跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 23:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉怡婷
研究生(外文):Yi Ting Liu
論文名稱:抗發炎Anthranilic Acid衍生物於大白鼠體內之藥物動力學研究
論文名稱(外文):The Pharmacokinetics of Anti-inflammatory Anthranilic Acid Derivatives in Rats
指導教授:謝珮文謝珮文引用關係
指導教授(外文):P. W. Hsieh
學位類別:碩士
校院名稱:長庚大學
系所名稱:中醫學系天然藥物
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
論文頁數:164
中文關鍵詞:Anthranilic Acid藥物動力學高效能液相層析儀
外文關鍵詞:Anthranilic AcidPharmacokineticsHigh-performance liquid chromatography(HPLC)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:344
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究團隊在過去的研究中合成了一系列anthranilic acid衍生物,包括DSM-RX 116 (Ethyl 2-(2-fluorobenzamido)benzoate)、DSM-RX 78 (Methyl 2-(2-fluorobenzamido)benzoate)及兩者之代謝產物SMP-3 (2-(2-fluorobenzamido)benzoic acid)等;其中DSM-RX 116及DSM-RX 78具有良好的抗發炎活性,可以抑制活化的嗜中性球產生超氧化陰離子(superoxide anion, O2.−)的生成,其IC50為0.17和0.65 M。此外,靜脈投予此兩者化合物有效的改善了接受trauma-hemorrhagic (T/H) shock的大白鼠所引起的多重性器官衰竭。因此研究之目的為建立DSM-RX 116、DSM-RX 78及SMP-3之分析方法並監測大白鼠體內靜脈與口服之藥物動力學的變化,以及其分佈與毒性研究。經確效後實際應用至血漿濃度分析及藥物動力學的實驗。體外實驗顯示DSM-RX 116及 DSM-RX 78會受到esterase的影響而被水解為SMP-3,且此兩者化合物均會與血漿中白蛋白100 %結合,無游離態的化合物存在,而其代謝產物SMP-3蛋白質結合率也高達99 %。動物實驗方面,分別投予Sprague Dawley rats DSM-RX 116、DSM-RX 78及SMP-3靜脈劑量1.0 mg/kg,口服劑量40.0 mg/kg;其藥物動力學參數顯示靜脈給予DSM-RX 116、DSM-RX 78及SMP-3其半衰期(t1/2)為8.98、8.77及23.99分鐘;清除率(CL)為24.57、22.31及2.24 mL/min/kg;曲線下面積(AUC0-)為41.76,48.03及486.44 min∙mg/L。口服給予DSM-RX 116及DSM-RX 78後,分析結果顯示血液中未含有原始的化合物,但可偵測到其水解產物SMP-3,因此三者藥物動力學參數非常相近。急性毒性實驗進行了7天累積劑量(3 mg/kg)及24小時單一高劑量(45 mg/kg)靜脈給予SMP-3、DSM-RX 78及DSM-RX 116,結果顯示僅高劑量投予化合物會對SD大白鼠產生肝臟毒性,引起浸潤型淋巴球的聚集與膠原蛋白的沉積,其毒性為DSM-RX 78最大,而在其他的組織切片中並沒有發現明顯被破壞、發炎及免疫系統被活化的現象。
The anthranilic acid derivatives, DSM-RX 116 (Ethyl 2- (2- fluorobenzamido) benzoate), DSM-RX 78 (Methyl 2-(2-fluorobenzamido)benzoate), and their hydrolysis compound, SMP-3 (2-(2-fluorobenzamido)benzoic acid), were synthesized. In previous study, DSM-RX 78 and DSM-RX 116 showed inhibitory effects on fMLP-induced superoxide anion generation in neutrophil with IC50 value of 0.65 and 0.17 μM. Furthermore, i.v. administration of DSM-RX 78 and DSM-RX 116 in rats subjected to trauma - hemorrhagic (T/H) shock caused a significant improvement in multiple organ dysfunctions. In present study, the experimental of plasma concentrations and pharmacokinetic analysis of DSM-RX 116, DSM-RX 78 and SMP-3 were determined by HPLC analysis. The pharmacokinetics, distributions and toxicitys of intravenously (1.0 mg/kg) and oral (40.0 mg/kg) administered SMP-3、DSM-RX 116 and DSM-RX 78 were also determined in Sprague Dawley rats. The in vitro experiments showed that DSM-RX 116 and DSM-RX 78 will hydrolysis to SMP-3 by esterase, and the protein binding ratio of SMP-3 was 100%. In addition, the protein binding ratio of the hydrolysis product SMP-3 was up to 99%. Mean kinetic parameters of DSM-RX 116, DSM-RX 78 and SMP-3 via i.v. administration as follows: elimination half-life (t1/2) 8.98, 8.77 and 23.99 min; clearance (CL) 24.57, 22.31 and 2.24 mL/min/kg; AUC0- 41.76, 48.03 and 486.44 min∙mg/L. Since DSM-RX 116 and DSM-RX 78 were hydorlyzed to SMP-3 through oral administration, they with similar kinetic parameters in oral administration. The toxicity of SMP-3, DSM-RX 78 and DSM-RX 116, including cumulative dose (3 mg/kg/day for 7 days) and single dose (45 mg/kg/day), were evaluated using intravenously administration. In single dose experimental, the histology analysis showed there were no toxicity to heart, brain, kidney, and lung; but they may exhibit liver toxicity.
