… 31
3-6結論 …………………………………………………………… 36
參考文獻 ………………………………………………………… 37

Chapter 4: 寡聚芴化物之藍光有機發光二極體 ……………… 57
4-1緒論 …………………………………………………………… 57
4-2發光材料之介紹 ……………………………………………… 57
4-3發光材料之特性 ……………………………………………… 59
4-3.1熱物理性質 ……………………………………………… 59
4-3.2光物理性質 ……………………………………………… 60
4-4發光元件結構 ………………………………………………… 63
4-5發光元件之結果與討論 ……………………………………… 66
4-6結論 …………………………………………………………… 79
參考文獻 ………………………………………………………… 80

Chapter 5: 寡聚芴化物之紫外光元件 ……………… 127
5-1緒論 …………………………………………………………… 127
5-2發光材料之介紹 ……………………………………………… 127
5-3發光材料之特性 ……………………………………………… 130
5-3.1熱物理性質 ……………………………………………… 130
5-3.2光物理性質 ……………………………………………… 131
5-4發光元件結構 ………………………………………………… 134
5-5發光元件之結果與討論 ……………………………………… 137
5-6結論 …………………………………………………………… 140
參考文獻 ………………………………………………………… 141

Chapter 6: 總結與展望 ……………………………………… 162
6-1結論 …………………………………………………………… 162
6-2展望 …………………………………………………………… 163
Chapter 1.
1.M. Pope, J. Chem. Phys. 38, 2043 (1963).
2.W. Helfrich and W. G. Schneider, Phys. Rev. Lett. 14, 229 (1965).
3.M. Sano, M. Pope and H. Kallmann, J. Chem. Phys. 43, 2920 (1965).
4.C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).
5.C. W. Tang, S. A. VanSlyke and C. H. Chen, J. Appl. Phys. 65, 3610 (1989).
6.C. Adachi, S. Tokito, T. Tsutsui and S. Saito, Jap. J. Appl. Phys. 27, L269 (1988).
7.C. Adachi, T. Tsutsui and S. Saito, Appl. Phys. Lett. 55, 1489 (1989).
8.J. H. Burroughs, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, Nature 347, 539 (1990).
9.N. Tessler, N. T. Harrison and R. H. Friend, Adv. Mater. 10, 64 (1998).
10.C. Adachi, T. Tsutsui and S. Saito, Appl. Phys. Lett. 56, 799 (1990).
11.C. Adachi, T. Tsutsui and S. Saito, Appl. Phys. Lett. 57, 531 (1990).
12.M. A. Baldo, D. F. O’ Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, Nature 395, 151 (1998).
13.C. Adachi, M. A. Baldo, M. E. Thompson and S. R. Forrest, J. Appl. Phys. 90, 5048 (2001).
14.M. A. Baldo, C. Adachi and S. R. Forrest, Phys. Rev. B, 62, 10967 (2000).
15.C. Adachi, M. A. Baldo, S. R. Forrest, S. Lammansky, M. E. Thompson and R. C. Kwong, Appl. Phys. Lett. 78, 1622 (2001).
16.C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson and S. R. Forrest, Appl. Phys. Lett. 79, 2082 (2001).
17.R. J. Holmes, S. R. Forrest, Y.-J. Tung, R. C. Kwong, J. J. Brown, S. Garon and M. E. Thompson, Appl. Phys. Lett. 82, 2422 (2003).
18.P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest and M. E. Thompson, IEEE Transactions on Electron Devices 44, 1188-1203 (1997).

Chapter 2.
1.C.-C. Wu, Y.-T. Lin, H.-H. Chiang, T.-Y. Cho, C.-W. Chen, K.-T. Wong, Y.-L. Liao, G.-H. Lee, and S.-M. Peng, Appl. Phys. Lett. 81, 577 (2002).
2.(a) R. Gommper, H.-J.Mair, , K.Polborn, Synthesis, 696, (1997). (b) J.W. Goodby, M. Hird, R.A. Lewis and K.J. Toyne, Chem. Commun., 2179 (1996).
3.(a) J.C. de Mello, H.F. Wittmann and R.H. Friend, Adv. Mater. 9, 230 (1997). (b) The 325-nm line of the He-Cd laser was used to excite samples placed in a calibrated integrating sphere that was coupled with a cooled CCD spectragraph and was purged with dry nitrogen, following procedures previously reported in (a).
4.J. Salbeck, N. Yu, J. Bauer, F. Weissörtel, and H. Bestgen, Synth. Met. 91, 209 (1997).
