跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.31) 您好!臺灣時間:2025/12/01 09:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳偉綱
研究生(外文):Chen, Wei-Gang
論文名稱:氣壓肌肉主動式懸吊系統之灰預測自適應滑動模式控制設計
論文名稱(外文):Design of a Grey-Prediction Adaptive Sliding-Mode Controller for Pneumatic Muscle Active Suspension System
指導教授:李聯旺李聯旺引用關係蔣欣翰
指導教授(外文):Lee, Lian-WangChiang, Hsin-Han
口試委員:李聯旺蔣欣翰劉福興林浩庭盧建余
口試委員(外文):Lee, Lian-WangChiang, Hsin-HanLiu, Fwu-HsingLin, Hao-TingLu, Chien-Yu
口試日期:2016-01-08
學位類別:碩士
校院名稱:龍華科技大學
系所名稱:機械工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:86
中文關鍵詞:灰預測傅立葉級數適應控制滑動模式控制氣壓肌肉致動器主動式懸吊系統
外文關鍵詞:grey forecastFourier seriesadaptive controlsliding mode controlpneumatic muscleactive suspension system
相關次數:
  • 被引用被引用:2
  • 點閱點閱:334
  • 評分評分:
  • 下載下載:63
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在進行氣壓肌肉主動式懸吊系統的控制器設計,以提供較佳之乘坐舒適性與駕駛的操控性。由於氣壓肌肉主動式懸吊系統具有高度之非線性與時變特性,所以要對其系統動態建立精確數學模式,以進行控制器設計是相當困難的。因此,本論文利用有限項傅立葉級數近似系統動態數學模式,並結合適應控制、滑動模式控制與H_∞追蹤設計技術,設計氣壓肌肉主動式懸吊系統的自適應滑動模式控制器。該控制器結合傅立葉級數與適應控制近似系統動態數學模式,去除滑動模式控制器設計需系統數學模式之限制,並加入H_∞追蹤設計技術補償系統近似誤差與外部干擾,減緩滑動模式控制器的不連續跳切現象,且藉由Lyapunov穩定準則推導控制器的參數更新律,確保系統受控過程的穩定性,並減低控制器實現之困難度。此外為增加抑振與減振之效果,本論文利用灰預測演算法預測系統下一步的誤差做為控制器輸入,經由實驗證實,相較於未加入灰預測演算法的自適應滑動模式控制器,針對各種不同的顛頗路面,加入灰預測演算法的自適應滑動模式控制器具有較佳的抑振與減振效果。
This thesis aims at the controller design for the pneumatic muscle activate vehicle suspension system in order to provide better riding comfort and driving controllability. Since the pneumatic muscle activate vehicle suspension system is highly nonlinear and time-dependent, it is difficult to build an accurate mathematical model for the system dynamics of the controller design. Therefore, this thesis combines a finite Fourier series approximation system dynamic mathematical model with adaptive control, sliding mode control, and the H_∞ tracking technique to design an adaptive sliding mode controller for a pneumatic muscle activate vehicle suspension system. The controller consists of Fourier series and an adaptive control approximation system dynamic mathematical model, where the sliding mode controller design requires the constraints of the system’s mathematics model. In addition, the H_∞ tracking technique is applied to compensate the approximation error and system external interference, in order to mitigate the discontinuous jump cut caused by the sliding mode controller, and the updated rules of the controller parameters are deduced from the Lyapunov stability criteria, thus, guaranteeing the stability of the controlled process of the system, improving the control effect, and reducing the difficulty level of actual control. Furthermore, in order to enhance the vibration suppression and vibration reduction of the system, this thesis uses the grey forecast algorithm to predict the next system error as the controller input. The experiments prove that the proposed controller with the grey forecast algorithm performs better vibration suppression and vibration reduction effects on various pavements.
