跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.37) 您好!臺灣時間:2025/10/09 17:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:余子瑜
研究生(外文):Tzu-Yu Yu
論文名稱:焦糖抗氧化力及其與褐變程度關係之探討
論文名稱(外文):Studies on the antioxidant capacity of caramel and their relationship with browning intensity
指導教授:蔡碧仁
指導教授(外文):Pi-Jen Tsai
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:食品科學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:100
中文關鍵詞:焦糖化抗氧化能力褐變程度
外文關鍵詞:caramelizationantioxidantbrowning intensity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1185
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
焦糖化反應是非酵素性褐變的一種,所生成的物質稱為焦糖化產物(caramelization products, CPs)。有文獻指出,此焦糖化產物具有抗氧化能力,在魚漿冷凍儲藏的過程中,可以抑制脂質氧化的速率,且添加的焦糖化產物愈多,抑制的效果愈佳。然焦糖化產物因醣種類、濃度、熱形成條件而大不相同,其所對應之抗氧化力必然也有不同。本研究即針對不同糖種類 (蔗糖、果糖、葡萄糖、木糖),糖濃度 (1%, 10%, 20%)及pH值 (pH 3, pH 7, pH 10),探討焦糖化產物之色澤及抗氧化特性。測定項目包括焦糖產物的吸光特性 (pH值、UV可吸收性物質、褐變程度及UV可吸收性物質與褐色聚合物吸光值之比值)、色澤品質 (Hunter L a b、色彩度及△E值)及抗氧化能力 (FRAP還原能力及DPPH自由基清除能力),探討焦糖產物之色澤及抗氧化力之關係,及pH值下降程度和其對應抗氧化能力關係。
結果顯示,在中性及鹼性環境下,單醣焦糖提供較佳的FRAP還原能力及DPPH自由基清除能力;反之,蔗糖則在酸性下,抗氧化能力較高。焦糖褐變程度的增加並且隨著濃度由1%增加至10%及20%,抗氧化力也隨之增加。pH 3酸性系統於三種濃度之下,四種糖種類於加熱至42小時,其褐變程度及抗氧化能力的高低,皆依序為果糖、蔗糖、木糖及葡萄糖。而在中性環境下,則以木糖的表現較好,其次為果糖。再者於鹼性環境下,1%及10%糖濃度者,則以木糖的表現效果較佳,果糖次之,20%者則以葡萄糖的表現效果為最佳。統計分析結果顯示,褐變程度皆與紅色度、黃色度、彩度值、色差值、UV可吸收性質、FRAP還原能力及DPPH自由基清除能力呈現高度 正相關性,而與亮度值(Hunter L值)及RUV/brown值呈負相關性。焦糖褐色產物或其中間產物隨著加熱時間增加而增加。此與形成焦糖產物之速率及生成量有關。且pH值下降,其褐變程度 (A420)或pH值降低程度與抗氧化力呈現高度相關性。褐變程度與FRAP還原力相關係數介於0.78-0.94之間,而褐變程度與DPPH自由基清除能力相關係數介於0.55-0.96之間。另外褐變程度增加速率與FRAP還原力起始增加速率之相關係數則高達0.81-0.89,溶液pH降低程度與FRAP還原力起始增加速率相關係數則高達0.89-0.94。
綜合上述,焦糖化反應過程中,中性及鹼性環境下,單醣隨著加熱時間的增加,褐變能力愈強,其色澤變化愈大,抗氧化力增強,推測抗氧化力來源應與氫離子釋放有關,或是來自於其褐色物質產生的結果。
Caramelization is one of nonenzymatic browning, which produces the substances called caramelization products (CPs). Reports showed that, CPs could inhibit lipid oxidation in fish mince during storage, and the inhibition effectively increased as the amount of CPs increased. However, the CPs varied when the kind and concentration of sugars are different, so is their corresponding antioxidant capacity. The aim of this study is to elucidate the effect of sugars (sucrose, fructose, glucose, xylose), sugar concentration (1%, 10%, 20%) and pH (pH 3, pH 7, pH 10) on the color and antioxidant properties of CPs. Analyses include optical characteristics (UVλmax, A420 and RUV/brown), color qualities (Hunter L a b value, chroma, △E) and antioxidant capacities (FRAP reducing power and DPPH scavenging ability).To elucidate the relation of caramelization products browning intensity or degree of pH decrease and antioxidant capacity.
Results showed that the caramels from monosaccharides seemed to provide better FRAP reducing power and DPPH scavenging ability at neutral or alkaline condition. In addition, while sucrose at acidic condition was to show the better antioxidant capacity. The browning intensity and antioxidant capacity also increased as the sugar concentration was increased from 1% to 10 % and 20%. Under the pH 3 acidic system with three sugar concentration,