5.G. Jones II, W.R. Jackson, C.Y. Choi and W.R. Bergmark, J. Phys. Chem. 89, 294 (1985).
6.(a) Ip was measured with a low-energy photoelectron spectrometer Riken-Keiki AC-2. (b) T. Sano, Y. Hamada and K. Shibata, IEEE J. Selected Topics in Quantum Electronics 4, 34 (1998).
7.A. Elschner, F. Bruder, H-W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, S. Thurm and R. Wehrmann, Synth. Met. 111-112, 139 (2000).
8.L.S. Hung, C.W. Tang and M.G. Mason, Appl. Phys. Lett. 70, 152 (1997).

Chapter 3.
1.C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).
2.C.W. Tang, S.A. VanSlyke and C.H. Chen, J. Appl. Phys. 65, 3610 (1989).
3.F. Steuber, J. Staudigel, M. Stössel, J. Simmerer, A. Winnacker, H. Spreitzer, F. Weissörtel and J. Salbeck, Adv. Mater. 12, 130 (2000).
4.S. Miyaguchi, S. Ishizuka, T. Wakimoto, J. Funaki, Y. Fukuda, H. Kubota, K. Yoshida, T. Watanabe, H. Ochi, T. Sakamoto, M. Tsuchida, I. Oshita and T. Tohma, in Extended Abstracts, 9th Int. Workshop on Inorganic and Organic Electroluminescence, Bend, OR. USA, 137 (1998).
5.C. Hosokawa, Synth. Met. 91, 3 (1997).
6.J. Kido, M. Kimura and K. Nagai, Science 267, 1332 (1995).
7.J. Salbeck, N. Yu, J. Bauer, F. Weissörtel, and H. Bestgen, Synth. Met. 91, 209 (1997).
8.K.-T. Wong, T.S. Hung, Y.-T. Lin, C.-C. Wu, G.-H. Lee, S.-M. Peng, C.H. Chou and Y.O. Su, Org. Lett., in press (2002).
9.W.-L. Yu, J. Pei, W. Huang and A.J. Heeger, Adv. Mater. 12, 828 (2000).
10.(a) R. Gommper, H.-J.Mair, K.Polborn, Synthesis. 696, (1997). (b) J. W. Goodby, M. Hird, R. A. Lewis and K. J. Toyne, Chem. Commun., 2179 (1996). C. W. Tang, D. J. Williams and J. C. Chang, US. Patent 5 249 870 (1994).
11.J. M. Kauffman, P. T. Litak, J. A. Novinski, C. J. Kelley, A. Ghiorghis and Y. J. Qin, J. Fluoresc. 5, 295 (1995).
12.J. B. Birks, Photophysics of Aromatic Molecules, John Wiley & Sons, New York (1970).
13.G. Jones II, W. R. Jackson, C. Y. Choi and W. R. Bergmark, J. Phys. Chem. 89, 294 (1985).
14.(a) J. C. de Mello, H. F. Wittmann and R. H. Friend, Adv. Mater. 9, 230 (1997). (b) The 325-nm line of the He-Cd laser was used to excite samples placed in a calibrated integrating sphere that was coupled with a cooled CCD spectragraph and was purged with dry nitrogen, following procedures previously reported in (a).
15.(a) Ip was measured with a low-energy photoelectron spectrometer Riken-Keiki AC-2. (b) T. Sano, Y. Hamada and K. Shibata, IEEE J. Selected Topics in Quantum Electronics 4, 34 (1998).
16.H. Mattoussi, H. Murata, C. D. Merritt, Y. Iizumi, J. Kido and A.H. Kafafi, J. Appl. Phys. 86, 2642 (1999).
17.D. Z. Garbuzov, S. R. Forrest, A. G. Tsekoun, V. Bulovic and M. E. Thompson, J. Appl. Phys. 80, 4644 (1996).
18.A. Elschner, F. Bruder, H-W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, S. Thurm and R. Wehrmann, Synth. Met. 111-112, 139 (2000).
19.D. F. O’Brien, P. E. Burrows, S. R. Forrest, B. E. Koene, D. E. Loy and M. E. Thompson, Adv. Mater. 10, 1108 (1998).
20.L. S. Hung, C. W. Tang and M. G. Mason, Appl. Phys. Lett. 70, 152 (1997).
21.J. Shi and C. W. Tang, Appl. Phys. Lett. 70, 1665 (1997).
22.N. Tamoto, C. Adachi and K. Nagai, Chem. Mater. 9, 1077 (1997).