目錄
指導教授推薦書..........................................................................................
口試委員會審定書......................................................................................
授權書..........................................................................................................
致謝..........................................................................................................Ⅳ
中文摘要..................................................................................................Ⅵ
英文摘要..................................................................................................Ⅷ
目錄..........................................................................................................Ⅹ
圖目錄…………………………………………………..................……Ⅸ
表目錄……………………………………………..…………………ⅩⅣ
第一章 緒論……………………………………………………..…...….1
第一節 前言……………………………………………..……….….1
第二節 發炎反應…………..………………………………….…….2
第三節 藥物動力學…………………………………..………….….7
第二章 研究背景與動機………………………...........….16
第三章 實驗材料與方法………………………………………...…….20
第一節 實驗材料………………………………………..…………20
第二節 實驗設計與方法………………………………..…………24第四章 結果與討論……………………………………………...…….47
第一節 DMS-RX 116、DSM-RX 78及SMP-3之分析.…………...48
第二節 血漿檢品分析………..…………………………..……..…59
第三節 Esterase體外水解實驗……………………………..……..65
第四節 體外DSM-RX 116與血漿蛋白結合率……………..…....72
第五節 體內蛋白質結合率……………………………………..…72
第六節 藥物動力學………………………………………………73
第七節 大白鼠各器官中化合物之分析…….……….……....…101
第八節 毒性實驗……………………………..…………….…108
第五章 結論………………………………………...…………..…….124
參考文獻………………………………………………………...…….129



圖目錄
Fig.1 嗜中性白血球吞噬細菌後引發呼吸爆裂反應..............................4
Fig.2 超氧化陰離子形成路徑………………………………………..…5
Fig.3 藥物於體內分佈、代謝、排泄途徑................................................12
Fig.4 一室模式圖形………………..…………………………..……..13
Fig.5 二室模式圖形……………………………………………..……..14
Fig.6 (A)瞿麥植株(B)中藥瞿麥圖.......................................................16
Fig.7 化合物HPW-01結構式……………….………………………….16
Fig.8 The structure of DSM-RX 78 and DSM-RX 116……………...…17
Fig.9 SMP-3 UV譜圖………………………………………….……….25
Fig.10 SMP-3 IR譜圖…………………………………………………..25
Fig.11 SMP-3 1H NMR譜圖……………………………………………26
Fig.12 SMP-3 13C NMR譜圖………………………...………….……...26
Fig.13 DSM-RX116於Ultraviolet Spectroscopy之全波長掃描………48
Fig.14 DMS-RX 116 HPLC層析圖(波長230 nm,濃度100 g/mL,流速1.0 mL/min,注射量20 L,移動相d.d. water:methanol=1:4)……………………….………………………………….33
Fig.15 DMS-RX 78 HPLC層析圖(波長230 nm,濃度100g/mL,流速1.0 mL/min,注射量20 L,移動相d.d. water:methanol=1:4)…………………………………………………………….…51
Fig.16 SMP-3 HPLC層析圖(波長230 nm,濃度100 g/mL,流速1.0 mL/min,注射量20 L,移動相0.5 % TFA in d.d. water:methanol=1:4)…………………………………………………….….....51
Fig.17 SMP-3 HPLC層析圖(波長230 nm,濃度0.7813 g/mL,流速1.0 mL/min,注射量40 L,移動相0.5 % TFA in d.d. water:methanol=1:4)…………………………………………....…...52

Fig.18 SMP-3 HPLC層析圖(波長230 nm,濃度0.7813 g/mL,流速1.0 mL/min,注射量40 L,移動相0.3 % TFA in d.d. water:methanol=1:3)………………………………………………..52
Fig.19 DSM-RX116樣品溶液於0.3 % TFA in d.d. water:methanol=1:3分析條件下之檢量線RUNⅠ、Ⅱ、Ⅲ………………………..54
Fig.20 DSM-RX 78樣品溶液於0.3 % TFA in d.d. water:methanol=1:3分析條件下之檢量線RUNⅠ、Ⅱ、Ⅲ…………………….......56
Fig.21 SMP-3樣品溶液於0.3 % TFA in d.d. water:methanol=1:3分析條件下之檢量線RUNⅠ、Ⅱ、Ⅲ…………..………………..58
Fig.22 DSM-RX 116於血漿內之HPLC層析圖…………………....….59