four sugar kinds were heated after 42 hours, the leveling of browning intensity and antioxidant capacity, in order were fructose, sucrose, xylose and glucrose. And at neutral condition, xylose was greater, and fructose was the posterior one. Xylose was to show much better, next was fructose in 1% and 10% sugar concentration, and glucrose was to show better at 20% sugar concentration under the alkaline condition.
Correlation analysis results showed that the browning intensity, Hunter a, Hunter b, chroma, △E, UV-absorbing substance, FRAP reducing power, and DPPH scavenging ability showed highly positive correlation coefficient, while Hunter L and RUV/brown value showed negative correlation. Caramel intermediate or brown products increased as heating time increased. Which are also connected with the formation rate of caramel. Besides the browning intensity, △pH was also found to linearly correlate with the initial rate of FRAP increase. Consequently, we found that the correlation coefficient between browning intensity and FRAP reducing power or DPPH scavenging ability were among 0.78-0.94 and 0.55-0.96, respectively. And the initial rate of browning and △pH also linearly correlated with the increase rate of FRAP (correlation coefficient were 0.81-0.89 and 0.89-0.94, in 1% and 20% sugar system, respectively).
In conclusion, on the caramelization process, under neutrality or alkaline condition, the antioxidant capacity, browning intensity, color change increased which caramels from monosaccharides increased as heating time increased. It can be concluded that, intensity and rate of brown caramel formation depend on pH and may decide the antioxidant capacity of caramel, which can also be easily detected by the measurement of △pH or browning intermediate during the caramelization process.
中文摘要 I
Abstract III
謝誌 V
目錄 VI
圖表目錄 VIII
第1章 前言 1
第2章 文獻回顧 3
2.1 焦糖化反應 3
2.1.1 焦糖化反應特性 3
2.1.1.1 風味及色澤 3
2.1.1.2 中間產物 7
2.1.1.3氫離子的釋放 7
2.1.2影響焦糖化反應之因子 9
2.1.2.1糖種類 9
2.1.2.2 反應溫度 9
2.1.2.3 pH值 11
2.1.2.4 水分含量 12
2.1.2.5 光、放射線與金屬離子 12
2.1.2.6 儲存時間 12
2.1.3 焦糖產物在食品上的應用 13
2.1.3.1 抗氧化能力 13
2.1.3.2 風味劑與著色劑 17
2.1.3.3抑制酵素性褐變 17
2.1.3.4 營養作用 17
2.1.3.5 化學標記 18
2.1.3.6 Furfural及HMF與褐色色素形成之關聯 18
第3章 材料與方法 20
3.1 試驗藥品 20
3.2 試驗儀器 20
3.3 試驗流程與方法 21
3.3.1 焦糖化產物之製備與特性之探討 21
3.4 試驗分析項目 23
3.4.1 抗氧化能力分析 23
3.4.1.1 DPPH自由基清除能力測定 23
3.4.1.2 FRAP還原力測定 23
3.4.2 色澤相關特性之分析 23
3.4.2.1 褐變程度 23
3.4.2.2 UV可吸收性化合物測定 24
3.4.2.3 UV可吸收性物質與褐色聚合物之吸光值比值 24
3.4.2.4 Hunter L a b值的測定 24
3.4.3 pH值測定 24
3.4.4 起始反應速率 26
3.5 統計分析 26
第4章 結果與討論 27
4.1 pH值變化 27
4.2 色澤變化 32
4.2.1 UV可吸收性物質 32
4.2.2褐變程度 37
4.2.3 UV可吸收性物質與褐色聚合物吸光值之比值 41
4.2.4色澤品質變化 43
4.2.4.1亮度值 47
4.2.4.2 紅色度 55
4.2.4.3黃色度 55
4.2.4.4色彩度 59
4.2.4.5色差值 66
4.2.4.6色澤變化之相關性分析 71
4.3 抗氧化能力分析 75
4.3.1 FRAP還原能力 75
4.3.2 DPPH自由基清除能力 81
4.4 焦糖品質之相關性分析 82
4.4.1 pH值變化與抗氧化能力之相關性分析 86
4.4.2 褐色產物生成與抗氧化能力之相關性分析 86
4.4.3 焦糖品質之相關性分析 91
第5章 結論 94
參考文獻 95
作者簡介 100
王傳淑。差向異構化[中文詞條]。2006年6月12日,取自「中國大百科全書智慧藏」:http://210.240.193.70/xency/Content.asp?ID=45539