23.Y. Kijima, N. Asai and S. Tamura, Jpn. J. Appl. Phys. 38, 5247 (1999).

Chapter 4.
1.C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).
2.C.W. Tang, S.A. VanSlyke and C.H. Chen, J. Appl. Phys. 65, 3610 (1989).
3.F. Steuber, J. Staudigel, M. Stössel, J. Simmerer, A. Winnacker, H. Spreitzer, F. Weissörtel and J. Salbeck, Adv. Mater. 12, 130 (2000).
4.J. Shi, and C. W. Tang, Appl. Phys. Lett. 80, 3201 (2002).
5.Y.-H. Kim, D.-C. Shin, S.-H. Kim, C.-H. Ko, H.-S. Yu, Y.-S. Chae, and S.-K. Kwon, Adv. Mater. 13, 1690 (2001).
6.L.-H. Chan, H.-C. Yeh, and C.-T. Chen, Adv. Mater. 13, 1637 (2001).
7.C. Hosokawa, H. Higashi, H. Nakamura, and T. Kusumoto, Appl. Phys. Lett. 67, 3853 (1995).
8.Y. Kijima, N. Asai, and S.-I. Tamura, Jpn. J. Appl. Phys. 38, part 1, 5274 (1999).
9.Y. Li, M. K. Fung, Z. Xie, S.-T. Lee, L.-S. Hung, and J. Shi, Adv. Mater. 14, 1317 (2002).
10.K.-H. Weinfurtner, F. Weissortel, G. Harmgarth, and J. Salbeck, Proc. SPIE-Int. Soc. Opt. Eng. 3476, 40 (1998).
11.D. Katsis, Y. H. Geng, J. J. Ou, S. W. Culligan, A. Trajkovska, S. H. Chen, and L. J. Rothberg, Chem. Mater. 14, 1332 (2002).
12.Y. Geng, D. Katsis, S. W. Culligan, J. J. Ou, S. H. Chen, and L. J. Rothberg, Chem. Mater. 14, 463 (2002).
13.M. Redecker, D. D. C. Bradley, M. Inbasekaran, and E. P. Woo, Appl. Phys. Lett. 73, 1565 (1998).
14.M. Belletête, M. Ranger, S. Beaupré, M. Leclerc, and G. Durocher, Chem. Phys. Lett. 316, 101 (2000).
15.S. Setayesh, A. C. Grimsdale, T. Weil, V. Enkelmann, K. Müllen, F. Meghdadi, E. J. W. List, G. Leising, J. Am. Chem. Soc. 123, 946 (2001).
16.K.-T. Wong; Y.-Y. Chien; R.-T. Chen; C.-F. Wang; Y.-T. Lin; H.-H. Chiang; P.-Y. Hsieh; C.-C. Wu; C. H. Chou; Y. O. Su; G.-H. Lee; and S.-M. Peng, J. Am. Chem. Soc. 124, 11576 (2002).
17.C.-C. Wu, T.-L. Liu, W.-Y. Hung, Y.-T. Lin, K.-T. Wong, R.-T. Chen, Y.-M. Chen, and Y.-Y. Chien, J. Am. Chem. Soc. 125, 3710 (2003).
18.T. Sano, Y. Hamada and K. Shibata, IEEE J. Selected Topics in Quantum Electronics 4, 34 (1998).
19.H. Kirihata, and M. Uda, Rev. Sci. Instrum. 52, 68 (1981).
20.C.-C. Wu, Y.-T. Lin, H.-H. Chiang, T.-Y. Cho, C.-W. Chen, K.-T. Wong, Y.-L. Liao, G.-H. Lee, and S.-M. Peng, Appl. Phys. Lett. 81, 577 (2002).
21.C.-C. Wu, W.-Y. Hung, T.-L. Liu, L.-Z. Zhang, and T.-Y. Luh, J. Appl. Phys. 93, 5465 (2003).
22.Y. Kuwabara, H. Ogawa, H. Inada, N. Noma, and Y. Shirota, Adv. Mater. 6, 677 (1994).
23.J. Shi, C. W. Tang, and C. H. Chen, U. S. Patent No. 5,646,948 (1997).
24.Z. Gao, C. S. Lee, I. Bello, S. T. Lee, R.-M. Chen, T.-Y. Luh, J. Shi, and C. W. Tang, Appl. Phys. Lett. 74, 865 (1999).
25.Y. T. Tao, E. Balasubramaniam, A. Danel, and P. Tomasik, Appl. Phys. Lett. 77, 1575 (2000).