Fig.23 DSM-RX 116於血漿分析之檢量線RUNⅠ、Ⅱ、Ⅲ………...…60
Fig.24 SMP-3於血漿內之HPLC層析圖………………………………61
Fig.25 SMP-3於血漿分析之檢量線RUNⅠ、Ⅱ、Ⅲ…………………..62
Fig.26 DSM-RX 78於血漿內之HPLC層析圖……………….…...…63
Fig.27 DSM-RX 78於血漿分析之檢量線RUNⅠ、Ⅱ、Ⅲ…………….64
Fig.28 DSM-RX 78加入3 unit esterase於各時間點的殘留率………70
Fig.29 DSM-RX 78分別加入12 unit、6 unit、3 unit esterase後於各時間點的殘留百分比平均值………………………………..........70
Fig.30 DSM-RX 116加入3 unit esterase於各時間點的殘留率………71
Fig.31 DSM-RX 78與DSM-RX 116加入3 unit esterase於各時間點的差異性………………………………………………………….71
Fig.32 DSM-RX 116於血漿中之HPLC層析圖譜………………..…74
Fig.33 靜脈給予1.0 mg/kg DSM-RX 116其血液濃度對時間之曲線.76
Fig.34口服給予40.0 mg/kg DSM-RX 116其代謝產物SMP-3血液濃度對時間之曲線圖……………………………………..…………78
Fig.35 DSM-RX 78於血漿中之HPLC層析圖譜……………….……...79
Fig.36 靜脈給予1.0 mg/kg DSM-RX 78其血液濃度對時間之曲線...81
Fig.37 口服給予40.0 mg/kg DSM-RX 78其代謝產物SMP-3血液濃度對時間之曲線圖…………………………………..……………82
Fig.38 SMP-3於血漿中之HPLC層析圖譜……………………………84
Fig.39 靜脈給予1.0 mg/kg SMP-3其血液濃度對時間之曲線圖…....85
Fig.40 口服給予40.0 mg/kg SMP-3其血液濃度對時間之曲線圖…..86
Fig.41靜脈給予1.0 mg/kg DSM-RX 116、DSM-RX 78及SMP-3其血液濃度對時間之曲線圖……………………………………...87
Fig.42 靜脈給予1.0 mg/kg DSM-RX 116、DSM-RX 78及SMP-3後其血液中DSM-RX 116與其代謝產物SMP-3之合、DSM-RX 78及其代謝產物SMP-3之合與SMP-3之濃度對時間之曲線圖..88
Fig.43口服給予40.0 mg/kg DSM-RX 116、DSM-RX 78及SMP-3其血液濃度對時間之曲線圖……………………………………89
Fig.44 分別投予3.0 mg/kg DSM-RX 116、DSM-RX 78及SMP-3 10分鐘後於各器官的分佈情形。(A)DSM-RX 116、DSM-RX 78及SMP-3(B)DSM-RX 116與其代謝出產物SMP-3之合、DSM-RX 78與其代謝出產物SMP-3之合及SMP-3…………….....................................................................106
Fig.45 分別投予3.0 mg/kg DSM-RX 116、DSM-RX 78及SMP-3 30分鐘後於各器官的分佈情形。(A)DSM-RX 116、DSM-RX 78及SMP-3(B)DSM-RX 116與其代謝出產物SMP-3之合、DSM-RX 78與其代謝出產物SMP-3之合及SMP-3………………………………………………………..107
Fig.46 SMP-3、DSM-RX 78及DSM-RX 116分別投予0.1、0.5、1、2、4 mM於HepG2細胞株之細胞存活率對濃度做圖。(n=3,*代表p<0.05)…………………………………………………109
Fig.47 24小時急性毒性實驗。腦組織切片以400X顯微鏡觀察下攝影,H & E 染色切片及Masson's trichrome染色切片(A)及(F)control(B)及(G)vehicle(Cermophol EL : DMSO : saline =1:1:8, ~3 ml)(C)及(H)尾靜脈投予SMP-3 45 mg/kg(D)及(I)尾靜脈投予DSM-RX 116 45 mg/kg(E)及(J)尾靜脈投予DSM-RX 78 45 mg/kg……………………………………………………112
Fig.48 24小時急性毒性實驗。肺組織切片以400X顯微鏡觀察下攝影,H & E 染色切片及Masson's trichrome染色切片(A)及(F)control(B)及(G)vehicle(Cermophol EL : DMSO : saline =1:1:8, ~3 ml)(C)及(H)尾靜脈投予SMP-3 45 mg/kg(D)及(I)尾靜脈投予DSM-RX 116 45 mg/kg(E)及(J)尾靜脈投予DSM-RX 78 45 mg/kg……………………………………………………113
Fig.49 24小時急性毒性實驗。心組織切片以400X顯微鏡觀察下攝影,H & E 染色切片及Masson's trichrome染色切片(A)及(F)control(B)及(G)vehicle(Cermophol EL : DMSO : saline =1:1:8, ~3 ml)(C)及(H)尾靜脈投予SMP-3 45 mg/kg(D)及(I)尾靜脈投予DSM-RX 116 45 mg/kg(E)及(J)尾靜脈投予DSM-RX 78 45 mg/kg………………………..…………………………114
Fig.50 24小時急性毒性實驗。肝組織切片以400X顯微鏡觀察下攝影,H & E 染色切片及Masson's trichrome染色切片(A)及(F)control(B)及(G)vehicle(Cermophol EL : DMSO : saline =1:1:8, ~3 ml)(C)及(H)尾靜脈投予SMP-3 45 mg/kg(D)及(I)尾靜脈投予DSM-RX 116 45 mg/kg(E)及(J)尾靜脈投予DSM-RX 78 45 mg/kg………………………..…………………………116
Fig.51 24小時急性毒性實驗。腎組織切片以100X顯微鏡觀察下攝影,H & E 染色切片及Masson's trichrome染色切片(A)及(F)control(B)及(G)vehicle(Cermophol EL : DMSO : saline =1:1:8, ~3 ml)(C)及(H)尾靜脈投予SMP-3 45 mg/kg(D)及(I)尾靜脈投予DSM-RX 116 45 mg/kg(E)及(J)尾靜脈投予DSM-RX 78 45 mg/kg…………………..……………………………117
