跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.124) 您好!臺灣時間:2025/09/19 09:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:方捷暐
研究生(外文):Chieh-wei Fang
論文名稱:多輸入多輸出系統之廣義空間調變預編碼設計
論文名稱(外文):Precoder Design for Generalized Spatial Modulation in Multiple-Input Multiple-Output Systems
指導教授:曾凡碩
指導教授(外文):Fan-Shuo Tseng
學位類別:碩士
校院名稱:國立中山大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:38
中文關鍵詞:X架構預編碼器自由距離最大概似檢測廣義空間調變
外文關鍵詞:ML detectionfree distanceX-structured precoderGSM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
由於廣義空間調變能夠有效地降低硬體的複雜度並且提高多輸入多輸出系統的頻譜效率,因此會成為一種次世代前瞻性的調變方式。在本篇論文裡,我們設計一種預編碼器來改善廣義空間調變多輸入多輸出系統的效能。首先我們先制定最佳化的預編碼器設計的公式,其中最佳化的目的是將最差情況下的最小自由距離給最大化。眾所周知,自由距離是用來評估最大概似檢測性能的重要指標。為了方便設計與推導,我們將預編碼器的設計分解為功率分配乘上每一個天線組合所對應到的預編碼器。經過分解後,我們可以容易地推導出預編碼器的閉合形式解,而且計算複雜度會大幅地降低,更適用於即時實作中。模擬結果驗證了我們的設計在位元錯誤率和計算複雜度上會優於現有的方法。
The generalized spatial modulation (GSM) is developed as a promising modulation scheme which effectively compromises the hardware complexity and the spectral efficiency in the multiple-input and multiple-output (MIMO) systems. In this paper, we further propose a precoding design for improving the performance of GSM-MIMO systems. We first formulate precoding design as an optimization of which the worst-case minimum free-distance can be maximized. As well know, the free-distance is the critical metric in evaluating the performance of the maximum likelihood (ML) detection. To facilitate the derivation, we then decompose the precoder design into the power allocation times a structured precoder for each antenna group. With the decomposition, we can easily derive a closed-form solution for the precoder design, which can greatly reduce the computational complexity and is suitable for the real-time implementation. Simulation results show the superiority of our design measured by both the BER and computational complexity compared with the existing methods.
目錄
論文審定書…………………………………………………………….…………………i
誌謝………………………………………………………………….…………………...ii
中文摘要………………………………………………………………………………...iii
英文摘要………………………………………………………………………………...iv
目錄………………………………………………………………………………………v
圖次……………………………………………………………………………………...vi
第1章 序言……………………………………………………………………………...1
第2章 系統模型………………………………………………………………………...7
第3章 預編碼器設計.…………………………...…………………….………………11
第3.1節 現有的預編碼器設計………………………………………………….13
第3.2節 以幾何平均值分解為基礎並包含秩數不足的預編碼器設計………..14
第4章 錯誤率分析…………………………………………………………………….19
第5章 系統模擬及探討……………………………………………………………….22
第6章 結論與未來展望……………………………………………………………….27
參考文獻………………………………………………………………………………..28

圖次
圖2.1廣義空間調變多輸入多輸出系統………………………………………………8
圖5.1三種廣義空間調變技術在不相關通道下的效能表現…………………………23
圖5.2不同預編碼器設計的廣義空間調變技術在不同相關係數的相關通道下的效能表現……………………………………………………………………………………24
圖5.3三種廣義空間調變技術在 的相關通道下的自由距離…………..24
圖5.4三種廣義空間調變技術 的相關通道下的自由距離…………...25
圖5.5三種廣義空間調變技術在 的相關通道下的自由距離………...25
[1]D. Gesbert, M. Shafi, D.-S. Shiu, P. J. Smith, and A. Naguib, “From theory to practice: An overview of MIMO space-time coded wireless systems,” IEEE J. Sel. Areas Commun., vol. 21, no. 3, pp. 281–302, Apr. 2003.
[2]Q. H. Spencer, C. B. Peel, A. L. Swindlehurst, and M. Haardt, “An introduction to the multi-user MIMO downlink,” IEEE Commun. Mag., vol. 42, no. 10, pp. 60–67, Oct. 2004.
[3]M. Z. Siam and M. Krunz, “An overview of MIMO-oriented channel access in wireless networks,” IEEE Trans. Wireless Commun., vol. 15, no. 1, pp. 63–69, Feb. 2008.
[4]P. Wolniansky, G. Foschini, G. Golden, and R. Valenzuela, “V–BLAST: an architecture for realizing very high data rates over the rich–scattering wireless channel,” in Proc. Int. Symp. Signals, Systems, Electronics (ISSSE’98), Pisa, Italy, pp. 295–300, Sept. 1998.
[5]S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451–1458, Oct. 1998.
