跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 08:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘宣亦
研究生(外文):Hsuan-I Pan
論文名稱:CMOS低壓降線性穩壓器之分析設計與實作
論文名稱(外文):Analysis, Design and Implementation of CMOS Low Dropout Regulators
指導教授:陳秋麟陳秋麟引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:123
中文關鍵詞:互補型金氧半低壓降線性穩壓器穩定度頻率補償電源拒拆效能
外文關鍵詞:CMOSlow dropout regulatorstabilitycompensationpower supply
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1058
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
近年來,低壓降線性穩壓器(LDO)已廣泛地應用在較低功率的穩壓與電壓轉換上。相較於切換式電源供應器,LDO只需少量的外部元件,便可提供一精確的輸出電壓。此外,LDO還有雜訊低、暫態響應迅速、成本低與體積小等特點。因此,不論是在電池供電之可攜式電子系統的電源管理中,或是在切換式電源供應器的後級穩壓上,LDO都被普遍地使用。
一般的互補型金氧半(CMOS) LDO,是使用P型場效電晶體(PMOS)作為主要的功率單元。然而這種LDO所使用的傳統頻率補償方式,需要一容值範圍從1µF到數十微法拉不等的外部負載電容,且此負載電容寄生的等效串聯電阻(ESR)阻值需位於一特定的隧道狀範圍內,LDO系統方能維持穩定。但是外部負載電容會讓電路體積無法更為縮小,而其ESR亦限制了LDO效能的最佳化。除了這些缺點,傳統頻率補償方式還會無可避免地造成高頻的電源拒斥效能較低頻差。
本論文介紹了LDO的基本背景知識,並回顧討論文獻中各種效能提昇的方法,接著提出了三個使用不同頻率補償方式實作之LDO。根據所提出的頻率補償方式,前二個LDO可增加負載電容與其ESR的穩定範圍,而第三個LDO則可改善高頻的電源拒斥效能。
在這三個LDO當中,第一個LDO利用分離式結構之功率單元以達成所提出之新型頻率補償方式,且使用0.33μF之負載電容即可保持穩定。相較於使用傳統頻率補償方式的LDO,此LDO的負載電容與其ESR的穩定範圍較大。因此,負載電容可使用不同種類的電容,並可使用極低ESR的負載電容以達成更優異的暫態響應。
第二個LDO所使用的極點-零點對補償方式乃是由第一個LDO所使用的頻率補償方式衍生而來。除了分離式結構之功率單元,亦使用了多路徑結構的誤差放大器來實現所提出的頻率頻償方式。此LDO對負載電容值無特殊的限制,只要負載電容的ESR較負載電阻小,即可維持穩定電壓輸出。因此,此LDO不但可在不使用外部負載電容的情形下保持穩定,也提供了負載電容選擇上的彈性。使用者可依成本、體積及暫態漣波大小等考量來選擇適當的負載電容。
第三個LDO則利用了一頻率補償策略來提昇高頻的電源拒斥效能。此補償策略乃是利用串接多個輸出阻抗較小的增益級,將回路中所有內部電路的極點皆設計在高於單位增益頻率(UGF)的頻段。由於內部回授路徑沒有低頻的極點,高頻的電源拒斥效能不會衰減。用這項頻率補償策略所實現的LDO,在滿載的情形下,直流的電源拒斥效能可達-42dB,而其頻寬則可達1MHz,因此適合供電給對電源雜訊較為敏感的電路方塊。
In recent years, low dropout regulator (LDO) has been widely utilized as the voltage regulation and conversion stage for low power applications. Compare with a switch-mode power supply, an LDO provides an accurate output voltage with only a few off-chip components. Furthermore, an LDO features lower noises, faster transient response, less cost and smaller volume. These advantages make LDO a popular building block for the power management of battery-powered portable electronic systems and for post regulation of switch-mode power supplies.
Nevertheless, for a generic CMOS LDO which uses PMOS as the pass device using the conventional compensation scheme, an off-chip load capacitor ranges between 1µF to tens of micro farads is required and its parasitic equivalent series resistance (ESR) values must fall into a specific tunnel-like region to guarantee system stability of the LDO. The off-chip load capacitor hinders board size reduction and the ESR limits the optimization of LDO performance. Moreover, there is inevitable PSR degradation at high frequencies if the conventional compensation scheme is used.
In this dissertation, the basic background knowledge of LDO and several existing performance enhancement techniques in literature are discussed. After that, the proposed compensation schemes with three fabricated LDOs are presented. Based on the proposed compensation schemes, two of the LDOs are designed to relieve the stability requirement of load capacitor and its ESR, and the other LDO improves the high-frequency power supply rejection (PSR) performance.