26.J. Salbeck, N. Yu, J. Bauer, F. Weissörtel, and H. Bestgen, Synth. Met. 91, 209 (1997).
27.M. R. Robison, S. Wang, G. C. Bazan, and Y. Cao, Adv. Mater. 12, 1701 (2000).
28.V. Choong, Y. Park, Y Gao, T. Wehrmeister, K. Müllen, B. R. Hsieh, and C. W. Tang, Appl. Phys. Lett. 69, 1492 (1996).
29.U. Lemmer, S. Karg, M. Scheidler, M. Deussen, W. Ries, B. Cleve, P. Thomas, H. Bässler, M. Schwoerer, and E. O. Göbel, Synth. Met. 67, 169 (1994).
30.R. Kersting, U. Lemmer, M. Deussen, H. J. Bakker, R. F. Mahrt, H. Kurz, V. I. Arkhipov, H. Bässler, and E. O. Göbel, Phys. Rev. Lett. 73, 1440 (1994).
31.L. S. Hung, C. W. Tang, and M. G. Mason, Appl. Phys. Lett. 70, 152 (1997).
32.C.-W. Chen, T.-Y. Cho, C.-C. Wu, H.-L. Yu, and T.-Y. Luh, Appl. Phys. Lett. 81, 1570 (2002).
33.J. Shi and C. W. Tang, Appl. Phys. Lett. 70, 1665 (1997).
34.J. Kido, Appl. Phys. Lett. 73, 2866 (1998).
35.T. Wakimoto, Y. Fukuda, K. Nagayama, A. Yokoi, H. Nakada, and M. Tsuchida, IEEE. Trans. Electron Devices 44, 1245 (1997).
36.Y. Shirota, J. Mater. Chem. 10, 1 (2000).
37.S. Tokito, H. Tanaka, K. Noda, A. Okada, and Y. Taga, Appl. Phys. Lett. 70, 1929 (1997).
38.V. Bulovic, V. V. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, Phys. Rev. B 58, 3730 (1996).
39.W. M. V. Wan, N. C. Greenham, and R. H. Friend, J. Appl. Phys. 87, 2542 (2000).
40.S. K. So, W. K. Choi, L. M. Leung, and K. Neyts, Appl. Phys. Lett. 74, 1939 (1999).
41.B. K. Crone, P. S. Davids, I. H. Campbell, and D. L. Smith, Appl. Phys. Lett. 87, 1974 (2000).
42.C. Adachi, T. Tsutsui, and S. Saito, Appl. Phys. Lett. 57, 531 (1990)
43.L.-H. Chan, R.-H. Lee, C.-F. Hsieh, H.-C. Yeh, and C.-T. Chen, J. Am. Chem. Soc. 124, 6469 (2002).

Chapter 5.
1.C. W. Tang, D. J. Williams and J. C. Chang, US. Patent 5 249 870 (1994).
2.Y. Kostov, C. R. Albano and G. Rao, Biotechnol. Bioeng. 70, 473 (2000).
3.J. Sipior, G. M. Carter, J. R. Lakowicz, G. Rao, Rev. Sic. Instrum. 68, 2666 (1997).
4.H. van Santen, and J. H. M. Neijzen, Jap. J. Appl. Phys. 42, 1110 (2003).
5.J. Hellmig, A. V. Mijiritskii, H. J. Borg, K. Musialkova and P. Vromans, Jap. J. Appl. Phys. 42, 848 (2003).
6.Y. Sabi, S. Tamada, T. Iwamura, M. Oyamada, F. Bruder, R. Oser, H. Berneth and K. Hassenruck, Jap. J. Appl. Phys. 42, 1056 (2003).
7.R. J. Holmes, S. R. Forrest, Y.-J. Tung, R. C. Kwong, J. J. Brown, S. Garon and M. E. Thompson, Appl. Phys. Lett. 82, 2422 (2003).
8.R. J. Holmes, B. W. D’Andrade, S. R. Forrest, X. Ren, J. Li and M. E. Thompson, Appl. Phys. Lett. 83, 3818 (2003).
9.G. T. Lei, L. D. Wang, L. Duan, J. H. Wang and Y. Qiu, Synth. Mat. 144, 249 (2004).
10.L. Zou, V. Savvate’ev, J. Booher, C.-H. Kim and J. Shinar, Appl. Phys. Lett. 79, 2282 (2001).
11.K. Okumoto and Y. Shirota, Appl. Phys. Lett. 79, 1231 (2001).
