跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/06 08:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:顏雲生
研究生(外文):Yun-Sheng Yen
論文名稱:新行動通信網路環境裡使用動態樹調整的群播通信協定
論文名稱(外文):A Multicast Routing Protocol with Dynamic Tree Adjustment for Mobile IPv6
指導教授:張瑞雄張瑞雄引用關係
指導教授(外文):Ruay-Shiung Chang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:74
中文關鍵詞:下一代距離向量多重群播路徑通信協定下一代網際網路新一代行動網路多重群播距離向量多重廣播路徑通信協定行動網路傳輸控制/網路通訊協定
外文關鍵詞:TCP/IPMobile IPIPv6Mobile IPv6multicastingDVMRPDVMRPv6.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:2


摘要
當前網際網路的成長是愈來愈快速,也越來越受到歡迎,應用方面諸如即時系統、線上系統、互動式遊戲等等也變為更廣泛的被使用。甚至在積體電路的設計技術方面,其功能也變得更加強大復雜但體積卻相對的減小,於是能製造出這些設備如筆記型電腦、個人數位助理器、膝上型電腦和掌上型電腦等,吸引了一般大眾的喜愛與使用。 而上述的設備若能在無線網路的環境上運作,人們將可以有更方便的溝通方式。
傳輸控制/網路通訊協定是目前的標準的網路通信協定,為了使用者在移動時也能使用網際網路上所提供的各種服務,於是有了行動網路網路的出現。傳輸控制/網路通訊協定的另外一項重要發展,就是下一代網際網路的發展。當一連串的資料同時傳送給網路上不同的多重接收者時,我門叫做多重群播。在這篇論文上,我們研究這在下一代行動網路上多重群播路徑的問題。
以目前而言,下一代行動網路上支援多重群播機制,會產生一個嚴重的問題,那是就是當傳送者移動時,會造成完整的多重傳遞樹毀壞以至於多重資料無法續傳到所有的接收者。所以我們設計了反轉流量介面的機制儘量去保持多重傳遞樹的完整性,在這種機制下,我們會從傳送者所附著的新附著點到舊附著點上建立一條強迫返回路徑,保證多重資料的傳遞。此外,我們還局部修改了距離向量多重群播路徑通信協定,使其能使用在新一代行動通信網路上運作。最後,我們做了評量和實驗,來證明當傳送者移動時,我們提出的機制在多重群播時不但架構簡單而且是更有效率和穩定性。



Abstract
As the Internet grows faster and becomes more popular, applications such as real-time systems, on-line services, interactive games and so on have become more widespread. Moreover, the design technique for Integrated-Circuit has become more sophisticated and the ICs are much smaller. The devices (i.e. Notebook, PDA, laptop, and palmtop.) will attract more and more people. Apparently, the wireless networks will also become the best choice by people in the near future. Combining the devices with the infrastructure, people will have a more convenient way to communicate with each other.
TCP/IP is currently the standard network protocols for wired Internet. To make all the Internet services available to all mobile users. Mobile IP is proposed. Another important development for TCP/IP is the evolvement to the next generation Internet. The next generation protocol is called IPv6. Situations arise in some Internet applications that a piece of data needs to be sent to multicast receipients. This is called multicasting. In this thesis, we study the multicasting routing problem based on Mobile IPv6.
In multicasting, the mobility of sender may cause a serious problem. When a sender moved, the full delivery tree would fall so that multicast datagrams can’t forward to all receivers. In this thesis, we propose a Reverse Traffic Interface (RTI) mechanism to preserve the integrity of adjusted tree. In the mechanism, we will create a Backward-Forced Path (BFP) to re-generate a new tree without re-routing. It can ensure multicast datagrams be sent to all reachable destinations without interruption. In addition, we show that a slight modification of the DVMRP version 3, called DVMRPv6, can be used in Mobile IPv6 to support our mechanism. Finally, we use a total tree cost measures to estimate and judge our scheme and implement a simulation to manifest the effect. It shows that our proposal genuinely makes multicasting on mobiles network simpler, more efficient, and more reliable.