Among the three fabricated LDOs, the first LDO uses a novel compensation scheme and a split-structured pass device such that the LDO is stable with a 0.33μF load capacitor. Furthermore, compared with the LDO using the conventional compensation scheme, it has larger stable range for the load capacitor and the ESR. Therefore, different types of capacitors can be used by the proposed LDO and the transient response of the LDO can be optimized by using a load capacitor with ultra low ESR.
As for the second LDO, the pole-zero pairs compensation scheme derived from the first LDO is used. In addition to the split-structured pass device, a multi-path error amplifier is employed to realize the compensation scheme. The LDO imposes no specific constraint on the load capacitor and only requires the ESR of the load capacitor less than the equivalent load resistance. As a result, the LDO provides the capacitor-free operation and the flexibility for load capacitor selection. Users can choose any suitable load capacitor for the consideration of cost, board size and transient ripples.
To enhance the PSR at high frequencies, a compensation strategy is proposed and verified by the third LDO. Realized by cascading gain stages with lower output impedance, the compensation strategy pushes all internal poles beyond the unity-gain frequency of the loop gain. Since there is no internal low-frequency pole, the PSR degradation at high frequencies is avoided. In this way, The LDO achieves -42dB PSR at DC and the PSR bandwidth is 1MHz at full load. The LDO is suitable for supplying the circuit blocks sensitive to the ripples of the supply rails.
ABSTRACT (Chinese) I
ABSTRACT III
TABLE OF CONTENTS V
LIST OF FIGURES VIII
LIST OF TABLES XII
1. Introduction 1
1.1. Background 1
1.2. Motivation 4
1.3. Dissertation Overview 6
2. LDO Background 8
2.1. Basic Operation of Linear Regulators 8
2.2. Performance Evaluation of LDO 11
2.2.1. Dropout Voltage 11
2.2.2. Current Efficiency 14
2.2.3. Load/Line Regulation 14
2.2.4. Load Step Response 15
2.2.5. Power Supply Rejection (PSR) 17
2.2.6. Overall Figure-of-Merit (FOM) 18
2.3. Conventional Compensation Scheme 19
2.3.1. Loop Gain Analysis 19
2.3.2. Tunnel of Death Problem 22
2.3.3. PSR Analysis 25
3. Performance Enhancement Techniques 29
3.1. Novel Compensation Schemes 29
3.1.1. Frequency Shaping 30
3.1.2. Internal Zero Generation 32
3.1.3. Damping-Factor-Control Frequency Compensation Scheme 35
3.1.4. Current Buffer Compensation Scheme 38
3.1.5. Digital-Controlled Compensation Scheme 39
3.2. Adaptive Biased Circuits 40
3.2.1. Buffer Stage 40
3.2.2. Error Amplifier 43
3.2.3. PMOS Pass Device 44
3.3. Transient Response Enhancement 45
3.3.1. Replica-Biased Buffer Stage 46
3.3.2. Current-Mode Feedback 47
3.3.3. Capacitive Feedback 48
3.3.4. High Slew-Rate Push-Pull Amplifier 49
3.3.5. Super Current Mirror 51
3.3.6. Transient-Triggered Circuits 52
3.4. PSR Enhancement 53
3.4.1. Buffer with Diode-Connected MOSFET 54
3.4.2. Cascode PMOS Pass Device 55
3.4.3. Cascode NMOS Pass Device 56
4. LDO with Extended Stable Region for the ESR of the Load Capacitor 57
4.1. Compensation Scheme 58
4.2. Circuit Implementation 62
4.2.1. Pass Device Structure 62
4.2.2. Overall Circuit 67
4.3. Experiment Results 70
4.4. Summary 74
5. Stability-Enhanced LDO with Robust Compensation Scheme 76
5.1. Compensation Scheme 78
5.2. Circuit Implementation 81
5.3. Experiment Results 89
5.4. Summary 93
6. LDO with High PSR Bandwidth 95
6.1. Compensation Strategy 96
6.2. PSR Enhancement of the Proposed Strategy 98
6.3. Circuit Implementation 105
6.4. Experiment Results 107
6.5. Discussion 109
6.6. Summary 112
7. Conclusions 113
7.1. Dissertation Summary 113
7.2. Future Work 116
References 117
[1]P. Hazucha, T. Karnik, B. A. Bloechel, C. Parsons, D. Finan, and S. Borkar, “Area-Efficient Linear Regulator with Ultra-Fast Load Regulation,” IEEE Journal of Solid-State Circuits, vol. 40, no. 4, pp. 933-940, Apr. 2005.
[2]B. Carter, J. Matsumoto, A. Prater, and D. Smith, “Lithium Ion Battery Performance and Charge Control,” in Proc. the 31st Intersociety Energy Conversion Engineering Conference, vol. 1, pp. 363-368, Aug. 1996.
[3]A. I. Pressman, Switching Power Supply Design, 2nd edition, USA: McGraw-Hill, 1998.