Fig.52 七天毒性實驗。腦組織切片以400X顯微鏡觀察下攝影,H & E 染色切片及Masson's trichrome染色切片(A)及(F)control(B)及(G)vehicle(Cermophol EL : DMSO : saline =1:1:8, ~3 ml)(C)及(H)尾靜脈投予SMP-3 3 mg/kg(D)及(I)尾靜脈投予DSM-RX 116 3 mg/kg(E)及(J)尾靜脈投予DSM-RX 78 3 g/kg……….119
Fig.53 七天毒性實驗。肺組織切片以200X顯微鏡觀察下攝影,H & E 染色切片及Masson's trichrome染色切片(A)及(F)control(B)及(G)vehicle(Cermophol EL : DMSO : saline =1:1:8, ~3 ml)(C)及(H)尾靜脈投予SMP-3 3 mg/kg(D)及(I)尾靜脈投予DSM-RX 116 3 mg/kg(E)及(J)尾靜脈投予DSM-RX 78 3 g/kg…………120
Fig.54 七天毒性實驗。心組織切片以400X顯微鏡觀察下攝影,H & E 染色切片及Masson's trichrome染色切片(A)及(F)control(B)及(G)vehicle(Cermophol EL : DMSO : saline =1:1:8, ~3 ml)(C)及(H)尾靜脈投予SMP-3 3 mg/kg(D)及(I)尾靜脈投予DSM-RX 116 3 mg/kg(E)及(J)尾靜脈投予DSM-RX 78 3 g/kg……………121
Fig.55 七天毒性實驗。肝組織切片以400X顯微鏡觀察下攝影,H & E 染色切片及Masson's trichrome染色切片(A)及(F)control(B)及(G)vehicle(Cermophol EL : DMSO : saline =1:1:8, ~3 ml)(C)及(H)尾靜脈投予SMP-3 3 mg/kg(D)及(I)尾靜脈投予DSM-RX 116 3 mg/kg(E)及(J)尾靜脈投予DSM-RX 78 3 g/kg……………122
Fig.56 七天毒性實驗。腎組織切片以100X顯微鏡觀察下攝影,H & E 染色切片及Masson's trichrome染色切片(A)及(F)control(B)及(G)vehicle(Cermophol EL : DMSO : saline =1:1:8, ~3 ml)(C)及(H)尾靜脈投予SMP-3 3 mg/kg(D)及(I)尾靜脈投予DSM-RX 116 3 mg/kg(E)及(J)尾靜脈投予DSM-RX 78 3 g/kg...............123





表目錄
Table 1. Inhibitory effect of compounds on superoxide anion generation by human neutrophils in response to fMLP…………………...18
Table 2. 標準曲線之HPLC分析條件…………………………………29
Table 3. 血漿檢品之HPLC分析條件…………………………………29
Table 4. Esterase體外水解實驗HPLC分析條件……………………33
Table 5. 血漿檢品之HPLC分析條件…………………………………36
Table 6. 血漿檢品之HPLC分析條件…………………………………40
Table 7. 組織檢品之HPLC分析條件…………………………………41
Table 8. DSM-RX116在不同波長下之平均峰波面積比較;流速= 1.0 mL/min,注射量20L,移動相d.d. water:methanol=1:4..…49
Table 9. DSM-RX116樣品溶液於0.3 % TFA in d.d. water:methanol=1:3分析條件下之再現性RUNⅠ、Ⅱ、Ⅲ(n=6)……………….54
Table 10. DSM-RX 78樣品溶液於0.3 % TFA in d.d. water:methanol=1:3分析條件下之再現性RUNⅠ、Ⅱ、Ⅲ(n=6)…………56
Table 11. SMP-3樣品溶液於0.3 % TFA in d.d. water:methanol=1:3分析條件下之再現性RUNⅠ、Ⅱ、Ⅲ(n=6)………………58
Table 12. DSM-RX 116於血漿分析之再現性RUNⅠ、Ⅱ、Ⅲ(n=6)..60
Table 13. SMP-3於血漿分析之再現性RUNⅠ、Ⅱ、Ⅲ(n=6)………62
Table 14. DSM-RX 78於血漿分析之再現性RUNⅠ、Ⅱ、Ⅲ(n=6)....64
Table 15. DSM-RX 78分別加入12 unit、6 unit、3 unit esterase後於各時間點的殘留百分比平均值比較…………………….....…66
Table 16. DSM-RX 116加入3 unit esterase於各時間點經HPLC析分之曲線下面積、殘留百分比及其誤差值……………….…...…67
Table 17. DSM-RX 78加入3 unit esterase於各時間點經HPLC析分之曲線下面積、殘留百分比及其誤差值…………………...…68
Table 18. DSM-RX 78與DSM-RX 116加入3 unit esterase後於各時間點的殘留百分比平均值比較……………………….…...…69
Table 19. 靜脈給予1.0 mg/kg DSM-RX 116血清中DSM-RX 116濃度(g/mL)……………………………………………………….75
Table 20. 口服給予40.0 mg/kg DSM-RX 116血清中SMP-3濃度(g/mL)……………………………………………….………77
Table 21. 靜脈給予1.0 mg/kg DSM-RX 78血清中DSM-RX 78濃度(g/mL)…………………………………………………….......80
Table 22. 口服給予40.0 mg/kg DSM-RX 78血清中SMP-3濃度(g/mL)……………………………………………………...…82
Table 23. 靜脈給予1.0 mg/kg SMP-3血清中SMP-3濃度(g/mL)…………………………………………….…………..85
Table 24. 口服給予40.0 mg/kg SMP-3血清中SMP-3濃度(g/mL)…………………………………………………….…86
Table 25. 靜脈給予大白鼠1.0 mg/kg DSM-RX 116後,以二室性模式計算出之藥物動力學參數…..…………………………...…90
Table 26. 靜脈給予大白鼠1.0 mg/kg DSM-RX 78後,以二室性模式計算出之藥物動力學參數…..……………………………...…91
Table 27. 靜脈給予大白鼠1.0 mg/kg SMP-3後,以二室性模式計算出之藥物動力學參數…………………………………………92
Table 28. 靜脈給予大白鼠1.0 mg/kg DSM-RX 116、DSM-RX 78及SMP-3後,以二室性模式計算出之藥物動力學參數…….93
Table 29. 口服給予大白鼠40.0 mg/kg DSM-RX 116後,以一室性模式計算出之藥物動力學參數………………………………..94