12.C. F. Qiu, L, D. Wang, H. Y. Chen, M. Wong and H. S. Kwok, Appl. Phys. Lett. 79, 2276 (2001).
13.M. Kinoshita, H. Kita and Y. Shirota, Adv. Funct. Mater. 12, 780 (2002).
14.K. Okumoto and Y. Shirota, Chem. Mater. 15, 699 (2003).
15.C-H. Yuan, S. Hoshino, S. Toyoda, H. Suzuki, M. Fujiki and N. Matsumoto, Appl. Phys. Lett. 71, 3326 (1997).
16.S. Hoshino, K. Ebata and K. Furukawa, J. Appl. Phys. 87, 1968 (2000).
17.K.-T. Wong, C.-F. Wang, C. H. Chou, Y. O. Su, G.-H. Lee and S.-M. Peng, Org. Lett. 4, 4439 (2002).
18.K.-T. Wong, Y.-Y. Chien, R.-T. Chen, C.-F. Wang, Y.-T. Lin, H.-H. Chiang, P.-Y. Hsieh, C.-C. Wu, C. H. Chou, Y. O. Su, G.-H. Lee and S.-M. Peng, J. Am. Chem. Soc. 124, 11576 (2002).
19.C.-C. Wu, Y.-T. Lin, K.-T. Wong, R.-T. Chen, Y.-Y. Chien, Adv. Mater. 16, 61 (2004).
20.C.-C. Wu, T.-L. Liu, W.-Y. Hung, Y.-T. Lin, K.-T. Wong, R.-T. Chen, Y.-M. Chen, and Y.-Y. Chien, J. Am. Chem. Soc. 125, 3710 (2003).
21.N. Johansson, J. Salbeck, J. Bauer, F. Weissoertel, P. Broems, A. Andersson and W. R. Salaneck, Adv. Mater. 10, 1136 (1998).
22.T. Spehr, R. Pudzich, T. Fuhrmann and J. Salbeck, Org. Elec. 4, 61 (2003).
23.D. Katsis, Y. H. Geng, J. J. Ou, S. W. Culligan, A. Trajkovska, S. H. Chen and J. Rothberg, Chem. Mater. 14, 1332 (2002).
24.Y. Geng, D. Katsis, S. W. Culligan, J. J. Ou, S. H. Chen and J. Rothberg, Chem. Mater. 14, 463 (2002).
25.C.-C. Wu, Y.-T. Lin, H.-H. Chiang, T.-Y. Cho, C.-W. Chen, K.-T. Wong, Y.-L. Liao, G.-H. Lee, and S.-M. Peng, Appl. Phys. Lett. 81, 577 (2002).
26.T. Sano, Y. Hamada and K. Shibata, IEEE J. Selected Topics in Quantum Electronics 4, 34 (1998).
27.H. Kirihata, and M. Uda, Rev. Sci. Instrum. 52, 68 (1981).
28.C.-C. Wu, Y.-T. Lin, H.-H. Chiang, T.-Y. Cho, C.-W. Chen, K.-T. Wong, Y.-L. Liao, G.-H. Lee, and S.-M. Peng, Appl. Phys. Lett. 81, 577 (2002).
29.C.-C. Wu, W.-Y. Hung, T.-L. Liu, L.-Z. Zhang, and T.-Y. Luh, J. Appl. Phys. 93, 5465 (2003).
30.C.-C. Wu, T.-L. Liu, Y.-T. Lin, W.-Y. Hung and T.-H. Ke, Appl. Phys. Lett. 85, 1172 (2004).
31.Y. Kuwabara, H. Ogawa, H. Inada, N. Noma, and Y. Shirota, Adv. Mater. 6, 677 (1994).
32.J. Shi, C. W. Tang, and C. H. Chen, U. S. Patent No. 5,646,948 (1997).
33.Z. Gao, C. S. Lee, I. Bello, S. T. Lee, R.-M. Chen, T.-Y. Luh, J. Shi, and C. W. Tang, Appl. Phys. Lett. 74, 865 (1999).
34.Y. T. Tao, E. Balasubramaniam, A. Danel, and P. Tomasik, Appl. Phys. Lett. 77, 1575 (2000).
35.T.-C. Chao, Y.-T. Lin, C.-Y. Yang, T. S. Hung, H.-C. Chou, C.-C. Wu and K.-T Wong, Adv. Mater. 17, 992 (2005).
36.C. Adachi, T. Tsutsui, and S. Saito, Appl. Phys. Lett. 57, 531 (1990).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top