摘 要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 懸吊系統的種類 2
1.3 文獻回顧 4
1.3.1 主動式懸吊系統 5
1.3.2 氣壓肌肉致動器 6
1.3.3 懸吊系統控制 10
1.4 研究動機與目的 11
1.5 論文架構 12
第二章 實驗系統架構與設備 14
2.1 實驗系統架構 14
2.2 氣壓肌肉致動系統 17
2.3 路面模擬系統 23
2.4 嵌入式控制系統 26
第三章 氣壓肌肉主動式懸吊系統數學模型 28
3.1氣壓肌肉致動器 28
3.2 氣壓肌肉致動系統數學模型 31
3.3 四分之一車氣壓肌肉主動式懸吊系統數學模型 34
第四章 控制理論與設計 36
4.1 灰色系統理論 36
4.1.1 灰色預測 37
4.2滑動模式控制器設計 38
4.3 Fourier函數近似法 40
4.4 Fourier級數基礎之適應滑動控制器設計 41
4.5 Fourier級數基礎具H_∞追蹤性能之適應滑動控制器 43
4.6基於輸入-輸出線性化之Fourier級數基礎具H_∞追蹤性能之適應性滑動模式控制器設計 45
4.6.1 輸入-輸出線性化 46
4.7 四分之一車氣壓肌肉主動式懸吊系統控制器設計 49
第五章 實驗及結果討論 52
5.1 氣壓肌肉致動系統伺服控制實驗 52
5.1.1 氣壓肌肉致動系統定位控制實驗 52
5.1.2 氣壓肌肉致動系統軌跡追蹤實驗 55
5.2 四分之一車氣壓肌肉主動式懸吊系統控制實驗 58
5.2.1 路面模擬 58
5.2.2 動態車體位置控制實驗結果 63
第六章 結論與建議 76
6.1 結論 76
6.2 建議 77
參考文獻 78
作者簡介 86

[1] Thomas D. Gillespie,車輛運動力學,臺北:科技圖書股份有限公司,第234頁(2014)。
[2] Thomas D. Gillespie,車輛運動力學,臺北:科技圖書股份有限公司,第236-237頁(2014)。
[3] Thomas D. Gillespie,車輛運動力學,臺北:科技圖書股份有限公司,第233頁(2014)。
[4] 王偉榮,輪胎變形量對於主動式車輛懸吊系統之性能分析,碩士論文,國立台灣科技大學機械工程系,台北(2009)。
[5] 張藝鏹,氣壓肌肉主動式車輛懸吊系統的自適應滑動模式控制,碩士論文,龍華科技大學工程技術研究所,桃園(2013)。
[6] 吳修志,灰色與模糊理論運用於車輛主動式懸吊系統與內彈道之分析研究,博士論文,國防大學中正理工學院國防科學研究所,桃園(2004)。
[7] 林江蔚,自調式適應控制於主動式懸吊系統之應用,碩士論文,國立台灣科技大學機械工程技術研究所,台北 (2001) 。
[8] Ostasevicius, V., Sapragonas, J., Rutka, A. and Staliulionis, D. "Investigation of Active Car Suspension with Pneumatic Muscle," 2002 SAE International Body Engineering Conference & Exhibition and Automotive & Transportation Technology Congress, Paris, Franc, 2002-01-2206 (2002).
[9] Anakwa, W. K. N., Thomas, D. R., Jones, S. C., Bush, J., Green, D., Anglin, G. W., Rio, R., Sheng, J., Garrett, S. and Chen, L. "Development and control of a prototype pneumatic active suspension system," IEEE Transactions on Education, 45, 1, 43-49 (2002).
[10] 吳宗翰,應用PID、類神經網路於主動式懸吊系統之控制研究,碩士論文,雲林科技大學機械工程學系,雲林 (2005)。
[11] Kou, F. and Fang, Z. "An Experimental Investigation into the Design of Vehicle Fuzzy Active Suspension," 2007 IEEE International Conference on Automation and Logistics, Jinan, China, 959-963 (2007).
[12] 葉彥伯,車輛主動式懸吊系統之研究,碩士論文,成功大學機械工程學系碩博士班,台南(2006)。
[13] Nekoui, M. A. and Hadavi, P. "Optimal Control of an Active Suspension System," 14th International Power Electronics and Motion Control Conference, Metropol Lake Resort Ohrid, Macedonia, T5-60- T5-63 (2010).