Table 30. 口服給予大白鼠40.0 mg/kg DSM-RX 78後,以一室性模式計算出之藥物動力學參數………………………………... 95
Table 31. 口服給予大白鼠40.0 mg/kg SMP-3後,以一室性模式計算出之藥物動力學參數…………………………………...…96
Table 32. 口服脈給予大白鼠40.0 mg/kg DSM-RX 116、DSM-RX 78及SMP-3後,以一室性模式計算出之藥物動力學參數(所有數據均為SMP-3)…………………………………..……97
Table 33.靜脈投予3.0 mg/kg DSM-RX 116後各器官之DSM-RX 116及其代謝產物SMP-3濃度(n=3)………………………..…103
Table 34. 靜脈投予3.0 mg/kg DSM-RX 78後各臟器之DSM-RX 78及其代謝產物SMP-3濃度濃度(n=3)………………….……104
Table 35. 靜脈投予3.0 mg/kg SMP-3後各臟器之SMP-3濃度(n=3)…………………………………………………………105
Table 36. SMP-3、DSM-RX 78及DSMP-RX 116之粒徑大小(n=3)(polydispersity index, PdI)………………………………110
Table 37. 尾靜脈投予SD大白鼠45 mg/kg之SMP-3、DSM-RX 78、DSMP-RX 116 及vehicle 24小時後其之GOT及GPT分析……………………………………………………………111
Table 38. 尾靜脈連續七天投予SD大白鼠3 mg/kg之SMP-3、DSM-RX 78、DSMP-RX 116 及vehicle後其之GOT及GPT分析...118

參考文獻
Babior B.M.〝Oxygen-dependent microbial killing by phagocytes(first of teo parts)〞N Engl J Med. 1978, 298, 659-68.
Bartholomew B., Dodgson K. S., George W. J., Shaw D. J. and White F. G.〝A novel mechanism of ester hydrolysis〞Biochem. J., 1997, 165, 575-580.
Barnes P.J.〝Cyclic nucleotides and phosphodiesterases and airway function. Eur〞Respir. J., 1995, 8, 457–462.
Blease K., Burke G. A. and Hellewell P. G.〝Modulation of cell adhesion molecule expression and fuction on human lung microvascular endothelial cells by inhibiton of phosphodiesterase 3 and 4〞Br. J. Pharmacol., 1998, 124, 229-237.
Boswell S. V., Spina D. and Page C. P.〝Phosphodiesterase inhibitors.〞Br. J. Pharmacol., 2006, 147, 252-257.
Boudjeltia K. Z., Moguilevsky N., Legssyer I., Babar S., Guillaume M., Delree P., Vanhaeverbeek M., Brohee D., Ducobu J. and Remacle C.〝Oxidation of low density lipoproteins by myeloperoxidase at the surface of endothelial cells: an additional mechanism to subendothelium oxidation〞Biochemical and Biophysical Research Communications, 2004, 325, 434–438.
Calverley P.M., Sanchez T.F., Mclvor A., Teichmann P., Bredenbroeker D. and Fabbri L.M.〝Effect of 1-year treatment with roflumilast in severe chronic obstructive pulmonary disease.〞Am J Respir Crit Care Med., 2007, 176, 154–161.
Davit B., Reynolds K., Yuan R., Ajayi F., Conner D., Fadiran E., Gillespie B., Sahajwalla C., Huang S.M. and Lesko L.J.,〝FDA evaluations using in vitro metabolism to predict and interpret in vivo metabolic drug-drug interactions: impact on labeling.〞J. Clin. Pharmacol., 1999, 39, 899-910
Fabricio O. S., Ana C. Z., Larissa S. F., Victor F., Rubia C., Maria J. V. F, Thiago M. C., Sergio H. F., Fernando Q. C. and Waldiceu A. V. 〝Quercetin Reduces Neutrophil Recruitment Induced by CXCL8, LTB4, and fMLP: Inhibition of Actin Polymerization〞J. Nat. Prod., 2011,74, 113-118.
Furchgott R.F. and Zawadzki J.V. 〝The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine〞 Nature, 1980, 288, 373-376.
Gabrielsson J. and Weiner D., Pharmacokinetic and pharmacodynamic data analysis: concepts & applications, Apotekarsocieteten Inc., 3rd ed , 2000, p45-174.
Shargel L. Applied biopharmaceutics & pharmacokinetics, Prentice-Hall International Inc., 4th ed, 1999, p261-327.