林靜宜。2001。巴斯德殺菌芒果汁求最適溫度與時間之探討。國立屏東科技大學食品科學系碩士論文。

張旭鬱。2002。寡木糖之化學安定性及吸濕性與對玉米脆片物性影響。靜宜大學食品營養所研究所碩士論文。

張為憲、李敏雄、呂政義、張永和、陳昭雄、孫璐西、陳怡宏、張基郁、顏國欽、林志城、林慶文。2001。食品化學。華香園出版社。台北。

程竹君。1989。醣的分解與柑桔果汁劣變之關聯。食品工業。

戴士傑。2006。焦糖化產物的特性及與酚類交聯程度之探討。國立屏東科技大學食品科學研究所碩士論文。

Ajandouz EH, Puigserver A. 1999. Nonenzymatic browning reaction of essential of amino acids: Effect of pH on caramelization and maillard reaction kinetics. Journal of Agricultural and Food Chemistry 47: 1786-93.

Ajandouz EH, Tchiakpe LS, Ore FD, Benajiba A, Puigserver A. 2001. Effects of pH on caramelization and maillard reaction kinetics in fructose-lysine model systems. Journal of Food Science 66: 926-31.

Andueza S, Cid C, Nicoli MC. 2004. Comparison of antioxidant and pro-oxidant activity in coffee beverages prepared with conventional and “Torrefacto” coffee. Lebensm-wiss. u.-Technol 37: 893-7.
Benjakul S, Visessanguan W, Phongkanpai V, Tanaka M. 2005. Antioxidative activity of caramelization products and their preventive effect on lipid oxidation in fish mince. Food Chemistry 90: 231-9.

Bruijn JM, Kieboom APG, Bekkum H. 1986. Reactuon of monsaccharides in aqueous alkaline solution. Sugar Technology 13: 21-52.

Buera MP, Chirife J, Resnik SL, Lozano RD. 1987. Nonenzymatic browning in liquid model systems of high water activity: Kinetics of color changes due to caramelization of various single sugars. Journal of Food Science 52: 1059-62.

Faraji H, Lindsay C. 2005. Antioxidant protection of bulk fish oils by dispersed sugars and polyhydric alcohols. Journal of Agricultural and Food Chemistry 53: 736-44.

Farine S, Villard C, Moulin A, Marchis Mouren G, Puigserver A. 1997. Comparative quantitative analysis of sucrose and related compounds using ion exchange and reverse phase chromatographic methods. International Journal of Biological Macromolecules 21: 109-14.

Granados JQ, Mir MV, Serrana HLG, Martinez MCL. 1996. The influence of added caramel on furanic aldehyde content of matured brandies. Food Chemistry 56: 415-9.

Garza S, Ibarz A, Pagan J, Giner J. 1999. Non-enzymatic browning in peach puree during heating. Food Research International 32: 335-43.

Herbach KM, Michael R, Stintzing FC, Carle R. 2006. Structural and chromatic stability of purple pitaya (Hylocereus polyrhizus [Weber] Britton & Rose) betacyanins as affected by the juice matrix and selected additives. Food Research International 216: 301-11.

Homoki-Farkas P, Orsi F, Kroh LW. 1996. Methylglyoxal determination from different carbohydrates during heat processing. Food Chemistry 59: 157-63.