[14] Fayyad, S. M. "Constructing Control System for Active Suspension System," Contemporary Engineering Sciences, 5, 4, 189-200 (2012).
[15] 洪瑞宏,車輛輪胎變形量之估測與主動式懸吊系統之補償,碩士論文,國立臺灣科技大學機械工程系,台北(2014)。
[16] 王雄耀,「介紹一種氣動新產品-仿生氣動肌肉腱」,液壓氣動與密封,第一期,第31-35頁(2002)。
[17] 朱瑞陽,氣動人工肌肉特性及控制研究,碩士論文,華中科技大學,武漢(2005)。
[18] 黃軍毅,結合氣壓式抑振結構之主動式車輛懸吊系統的設計與控制,碩士論文,龍華科技大學工程技術研究所,桃園(2013)。
[19] 宗光華,「人工肌肉夾持力的變結構控制」,北京航空航天大學學報,第二期,第15-19頁 (1990)。
[20] Caldwell, D. G., Medrano-Cerda, G. A. and Goodwin, M. J. "Braided pneumatic actuator control of a multi-jointed manipulator," Systems, Man and Cybernetics, Le Touquet, 1, 423-428 (1993).
[21] Chou, C. P. and Hannaford, B. "Static and Dynamic Characteristics of McKibben Pneumatic Artificial Muscles," IEEE International Conference on Robotics and Automation, San Diego, 281-286 (1994).
[22] Caldwell, D. G., Medrano-Cerda, G. A. and Bowler, C. J. "Investigation of Bipedal Robot Locomotion using Pneumatic Muscle Actuators," 1997 IEEE International Conference on Robotics and Automation, New Mexico, 1, 799-804 (1997).
[23] 李寶仁、劉軍、楊鋼,「氣動人工肌肉系統建模與模擬」,機械工程學報,第三十九卷,第七期,第23-28頁 (2003)。
[24] 李醒飛、鄭奇、張國雄,「類人氣動肌肉模型與實驗研究」,天津大學學報,第三十八卷,第三期,第242-247頁 (2005)。
[25] 林冠佑,氣壓肌肉致動器單軸機械臂軌跡追蹤控制之研究,碩士論文,國立臺灣大學工學院工程科學及海洋工程學研究所,台北 (2008)。
[26] 何國昆、劉吉軒、張振營,「氣動人工肌肉的動態驅動特性研究」,西安交通大學學報,第四十二卷,第五期,第588-591頁 (2008)。
[27] Park, Y. L., Chen, B. R., Young, D., Stirling, L., Wood, R. J., Goldfield, E. and Nagpal, R. "Bio-inspired Active Soft Orthotic Device for Ankle Foot Pathologies, " 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, 4488-4495 (2011).
[28] 張丹婷,基於器動肌肉的外骨骼上肢助力系統研究,碩士論文,浙江大學機械工程學系,杭州 (2014)。
[29] Ching-Ping Chou , Blake Hannaford "Measurement And Modeling of McKibben Pneumatic Artificial Muscle," IEEE Transactions on Robotics and Automation, 2,, 90-102 (1996).
[30] B.Tondu, P,Lopez, "Modeling and Control of McKibben Articial Musle Robot Actuators," IEEE Control Systems Magazine ,20,15-38 (2000).
[31] 隋立明、包鋼、王祖溫,「氣動人工肌肉改進模型研究」,液壓氣動與密封,2,1-4 (2002)。
[32] Kerscher, T.,Albiez, J., Zollner, J.-M.,Dillamnn,R., "Evaluation of the Dynamic Model of Fluidic Muscles using Quick-Release," Biomedical Robotics and Biomechatronics, 2006. BioRob 2006. The First IEEE/RAS-EMBS International Conference on, Pisa, 637-642 (2006).
[33] Reynolds D B,Repperger D W,Phillips C A, et al. "modeling the dynamic characteristics of pneumatic muscle," Annals of Biomedical Engineering, 31, 3,310-317 (2003).