Gamble E., Grootendorst D.C., Brightling C.E., Troy S, Qiu Y and Zhu J.〝Antiinflammatory effects of the phosphodiesterase-4 inhibitor cilomilast (Ariflo) in chronic obstructive pulmonary disease〞 Am J Respir Crit Care Med, 2003, 168, 976–982
Gilbaldi M. and Perrier D., Pharmacokinetics, Marcel Dekker. 2nd ed. New York, 1982.
Grootendorst D.C., Gauw S.A., Verhoosel R.M., Sterk P.J., Hospers J.J. and Bredenbroker D.〝Reduction in sputum neutrophil and eosinophil numbers by the PDE4 inhibitor roflumilast in patients with COPD〞Thorax, 2007, 62, 1081–1087.
Guilpain P., Chereau C., goulvestre C., Servettaz A., Montani D., Tamas N., Pagnoux C., Hachulla E., Weill B., Guillevin L., Mouthon L. and Batteux F.〝The oxidation induced by antimyeloperoxidase antibodies triggers fibrosis in microscopic polyangiitis〞European Respiratory journal, 2011, 37, 1503-1513.
Hseih P.W., Chang F.R., Wu C.C., Wu K.Y., Li C.M., Chen S.L. and Wu Y.C.〝New cytotoxic cyclic-peptides and dianthramide from Dianthus superbus〞Journal of Natural Products, 2004, 67, 1522-1527.
Hansen M. B., Nielsen S. E. and Berg K.〝Re-examination and further development of precise and rapid dye method for measuring cell growth/cell kill〞Immunol. Mrth., 1989, 119, 203-210.
Hseih P.W., Hwang T.L., Wu C.C., Chiang S.Z., Wu C.I. and Wu Y.C.〝The evaluation and structure–activity relationships of 2-benzoylaminobenzoic esters and their analogues as anti-inflammatory and anti-platelet aggregation agents 〞Bioorg Med Chem Lett, 2007, 6, 1812-1817.
Hseih P.W., Chiang S.Z., Wu C.C., Lo Y.C., Shih Y.T. and Wu Y.C.
〝Synthesisand anti-platelet evaluation of 2-benzoylaminobenzoate analogs〞Bioorganic & Medicinal Chemistry, 2008, 16(10), 5803-5814.
Jeffery P.〝Phosphodiesterase 4-selective inhibiton: novel therapy for the inflammation of COPD〞Pulmonary Pharmocology & Therapeutics, 2005, 18, 9-17.
Kammer G. M.,〝The adenylate cyclase-cAMP-protein kinase A pathay and regulation of the immune response.〞Immunol., 1988, 9, 222.
Keven R. J., Jessie N. J.and Robert S D.〝An evolutionary analysis of cAMP-specific Phosphodiesterase 4 alternative splicing.〞BMC Evolutionary Biology, 2010, 10, 247-251.
Kuo Y. C. 〝Loading efficiency of stavudine on polybutylcyanoacrylate and methylmethacrylate-sulfopropylmethacrylate copolymer nanoparticles〞Int. J. Pharm., 2005, 290, 161-172.
Lisa M. C. and Zena W.〝Inflammation and cancer〞Nature, 2002, 420, 860–867.
Leon S. and Andrew Y. Applied biopharmaceutics & pharmacokinetic, McGraw-Hill, New York, 2002
Lugnier C.〝Cyclic nucleotide phosphodiestertase(PDE) superfamily: a new target for the development of specific therapeutic agent.〞Pharmacol Ther., 2006, 109, 366-398.
Luis J. C., Ana M. S., M. J. D., Nelida F., Matilde S. and Juan J. G.,〝Pharmacokinetics of doxycycline in sheep after intravenousand oral administration〞The Veterinary Journal, 2009,180, 389-395.
Main A.R. and Braid P.E.〝Hydrolysis of Malathion by Ali-Esterase in vitro and in vivo〞Biochemical Journa, 1962, 84, 255-263.
Mark G. S., Balu N. B., Byron H. L., David B. F.,Edward R., Kurt Z., Jeffrey T. E., Denis R. St. L.,Karen M. S., B. Narasimhulu N., Mikae l M., Francis B., Carol B., Frank Y. Lee, Craig R. F., Linda K. S., William C. R., Carola S., Henry W., Alain M., John J. W., Robert K., David R. L. and Dolatrai M. V.〝Discovery of a Fluoroindolo[2,3-a]carbazole Clinical Candidate with Broad Spectrum Antitumor Activity in Preclinical Tumor Models Superior to the Marketed Oncology Drug, CPT-11〞J. Med. Chem. 2005, 48, 2258-2261.
Marko S. and Sirpa J.〝Cell-surface enzymes in control of leukocyte trafficking〞Nature Reviews Immunology, 2005, 5, 760-771.
Marie P. P., Vincent L., Malika O., Bernadette B., Franc¸ois M., Christine J. L., Rochera M. N., Christelle L., Brigitte M., Anita B., Dubuita J. P., Catherine B., Annette M. D. and Claude P. B.〝Relationship between phosphodiesterase type 4 inhibition and anti-inflammatory activity of CI-1044 in rat airways.〞Fundamental & Clinical Pharmacology, 2010, 24, 73–82.
Mayer S.A., Averhoff P. and Zychlinsky A.〝How do neutrophils and pathogens interact?〞Curr Opin Microbiol., 2004, 7, 1, 62-66.
Maya S., Byung K. L., Laura C., Sarah C. H., Hongfeng G. and Mu-ming P.〝Local and Long-Range Reciprocal Regulation of cAMP and cGMP in Axon/Dendrite Formation〞Science, 2010, 327, 547-552.