[4]J. F. Dickson, “On-Chip High-Voltage Generation in MNOS Integrated Circuits using an improved voltage multiplier technique,” IEEE Journal of Solid-State Circuits, vol. SC-11, no. 3, pp. 374-378, Jun. 1976.
[5]G. Palumbo, D. Pappalardo, and M. Gaibotti, “Charge-pump Circuits: Power-Consumption Optimization,” IEEE Transaction on Circuits System I: Fundamental Theory and Applications, vol. 49, no. 11, pp. 1535-1542, Nov. 2002.
[6]G. A. Rincón-Mora, “Current Efficient, Low Voltage, Low Drop-Out Regulators,” Ph.D. Dissertation, Georgia Institute of Technology, Nov. 1996.
[7]B. S. Lee, “Understanding The Stable Range of Equivalent Series Resistance of An LDO Regulator,” Technical Report, Texas Instruments, Nov. 1999.
[8]C. Simpson, “Linear Regulators: Theory of Operation and Compensation,” Application Note, National Semiconductor, May 2000.
[9]Texas Instruments, “Technical Review of Low Dropout Voltage Regulator Operation and Performance,” Application Report, Aug. 1999.
[10]R. Tantawy and E. J. Brauer, “Performance Evaluation of CMOS Low Drop-out Voltage Regulators,” in Proc. the 47th Midwest Symposium on Circuits and Systems, vol. 1, pp. 141-144, July 2008.
[11]B. M. King, “Advantages of Using PMOS-type Low-Dropout Linear Regulators in Battery Applications,” Analog Applications Journal, Texas Instruments, Aug. 2000.
[12]B. Razavi, Design of Analog CMOS Integrated Circuits, USA: McGraw-Hill, 1998.
[13]P. R. Gray, P. J. Hurst, S. H. Lewis and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th edition, USA: John Wiley & Sons, 2001.
[14]C. Simpson, “Linear and Switching Voltage Regulator Fundamentals,” Application Note, National Semiconductor, 1995.
[15]J. Prymak, “SPICE Models of Capacitors”, KEMET Electronics Corp. TechTopics, vol. 4, no. 6, 1994.
[16]V. Gupta, G. A. Rincón-Mora, and P. Raha, “Analysis and Design of Monolithic, High PSR, Linear Regulators for SoC Applications,” in Proc. IEEE International SOC Conference, pp. 311-315, Sept. 2004.
[17]G. A. Rincón-Mora and P. E. Allen, “Optimized Frequency-Shaping Circuit Topologies for LDOs,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 45, no. 6, pp. 703-708, June 1998.
[18]K. C. Kwok and P. K. T. Mok, “Pole-Zero Tracking Frequency Compensation for Low Dropout Regulator,” in Proc. IEEE International Symposium on Circuits and Systems, vol. 4, pp. 735-738, May 2002.
[19]C. Shi, B. C. Walker, E. Zeisel, B. Hu, and G. H. McAllister, “A Highly Integrated Power Management IC for Advanced Mobile Applications,” IEEE Journal of Solid-State Circuits, vol. 42, no. 8, pp. 1723-1731, Aug. 2007.
[20]C. K. Chava, J. Silva-Martínez, “A Frequency Compensation Scheme for LDO Voltage Regulators,” IEEE Transactions on Circuits and Systems I, vol. 51, no. 6, pp. 1041-1050, Jun. 2004.
[21]K. N. Leung and P. K. T. Mok, “A Capacitor-Free CMOS Low-Dropout Regulator with Damping-Factor-Control Frequency Compensation,” IEEE Journal of Solid-State Circuits, vol. 38, no. 10, pp. 1691-1702, Oct. 2003.
[22]K. N. Leung, P. K. T. Mok, W. H. Ki, and J. K. O. Sin, “Three-Stage Large Capacitive Load Amplifier with Damping-Factor-Control Frequency Compensation,” IEEE Journal of Solid-State Circuits, vol. 35, no. 2, pp. 221-230, Feb. 2000.
[23]S. K. Lau, P. K. T. Mok, and K. N. Leung, “A Low-Dropout Regulator for SoC with Q-reduction,” IEEE Journal of Solid-State Circuits, vol. 42, no. 3, pp. 658-664, Mar. 2007.
[24]M. Al-Shyoukh, H. Lee, and R. Perez, “A Transient-Enhanced Low-Quiescent Current Low-Dropout Regulator with Buffer Impedance Attenuation,” IEEE Journal of Solid-State Circuits, vol. 42, no. 8, pp. 1732-1742, Aug. 2007.
[25]S. H. Lu, W. J. Huang, and S. I. Liu, “A Fast-Recovery Low Dropout Linear Regulator for Any-Type Output Capacitors,’ in Proc. IEEE Asian Solid-State Circuits Conference, pp. 497-500, Nov. 2005.