List of Figures
Figure 2.1 IPv 4 Header format
Figure 2.2 IPv 6 Header format
Figure 2.3 ICMPv6 Header format
Figure 2.4 Multicast Listen Discovery (MLD) protocol header format
Figure 3.1 Unicast routing
Figure 3.2 Multicast routing
Figure 3.3 Multicast routing protocol
Figure 3.4 DVMRP optimal distribution tree
Figure 3.5 Mobility Header of Mobile IPv6
Figure 3.6 The basic operations of Mobile IPv6
Figure 4.1 Receiver moved: Datagrams is delivered via a tunnel
Figure 4.2 Receiver moved: Datagrams is delivered directly
Figure 4.3 Receiver moved: Extend the tree branch
Figure 4.4 Sender moved: Rebuild a multicast delivery tree
Figure 4.5 Sender moved: Build reverse delivery path
Figure 5.1 An example of DVMRPv6 topology
Figure 5.2 Multicast Router Discovery Message Format
Figure 5.3 New MLD Header Format
Figure 5.4 New IPv6 Header Format
Figure 6.1 An example of building multicast delivery tree
Figure 6.2 Pruning the branch of multicast delivery tree
Figure 6.3 Grafting the branch of multicast delivery tree
Figure 6.4 An example of Sender mobility with new gateway router
Figure 6.5 An example of Sender mobility with new gateway router is not group member
Figure 7.1 Dynamic adjusted root of delivery tree
Figure 7.2 The total cost of multicast tree with two multicast groups
Figure 7.3 The total cost of multicast tree with four multicast groups
Figure 7.4 The comparison of end-to-end delay
List of Tables
Table 3.1 The differences between DVMRPv6 and classical DVMRP
Table 3.2 The mainly difference between Mobile IPv4 and Mobile IPv6
Table 5.1 Initial distance stored at each DVMRPv6 router
Table 5.2 Final distance stored at each DVMRPv6 router


TABLE OF CONTENTS
Acknowledgements
摘要 ……………………………………………………………………………...I
Abstract ………………………………………………………………………....II
List of Figures ………………………………………………………………....III
List of Tables …………………………………………………………………..IV
Chapter 1 Introduction ……………………………………………………...1
1.1 Background …………………………………………………………………....1
1.2 Motivation ……………………………………………………………………..4
Chapter 2 Internet Protocol …………………………………………….….5
2.1 IPv4 and IPv6 ……………………………………………………………….…5
2.2 Internet Control Message Protocol version 6 (ICMPv6) protocol …………….7
2.3 Multicast Listener Discovery (MLD) protocol ………………………………..8
2.4 Neighbor Discovery (ND) protocol …………………………………………...9
2.5 Address Autoconfiguration ……………………………………………………10
2.6 IPv6 Multicast address ………………………………………………………..11
2.7 IPv6 Extension Header ………………………………………………………..13
Chapter 3 Multicasting and Mobility ……………………………………14
3.1 Multicasting …………………………………………………………………...14
3.1.1 Multicast Description …………………………………………………...14
3.1.2 Spanning Tree and Reverse Path Forwarding (RPF) ……………….......16
3.1.3 Distance Vector Multicast Routing Protocol (DVMRP) ………………..18
3.1.3.1 DVMRP Description …………………………………………...18
3.1.3.2 DVMRP Message Type …………………………………….......19
3.1.3.3 DVMRP Basic Operation ……………………………………....20
3.1.4 IPv6 supports DVMRP …………………………………………………21.
3.2 Mobility ………………………………………………………………………23
3.2.1 Mobile IPv6 Description ……………………………………………….23
3.2.2 Mobile IPv6 Message Type …………………………………………….24
3.2.3 Mobile IPv6 Basic Operation …………………………………………..26
Chapter 4 Problem Description ………………………………………….28
4.1 Multicasting Problem Statements …………………………………………....28
4.2 Mobility Problem Statements ………………………………………………..30
4.2.1 Receiver Mobility ………………………………………………………….31
4.2.2 Sender Mobility ……………………………………………………………33
Chapter 5 Related Works and Packet Formats ……………………..36
5.1 Related Works ……………………………………………………………….36
5.2 Modification of Formats …………………………………………………….40
5.2.1 Modification of ND Protocol Format ………………………………….40
5.2.2 Modification of MLD Header Format …………………………………41
5.2.3 Modification of IPv6 Header Format ………………………………….42
5.2.4Modification of Binding Update message ……………………………...43
Chapter 6 A New Multicast Routing Protocol ……………………….43
6.1 DVMRPv6 Routing Protocol Initialization ………………………………….45
6.1.1 DVMRPv6 Router Discovery …………………………………………45
6.1.2 DVMRPv6 Topology Network Discovery …………………………….47
6.1.3 Local Group Memberships ……………………………………………50
6.2 Multicast Routing Protocol Manipulation …………………………………..52
6.2.1 Multicast Delivery Tree Establishment …………………………………...53
6.2.2 Multicast Delivery Tree Maintenance ………………………………...55
6.3 Reverse Traffic Interface (RTI) Mechanism ………………………………..59
Chapter 7 Evaluations and Experiments …………………………….64
7.1 Evaluations ………………………………………………………………....64
7.2 Experiments ………………………………………………………………...68
Chapter 8 Conclusions …………………………………………………...71
8.1 Conclusions ………………………………………………………………...71
References …………………………………………………………………...72