Miyako A., Barbara N., Susumu N., Genevieve M., Claude B., Marie P. P., S.-L. Catherine Jin and Marco C.〝Nonredundant Function of Phosphodiesterases 4D and 4B in Neutrophil Recruitment to the Site of Inflammation〞J. Immunol., 2004, 173, 7531-7538.
Mohammad S. A., Mansoor C., Qaiser M. Z. and Alan M. P.〝Drug Metabolism and Pharmacokinetics, the Blood-Brain Barrier, and Central Nervous System Drug Discovery〞Neuro Rx, 2005, 2, 554-571.
Mossmann, T.,〝Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays〞 J. Immunol. Meth. 1983, 65, 55-63.
Nielson C. P., Vestal R. E., Sturm R. J. and Heaslip R.〝Effects of selective phosphodiesterase inhibitors on the polymerphonuclear leukocyte respiratory burst〞J. Allergy Clin Immunol., 1990, 86, 801-808.
Perez T. S. and Mengog G.〝cAMP-specific phosphodiesterase expression in Alzhemer’s disease brains〞International Congress Series, 2003, 1251, 127-138.
Peter D., Göggel R., Colbatzky F. and Nickolaus P.〝Inhibition of
cyclooxygenase-2 prevents adverse effects induced by phosphodiesterase type 4 inhibitors in rats〞British Journal of Pharmacology, 2010, 10, 415-427.
Rabe K. F., Bateman E. D., O’Donnell D, Witte S, Bredenbroker D. and Bethke T. D.〝Roflumilast–an oral anti-inflammatory treatment for chronic obstructive pulmonary disease: a randomized controlled trial〞 Lancet, 2005, 366, 563-571.
Rennard S. I., Schachter N., Strek M., Rickard K. and Amit O.〝Cilomilast for COPD: results of a 6-month, placebo-controlled study of a potent, selective inhibitor of phosphodiesterase 4. 〞Chest, 2006, 129, 56–66.
Rowland K. and Tozwe T. Clinical Pharmacokinetics. Lippincott Williams Wilkins, 3rd edition, 1995.
Sajid N. B., Shahid A., Ahsan A., Anwar U. H., Jamil M., Johar A., Ayesha A. and Kashif M.〝Computerized stereotactic brain biopsies: an experiencn of 15 patients at ayub teaching hospital〞J Ayub Med Coll Abbottabad, 2005, 17, 26-8.
Schwartz G.〝Estimating the dimension of a model〞Annual Statistics, 1978, 6, 461-466.
Schudt C., Winder S., Eltze M., Kilian U. and Beume R.〝Zardaverine: a cyclic AMP specific PDE Ⅲ/Ⅳ inhibitor.〞Agents Actions Suppl., 1991, 34, 379-402.
Skalhegg B. S., Landmark B. F., Doskeland S. O., Hansson V., Lea T. and Jahnsen T.〝Cyclic AMP-dependent protein kinase type I mediates the inhibitory effects of 3_,5_-cyclic adenosine monophosphate on cell replication in human T lymphocytes.〞J. Biol. Chem., 1992, 267,1570-1577.
Singh D., Petavy F., Macdonald A. J., Lazaar A. L. and O’Connor B. J.〝The inhaled phosphodiesterase 4 inhibitor GSK256066 reduces allergen challenge responses in asthma〞Respiratory Research, 2010, 11, 26-34.
Smith S. J., Brookes F. S., Donnelly L. E., Barnes P. J., Barnette M. S. and Giembycz M. A.〝Ubiquitous expression of phosphodiesterase 7A in human proinflammlatory and immune calls〞Am J. Physiol of Lung Cell Mol Physoil, 2003, 284, 279-289.
Sneader W., Drug discovery – a history. Chichester, UK, 2005.
Sonu S. Si. and Jitendra M.〝Measurement of drug–protein binding by immobilized human serum albumin-HPLC and comparison with ultrafiltr ation〞Journal of Chromatography B, 2006, 837, 153.
Sorin E. L. and Laurian V.〝Pharmacokinetics and metabolic drug interactions〞Current Clinical Pharmacology, 2006, 1, 5-20.
Spina D.〝PDE4 inhibitors: current ststus〞British Journal of Pharmacology, 2008, 155, 308-315
Thomas P. and Dousa M.D.〝Cyclic-3',5'-nucleotide phosphodiesterase isozymes in cell biology and pathophysiology of the kidney〞Kidney International , 1999, 55, 29-62.
Torphy, T. J.〝Phosphodiesterase isozymes: molecular targets for novel antiasthma agents.〞Am. J. Respir. Crit. Care Med., 1998, 157, 351.
Tozer, T. N., Gambertoglio, J. G., Furst, D. E., Avery, D. S., and Holford N. H.〝Volume shifts and protein binding estimates usingequilibrium dialysis: applicati on to prednisolone binding in humans.〞 J. Pharm. Sci., 1983, 72, 1442-1446.
Tsai B.M., Wang M., Prtcher J.M., Meldrum K.K. and Meldrum D.R.〝Hypoxic pulmonary vasoconstriction and pulmonary artery tissue cytokine expression are mediated by protein kinase C〞Am J Physiol Lung Cell Mol Physiol, 2004, 287, 1215-1219.