[26]X. Fan, C. Mishra and E. Sánchez-Sinencio, “Single Miller Capacitor Frequency Compensation Technique for Low-Power Multistage Amplifiers,” IEEE Journal of Solid-State Circuits, vol. 40, no. 3, pp. 584-592, Mar. 2005.
[27]G. A. Rincón-Mora and P. E. Allen, “ A Low-Voltage, Low Quiescent Current, Low Drop-Out Regulator”, IEEE Journal of Solid-State Circuits, vol. 33, no. 1, pp. 36-44, Jan. 1998.
[28]Y. S. Shyu and J. C. Wu, “A 60uA Quiescent Current, 250mA CMOS Low Dropout Regulator,” IEICE Transactions on Electronics, vol. E84-C, no. 5, pp. 693-703, May 2001.
[29]W. Oh and B. Bakkaloglu, “A CMOS Low-Dropout Regulator with Current-Mode Feedback Buffer Amplifier,” vo. 54, no. 10, pp. 922-926, Oct. 2007.
[30]G. Palmisano, G. Palumbo, and S. Pennisi, “A CMOS CCII+,” in Proc. IEEE International Symposium on Circuits and Systems, vol. 1, pp.314-318, May 1995.
[31]R. J. Milliken, J. Silva-Martínez, and E. Sánchez-Sinencio, “Full On-Chip CMOS Low-Dropout Voltage Regulator,” IEEE Transactions on Circuits and Systems I, vol. 54, no. 9, pp. 1879-1890, Sep. 2007.
[32]T. Y. Man, P. K. T. Mok, and M. Chan, “A High Slew-Rate Push-Pull Output Amplifier for Low-Quiescent Current Low-Dropout Regulators with Transient-Response Improvement,” IEEE Transactions on Circuits and Systems II, vol. 54, no. 9, pp. 755-759, Sep. 2007.
[33]Y. H. Lam and W. H. Ki, “A 0.9V 0.35µm Adaptively Biased CMOS LDO Regulator with Fast Transient Response,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 442-443, Feb. 2008.
[34]S. Heng and C. K. Pham, “Quick Response Circuit for Low-Power LDO Voltage Regulators to Improve Load Transient Response,” in Proc. International Symposium on Communications and Information Technologies, pp. 28-33, Oct. 2007.
[35]S. K. Hoon, S. Chen, F. Maloberti, J. Chen, and B. Aravind, “A Low Noise, High Power Supply Rejection Low Dropout Regulator for Wireless System-On-Chip Applications,” in Proc. IEEE Custom Integrated Circuits Conference, pp. 759-762, Sep. 2005.
[36]K. Wong and D. Evans, “A 150mA Low Noise, High PSRR Low-Dropout Linear Regulator in 0.13µm Technology for RF SoC Applications,” in Proc. IEEE European Solid-State Circuits Conference, pp. 532-535, Sep. 2006.
[37]V. Gupta, and G. A. Rincón-Mora, “A 5mA 0.6µm CMOS Miller-Compensated LDO Regulator with -27dB Worst-Case Power-Supply Rejection Using 60pF of On-Chip Capacitance,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 520-521, Feb. 2007.
[38]B. Y. Kamath, R. G. Meyer and P. R. Gray, “Relationship Between Frequency Response and Settling Time of Operational Amplifiers,” IEEE Journal of Solid-State Circuits, vol. 9, no. 6, pp. 347-352, Dec. 1974.
[39]M. E. Schlarmann, E. K. F. Lee and R. L. Geiger, “A New Multipath Amplifier Design Technique for Enhancing Gain without Sacrificing Bandwidth,” in Proc. IEEE International Symposium on Circuits and Systems, vol. 2, pp. 610-615, May 1999.
[40]A. Thomsen, “Design of Multistage Feedforward Compensated OPAMPs,” in Proc. Southwest Symposium on Mixed-Signal Design, pp. 19-22, Feb. 2001.
[41]H. Lee, P. K. T. Mok and K. N. Leung, “Design of Low-Power Analog Drivers Based on Slew-Rate Enhancement Circuits for CMOS Low-Dropout Regulators,” IEEE Transactions on Circuits and Systems II, vol. 52, no. 9, pp. 563-567, Sep. 2005.
[42]M. Kayal, F. Vaucher and P. Deval, “New Error Amplifier Topology for Low Dropout Voltage Regulators using Compound OTA-OPAMP,” in Proc. IEEE European Solid-State Circuits Conference, pp. 532-535, Sep. 2006.
[43]R. J. Baker, H. W. Li and D. E. Boyce, CMOS Circuit Design, Layout, and Simulation, USA: Wiley-IEEE Press, 1998.
[44]B. Razavi, Design of Integrated Circuits for Optical Communications, 1st edition, USA: McGraw-Hill, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