Jin ZQ, Chen X. 1998. A sample reprodciple model of free radical-injured isolated heart induced by 1,1-Diphenyl-2-Picryl-Hydrazyl (DPPH). Journal of Pharmacological Methods 39: 67-70.

Kato Y, Matsuda T, Kato N, Nadamura R. 1988. Browning and protein polymerization induced by amino-carbonyl reaction of ovalbumin with glucose and lactose. Journal of Agricultural and Food Chemistry 36: 806-9.

Kato Y, Watanabe K, Sato Y. 1981. Effect of some metals on maillard reaction of ovalbumin. Journal of Agricultural and Food Chemistry 29: 540-3.

Kikugawa K, Kato T, Hiramoto K, Takada C, Takada M, Maeda Y, Ishihara T. 1999. Participation of the pyrazine cation radical in the formation of mutagens in the reaction of glucose/glycine/creatinine. Mutation Research 444: 133-44.

Kroh LW. 1994. Caramelisation in food and beverages. Food Chemistry 51: 373-9.

Labuza TP. 1972. Nutrient losses during drying and storage dehydrated foods. CRC. Journal of Food Technology 3: 217-40.

Lee GC, Lee CY. 1997. Inhibitory effect of caramelization products on enzymic browning. Food Chemistry 60: 231-5.
Manzocco L, Calligaris S, Mastrocola D, Nicoli MC, Lerici CR. 2001. Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends in Food Science and Technology 11: 340-6.

Minamida K, Kaneko M, Ohashi M, Sujaya N, Sone T, Wada M, Yokota A, Hara H, Asano K, Tomita F. 2005. Effects of difructose anhydride Ⅲ (DFAⅢ) administration on bile acids and growth of DFA Ⅲ-assimilating bacterium Rumminococcus productus on rat intestine. Jouranal of Bioscience and Bioengineering 99: 548-54.

Montilla A, Ruiz-Matute AI, Sanz ML, Marinez-Castro I, Castillo MD. 2006. Difructose anhydrides as quality markers of honey and coffee. Food Research International 39: 801-6.

Nicoli MC, Anese M, Parpinel M, Franceschi S, Lerici CR. 1997. Loss and/or formationof antioxidants during food processing and storage. Cancer Letters 114: 71-4.

Niemeyer HB, Metzler M. 2003. Differences in the antioxidant activity of plant and mammalian lignans. Journal of Food Engineering 56: 255-6.

Quintas M, Guimaraes C, Baylina J, Brandao TRS, Silva CLM. 2007. Multiresponse modeling of the caramelisation reaction. Innovative Food Science and Emerging Technologies 8: 306-15.

Ratsimba V, Fernandez JMG, Defaye J, Nigay H, Voilley A. 1999. Qualitative and quantitative evaluation of mono- and disaccharides in D-fructose, D-glucose and sucrose caramels by gas-liquid chromatography-mass spectrometry Di-D-fructose dianhydrides as tracers of caramel authenticity. Journal of Chromatography A 88: 283-93.

Reyes FGR, Poocharoen B, Wrolstad RE. 1982. Maillard browning reaction of sugar-glycine model systems: changes in sugar concentration, color and appearance. Journal of Food Science 47: 1376-7.

Shimada K, Fujikawa K, Yahara K, Nakamura T. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry 40: 945-8.

Tsai PJ, Delva L, Yu TY, Huang YT, Dufosse. 2005. Effect of sucrose on the anthocyanin and antioxidant capacity of mulberry extract during high temperature heating. Food Research International 38: 1059-65.

Tsai CH, Kong MS, Pan BS. 1991. Water activity and temperature effects on nonenzymic browning of amino acid in dried squid and simulated model system. Journal of Food Science 56: 665-70.

Umerie SC. 2000. Caramel production from saps of African oil palm (Elaeis guineensis) and wine palm (Raphia hookeri) trees. Bioresource Technology 75: 167-9.

Wolfrom ML, Kashimura N, Horton D. 1974. Factors affecting the maillard browning reaction between sugars and amino acids. Studies on the non-enzymatic browning of dehydrated orange juice. Journal of Agricultural and Food Chemistry 22: 796-800.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top