Wagner J.G., Pharmacokinetics for the Pharmaceutical Scientist, Technomic Publishing Company, Pennsylvania, USA, 1993.
Wdidner S., Neupert W., Goppelt S. M. and Rupprecht H. D.〝Antinuetrophil cytoplasmic antibodies induce human monocytes to produce oxygen redicals in vitro.〞Arthritis Rheum, 2001, 22, 1698-1706.
Wilkinson G. R〝Drug metabolism and variability among patients in drug response.〞N. Engl J. Med., 2005, 26, 2211-2221.
Wolfgang B., Joachim H., Chris R. and Manfred K.〝Highly Selective Phosphodiesterase 4 Inhibitors for the Treatment of Allergic Skin Diseases and Psoriasis.〞Inflammation & Allergy - Drug Targets, 2006, 6, 17-26.
Worlitzsch D., Herberth G., Ulrich M. and Döring G.〝Catalase, myeloperoxidase and hydrogen peroxide in cystic fibrosis.〞Eur Respir J., 1998, 11, 377–383.
Yamoaoka K., Nakagawa T. and Uno T.〝TApplication of Akaike’s information criterion(AIC)in the evaluation of linear Pharmacokinetics equations〞Journal of Pharmacokinetics & Biopharmaceutics, 1978, 6, 165-175.
Yu H.P., Hsieh P.W., Chang Y.J., Chung P.J., Kuo L.M. and Hwang T.L.〝DSM-RX78, a new phosphodiesterase inhibitor, suppresses superoxide anion production in activated human neutrophils and attenuates hemorrhagic shock-induced lung injury in rats〞Biochemical pharmacology, 2009, 78, 983-992.
Yu H.P., Hsieh P.W., Chang Y.J., Chung P.J., Kuo L.M. and Hwang T.L. 〝2-(2-fluorobenzamido)benzoate ethyl ester (EFB-1) inhibits superoxide production by human neutrophils and attenuates hemorrhagic shock-induced organ dysfunction in rats〞Free Radical Biology & Medicine, 2011, 50,1737-1748.
Zeenat M., Jean P., Faiza W., Katalin S., Andras K. and John C. M.〝Pre-B cell colony-enhancing factor (PBEF/Nampt/Visfatin) primes neutrophils for augmented respiratory burst activity through partial assembly of the NADPD Oxidase〞The Journal of Immunology, 2011, 10, 4049-5060.
Zuzana D. and Domenico S〝PDE4-inhibitors: A novel, targeted therapy for obstructiove airway disease〞Pulmonary Pharmacology & Therapeutics, 2011, 4, 353-360.
李尚華,<去氫吳茱萸鹼於大白鼠之藥物動力學及其尿液代謝物鑑定之研究>,國立陽明大學傳統醫學研究所,碩士論文, 2006。
林榮耀等,《特定標的之新藥開發》,初版,台北,教育部顧問室「生物技術科技人才培育先導型計畫」醫藥基因生物技術教學資源中心發行, 2005。
林君榮,《特定標的之新藥開發-第九章 臨床前藥物動力學試驗》,初版,台北,教育部顧問室「生物技術科技人才培育先導型計畫」醫藥基因生物技術教學資源中心發行,2005,p.127-142。
謝緯賢,< TW01之藥物動力學研究>,長庚大學天然藥物研究所,碩士論文, 2003。
Arthur C. Guyton,《蓋統生理學》,林富美,林則彬,賴亮全譯,初版,台北,華杏, 1998。
劉欣怡,<透過抗發炎、抗氧化及抗腫瘤促進作用評估硫辛酸在化學預防上可能扮演的角色>,國立成功大學環境醫學研究所,碩士論文, 2003。
陳秀貞,<Leflunomide之抗發炎及其抗血小板凝集作用>,中原大學化學系,碩士論文, 2004。
賴妍君,<不同發炎刺激對活化嗜中性球的分子機轉研究>,國立成功大學分子醫學研究所,碩士論文, 2006。
謝珮文,「石竹科植物菁芳草、瞿麥、長萼瞿麥、化學成分及Dianthramide 類生物鹼化合物之合成與其生物活性之研究」,高雄醫學大學藥學研究所, 2005。
Harris D. C.著,《分析化學》,林維鉊/李淵博議,台北,學銘圖書, 2006。
溫季琦,< HPW98-1活性代謝物之研究>,長庚大學天然藥物研究所,碩士論文, 2003。
江適然,<2-Benzoylaminobenzoic Ester及2-Benzamidobenzamides相關衍生物之合成及其抗血小板活性之評估>,高雄醫學大學天然藥物研究所,碩士論文, 2003。
王孟南,<探討大白鼠體內沒食子酸酯化兒茶素(EGCG)藥物動力學與愛萊諾迪肯(Irinotecan)之交互作用>,國立陽明大學傳統醫藥研究所,碩士論文, 2007。
趙彥鈞,<金銀花有效成分綠原酸(Chlorogenic Acid)在家兔之藥物動力學及生體可用率研究>,中國醫藥學院中國藥學研究所藥局學組,碩士論文, 2001。
張一如,<2-Benzoylamino-benzoic acid類似物影響人類嗜中性白血球釋出超氧自由基和彈性蛋白脢的機轉探討>,長庚大學天然藥物研究所,碩士論文,2007。
陳志杰,<重金屬經由皮膚途徑穿透之經皮吸收能力及蛋白質體學研究>,長庚大學天然藥物研究所,碩士論文,2008。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