References
[1] Adams, A., Nicholas, J., Siadak, W., “Protocol Independent Multicast — Dense Mode (PIM-DM): Protocol Specification (Revised)”, Internet Draft , February 2003.
[2] Adelstein, F., Richard III, G.G., and Schwiebert, L., "Building Dynamic Multicast Trees in Mobile Networks, "1999 ICPP Workshop on Group Communication, pages 17-22, September, 1999.
[3] Conta, A., Deering, S., “Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification”, RFC 2463, December 1998.
[4] Ballardie, A., “Core Based Trees (CBT version 2) Multicast Routing—Protocol
Specification”, RFC 2189, September 1997.
[5] Ballardie, A., “Core Based Trees (CBT) Multicast Routing Architecture”, RFC 2201, September 1997.
[6] Biswas, S., Cain, B., Haberman, B., “Multicast Router Discovery”, Internet Draft “draft-ietf-idmr-igmp-mrdisc-10.txt”, January 2003.
[7] D. Bertsekas and R. Gallager, Data Networks. Prentice-Hall, 2nd ed., 1992.
[8] Droms (ed.), R., Bound, J., Bernie Volz, Ted Lemon, Perkins, C., Carney, M., “Dynamic Host Configuration Protocol for IPv6 (DHCPv6)”, Internet Draft , November 2002.
[9] Deering, S., Fenner, W., “Multicast Listener Discovery (MLD) for IPv6”, Internet Draft , June 1999.
[10] Deering, S., Fenner, W., Haberman, B., “Multicast Listener Discovery (MLD) for IPv6”, RFC 2710, October 1999.
[11] Deering, S., Hinden, R., “Internet Protocol, Version 6 (IPv6) Specification”, RFC 2460, December 1998.
[12] Estrin, D., Farinacci, D., Helmy, A., Thaler, D., Deering, S., Handley, M., Jacobson, V., Liu, C., Sharma, P., Wei, L., “Protocol Independent Multicast -Sparse Mode (PIM-SM): Protocol Specification”, RFC 2362, June 1998.
[13] Haberman, B., “Allocation Guidelines for IPv6 Multicast Addresses”, RFC 3307, August 2002.
[14] Haberman, B., Thaler, D., “Unicast-Prefix-based IPv6 Multicast Addresses”, RFC 3306, August 2002.
[15] Haberman,B., Sandick, H., Kump, G., “Protocol Independent Multicast Routing in the Internet Protocol Version 6 (IPv6)”, Internet Draft , March 2000.
[16] Hinden, R., Deering, S., “IP Version 6 Addressing Architecture”, RFC 2373, July 1998.
[17] Hinden, R., Deering, S., “IPv6 Multicast Address Assignments”, RFC 2375, July, 1998.
[18] Hwang, F., Richards, D., “Steiner tree problems”, Networks, 22:55-89, 1992.
[19] Johnson, D., Perkins, C., Arkko, J., “Mobility Support in IPv6”, Internet Draft , February 26, 2003.
[20] Kompella, V. P., et al, “Multicast Routing for Multimedia Communication”, IEEE/ACM Trans. on networking, 1(3), pp.286-292, 1993.
[21] Moy, J., “Multicast Extensions to OSPF”, RFC 1584, March 1994.
[22] Narten, T., Nordmark, E., Simpson, W., “Neighbor Discovery for IP Version 6 (IPv6)”, RFC 2461, December 1998.
[23] Perkins, C., “IP Mobility Support for IPv4”, RFC 3344, August 2002.
[24] Pusateri, T., “Distance Vector Multicast Routing Protocol”, Internet Draft , August 2000.
[25] Thomson, S., Narten, T., “IPv6 Stateless Address Autoconfiguration”, RFC 2462, December 1998.
[26] Waitzman, D., Partridge, C., Deering, S.E., “Distance Vector Multicast Routing Protocol”, RFC 1075, Nov-01-1988.
[27] Xylomenos, G., Polyzos, G.C., "IP Multicast for Mobile Hosts", IEEE Communications Magazine, 54-58, January 1997.
[28] http://www.csee.usf.edu/~christen/lcn99_2.pdf
[29] http://www.inrialpes.fr/planete/mobiwan/
[30] http://www.isi.edu/nsnam/ns/

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top