[34] Phillip C A, Repperger D W, Neidhard-Doll a T, et al. "Biomimetic model of skeletal muscle isometric force twitch," Computers in biology and medicinc, 34, 4, 307-322 (2004).
[35] 楊鋼、李寶仁、傅曉雲,「氣動人工肌肉系統動態特性研究」,中國機械工程,武漢,1294-1298 (2006)。
[36] Wickramatunge K C, Leephakpreeda T. "Study on mechanical behaviors of pneumatic asticial muscle," International journal of engineering science, 48, 2, 188-198 (2010).
[37] Caldwell D G, Medrano-Cerda G A,Goodwin M. "Control of pneumatic muscle actuators," Control Systems, IEEE, 15, 1,40-48 (1995).
[38] 范偉、彭光正、高建英、寧汝新,「氣動人肌肉驅動球面並連機器人的力控制研究」,機器人,4,336-341 (2004)。
[39] 謝建慰、陶國良、周洪,「高速開關閥驅動的氣動肌肉關節的滑膜變結構跟蹤控制」,中國機械工程,5,540-544 (2007)。
[40] Ying C, Jia-fan Z, Can-jun Y, et al. "Design and hybrid control of the pneumatic force-feedback systems for Arm-Exoskeleton by using on/off valve," Mechatronics, 17, 6, 325-335 (2007).
[41] 余麟、彭光正、劉昊,「氣動肌肉驅動的靈巧手指及模糊PID控制」,液壓與氣動,11,20,(2008)。
[42] Jouppila V, Gadsden S A, Habibi S R ,et al. "Sliding mode controller and filter applied to pneumatic McKibben muscle actuator," ASME, Florida, 539-547 (2009).
[43] Wang Y T, Wong R H, Yu C W, et al. "Fuzzy contro:2D pneumatic muscle actuator’s arm," Measurement and Control, 42, 1, 24-27 (2009).
[44] Minh T V, Tjahjowododo T, Ramon H, et al."Cascade position control of a single pneumatic artificial muscle-mass system with hysteresis compensation," Mechatronics, 20, 3, 402-414 (2010).
[45] 王建、江先志,「氣動肌肉驅動器的康復機器人關建模及位置模糊控制」,機器制造,3,10-13 (2011)。
[46] Nizar, A. H., Weaver, J., Lahdhiri, T. and Dae, S. J. "Sliding Mode-based Fuzzy Logic Controller for a Vehicle Suspension System," Proceedings of the American Control Conference, 6, 4188-4192 (1999).
[47] Huang, S. J. and Lin, W. C. "A Self-organizing Fuzzy Controller for an Active Suspension System," Journal of Vibration and Control, 9, 9, 1023-1040 (2003).
[48] Huang, S. J. and Lin, W. C. "Adaptive fuzzy controller with sliding surface for vehicle suspension control," IEEE Transactions on Fuzzy Systems, 11, 4, 550-559 (2003).
[49] Huann-Keng Chiang,Chih-Huang Tseng, "Design and implementation of a grey sliding mode controller for synchronous reluctance motor drive," Control Engineering Practice,2,2, 155–163 (2004).
[50] Chen, P. C. and Huang, A. C. "Adaptive Multiple-surface Sliding Control of Hydraulic Active Suspension Systems Based on the Function Approximation Technique," Journal of Vibration and Control, 11, 5, 685-706 (2005).
[51] 蒙以正「智慧型類神經滑動模式之車輛主動懸吊系統控制」,南亞學報,第28卷,289-301 (2008)。
[52] Lin, J., Lian, R. J., Huang, C. N. and Sie, W. T. "Enhanced fuzzy sliding mode controller for active suspension systems," Mechatronics, 19, 7, 1178–1190 (2009).
[53] Chen, S. and Zhao, Y. "Investigation of semi-active hydro-pneumatic suspension control using neural network based sliding mode method," 2011 3rd International Conference on Advanced Computer Control, China, 256-260 (2011).