[6]R. Y. Mesleh, H. Hass, S. Sinanovic, C. W. Ahn, and S. Yun, “Spatial modulation”, IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2228–2241, Jul. 2008.
[7]M. Di Renzo, H. Hass, and P. M. Grant, “Spatial modulation for multiple–antenna wireless systems: A survey”, IEEE Commun. Mag., vol. 49, no. 12, pp. 182–191, Dec. 2011.
[8]A. Younis, N. Serafimovski, R. Mesleh, and H. Hass, “Generalised spatial modulation,” in Proc. 2010 Signal, Syst. Comput., pp. 1498–1502, Oct. 2010.
[9]A. Younis, D. A. Basnayaka, and H. Hass, “Performance analysis for generalized spatial modulation,” in Proc. of the European Wireless, 2014, VDE Verlag GMBH, 2014
[10]J. Wang, S. Jia, and J. Song, “Generalised spatial modulation system with multiple active transmit antennas and low complexity detection scheme,” IEEE Trans. Wireless Commun., vol. 11, no. 4, pp. 1605–1615, Apr. 2012.
[11]X. Shao, J. Yuan, and Y. Shao, “Error performance analysis of linear zero forcing and MMSE precoders for MIMO broadcast channels,” IEEE Trans. Wireless Commun., vol. 1, no. 5, pp. 1067–1074, Oct. 2004.
[12]C. B. Peel, B. M. Hochward, and A. L. Swindlehurst, “A vector–perturbation technique for near–capacity multiantenna multiuser communication–part I: channel inversion and regularization,” IEEE Trans. Wireless Commun., vol. 53, no. 1, pp. 195–202, Jan. 2005.
[13]L.–U. Choi and R. D. Murch, “A transmit processing technique for multiuser MIMO systems using a decomposition approach,” IEEE Trans. Wireless Commun., vol. 3, no. 1, pp. 20–24, Jan. 2004.
[14]C.–B. Chae, S. Shim, and R. W. Heath Jr, “Block diagonalized vector perturbation for multiuser MIMO systems,” IEEE Trans. Wireless Commun., vol. 7, no. 11, pp. 4051–4057, Nov. 2008.
[15]V. Stankovic and M. Haardt, “Generalised design of multi–user precoding matrices,” IEEE Trans. Wireless Commun., vol. 7, no. 3, pp. 953–961, Mar. 2008.
[16]L. Collin, O. Berder, P. Rostaing, and G. Burel, “Optimal minimum distance–based precoder for MIMO spatial multiplexing systems,” IEEE Trans. Signal Process., vol. 52, no. 3, pp. 617–627, Mar. 2004.
[17]S. K. Mohammed, E. Viterbo, Y. Hong, A. Chockalingam, “MIMO precoding with X– and Y–codes,” IEEE Trans. Inform. Theory, vol. 57, no. 6, pp. 3542–3566, Jun. 2011.
[18]K. P. Srinath and B. S. Rajan, “A low ML–decoding complexity, full–diversity, full–rate MIMO precoder,” IEEE Trans. Signal Process., vol. 59, no. 11, pp. 5485–5498, Nov. 2011.
[19]B. Vrigneau, J. Letessier, P. Rostaing, L. Collin, and G. Burel, “Extension of the MIMO precoder based on the minimum Euclidean diatance: A cross–form matrix,” IEEE J. Sel. Topics Signal Process., vol. 2, no. 2, pp. 135–146, Apr. 2008.
[20]Q.–T. Ngo, O. Berder, and P. Scalart, “Minimum Euclidean distance based precoder for MIMO systems using rectangular QAM modulations,” IEEE Trans. Signal Process., vol. 60, no. 3, pp. 1527–1533, Mar. 2012.
[21]C.–T. Lin and W.–R. Wu., “X–structured precoder design for spatial multiplexing MIMO systems,” in Proc. IEEE Global Telecommun. Conf., Anaheim, CA, Dec. 2012, pp. 3880–3885.
[22]Y. Jiang, W. W. Hager, and J. Li, “The geometric mean decomposition,” Linear Algebra Its Applications, vol. 396, pp. 373–384, Feb. 2005.
[23]Y. Jiang, J. Li, and W. W. Hager, “Joint transceiver design for MIMO communications using geometric mean decomposition,” IEEE Trans. Signal Process., vol. 53, no. 10, pp. 3791–3803, Oct. 2005.
[24]G. L. Turin, “The characteristic function of Hermitian quadratic forms in complex normal variables,” Biometrika, vol. 47, no. 1/2, pp. 199–201, Jun. 1960.
[25]M.–C. Lee, W.–H. Chung, and T.–S. Lee., “Generalized precoder design formulation and iterative algorithm for spatial modulation in MIMO systems with CSIT,” IEEE Trans. Commun., vol. 63, no. 4, pp. 1230–1244, Apr. 2015.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top