[54] Qamar, S., Khan, T. and Khan, L. "Adaptive Neuro-fuzzy Sliding Mode Control Based Strategy for Active Suspension Control," 2012 10th International Conference on Frontiers of Information Technology, 107-115 (2012).
[55] Lee, L. W. and Li, I. H. "Wavelet-based adaptive sliding-mode control with H_∞ tracking performance for pneumatic servo system position tracking control," 2012 Institution of Engineering and Technology, 6, 11, 1699-1714 (2012).
[56] 林江蔚,自調式適應控制於主動式懸吊系統之應用,碩士論文,國立台灣科技大學機械工程技術研究所,台北 (2001)。
[57] Anakwa, W. K. N., Thomas, D. R., Jones, S. C., Bush, J., Green, D., Anglin, G. W., Rio, R., Sheng, J., Garrett, S. and Chen, L. "Development and control of a prototype pneumatic active suspension system," IEEE Transactions on Education, 45, 1, 43-49 (2002).
[58] 謝振盛,主動式懸吊系統之最佳化控制器設計研究,碩士論文,崑山科技大學機械工程學系,台南 (2007)。
[59] Lin, J., Lian, R. J., Huang, C. N. and Sie, W. T., "Enhanced fuzzy sliding mode controller for active suspension systems," Mechatronics, 19, 7, 1178–1190 (2009).
[60] Huang, S. J. and Chen, H. Y. "Adaptive sliding controller with self-tuning fuzzy compensation for vehicle suspension control," Mechatronicss, 16, 10, 607-622 (2006).
[61] Festo,"Datasheet of DMSP-20-250N Type Fluidic Muscle".
[62] Lee, Y. K. and Shimoyama, I. "A multi-channel micro valve for micro pneumatic artificial muscle," 15th IEEE International Conference on Micro Electro Mechanical Systems, Las Vegas, 702 - 705 (2002).
[63] Festo, "Fluidic Muscle DMSP/MAS" (2010).
[64] Festo, "Proportional pressure regulator VPPM With added dimensions: Fast, universal, precise" (2012).
[65] Festo, "Proportional pressure regulators and valves VPPM, VPPE, MPPE, MPPES, MPYE and the new VPPM-MPA For correct pressure and precise regulation" (2008).
[66] 美商國家儀器股份有限公司台灣分公司http://sine.ni.com
[67] 李寶仁、劉軍、楊鋼,「氣動人工肌肉系統建模與模擬」,機械工程學報,第三十九卷,第七期,第23-28頁 (2003)。
[68] Shen, X. "Nonlinear model-based control of pneumatic artificial muscle servo systems," Control Engineering Practice, 18, 311-317 (2010).
[69] 温坤禮,MATLAB在灰色系統理論的應用,新北:全華圖書股份有限公司,第1-1-1-6頁 (2007)。
[70] 李俊蔚,四分之一車半主動式懸吊系統之自調式灰色模糊滑動控制器設計及於隨機路面,碩士論文,成功大學機械工程學系碩博士班,台南 (2010)。
[71] 吳尚峰,半車懸吊系統之灰色PID控制器設計,碩士論文,國立交通大學電機與控制工程系所,新竹 (2004)。
[72] C. J. Huang and J. S. Lin, "Nonlinear control design of half-car active suspensions," Proceedings of the 2002 Chinese Automatic Control Conference, Tainan, Taiwan, R.O.C., pp.643-648 (2002).
[73] Wang, W. Y., Chan, M. L., James Hsu, C. C. and Lee, T. T. "H∞ tracking-based sliding mode control for uncertain nonlinear systems via an adaptive fuzzy-neural approach," IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 32, 4, 483-492 (2002).
[74] 林浩庭,氣壓伺服三軸平行機構機械臂設計與控制之研究,碩士論文,臺灣大學工程科學及海洋工程學研究所,台北 (2007)。
[75] Slotine, J. E. and Wang, L. X., Applied Nonlinear Control, New Jersey, Prentice- Hall (1991).
[76] 佟紹成,非線性系統的自適應模糊控制,北京:科學出版社 (2006)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top