|
[1] J. H. Richmond, “A wire-grid model for scattering by conducting bodies,” IEEE Trans. Antennas Propagat., vol. 14, no. 6, pp. 782-786, Nov. 1966. [2] N. N. Wang, J. H. Richmond, and M. C. Gilreath, “Sinusoidal reaction formulation for radiation and scattering from conducting surfaces,” IEEE Trans. Antennas Propagat., vol. 23, no. 3, pp. 376-382, May 1975. [3] E. H. Newman and D. M. Pozar, “Electromagnetic modeling of composite wire and surface geometries,” IEEE Trans. Antennas Propagat., vol. 26, no. 6, pp. 784-789, Nov. 1978. [4] A. W. Glisson and D. R. Wilton, “Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces,” IEEE Trans. Antennas Propagat., vol. 28, no. 5, pp. 593-603, Sept. 1980. [5] J. J. H. Wang, “Numerical analysis of three-dimension arbitrarily-shaped conducting scatters by trilateral surface cell modeling,” Radio Sci., vol. 13, no. 6, pp. 947-952, Nov.-Dec. 1978. [6] S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propagat., vol. 30, no. 3, pp. 409-418, May 1982. [7] E. H. Newman and P. Tulyatha, “A surface patch model for polygonal plates,” IEEE Trans. Antennas Propagat., vol. 30, no. 4, pp. 588-593, July 1982. [8] E. H. Newman, P. Alexandroupoulos, and E. K. Walton, “Polygonal plate modeling of realistic structures,” IEEE Trans. Antennas Propagat., vol. 32, no. 7, pp. 742-747, July 1984. [9] D. L. Knepp and J. Goldhirsh, “Numerical analysis of electromagnetic radiation Properties of Smooth Conducting Bodies of Arbitrary Shape,” IEEE Trans. Antennas Propagat., vol. 20, no. 3, pp. 383-388, May 1972. [10] M. I. Sancer, R. L. McClary, and K. J. Glover, “Electromagnetic computation using parametric geometry,” Electromagnetics, vol. 10, no. 1-2, pp. 85-103, 1990. [11] D. L. Wilkes and C.-C. Cha, “Method of moments solution with parametric curved triangular patches,” 1991 International IEEE AP-S Symposium Digest, pp. 1512-1515, London, Ontario, Canada, 1991. [12] S. Wandzura, “Electric current basis functions for curved surfaces,” Electromagnetics, vol. 12, pp. 77-91, 1992. [13] L. Valle, F. Rivas, and M. F. Cátedra, “Combining the moment method with geometrical modeling by NURBS surfaces and Bézier patches,” IEEE Trans. Antennas Propagat., vol. 42, no. 3, pp. 373-381, March 1994. [14] G. E. Antilla and N. G. Alexopoulos, “Scattering from complex three-dimensional geometries using a curvilinear hybrid finite-element integral equation approach,” J. Optical Soc. America A, vol. 11, no. 4, pp. 1445-1457, April 1994. [15] J. M. Song and W. C. Chew, “Moment method solution using parametric geometry,” 1994 International IEEE AP-S Sympoisum Digest, vol. 3, pp. 2242-2245, Seattle, Washington, June 1994. [16] J. M. Song and W. C. Chew, “Moment method solutions using parametric geometry,” Journal of Electromagnetic Waves and Applications,” vol. 9, no. 1/2, pp.71-83, 1995. [17] J. M. Song and W. C. Chew, “Fast multipole method solution using parametric geometry,” Microwave and Optical Technology Letters, vol. 7, no. 16, pp. 760-765, Nov. 1994. [18] D. R. Wilton, S. M. Rao, A. W. Glisson, D. H. Schaubert, O.M.AL-Bundak and C.M.Butler, “Potential Integrals for Uniform and linear source distributions on polygonal and polyhedral domains,” IEEE Trans. Antennas Propagat., vol. AP-32, no.3, pp 276-281, March 1984. [19] L. R. Hamilton,P. A. Macdonald, M. A. Stalzer, R. S. Turley, J. L. Visher and S. M. Wandzura, “3D method of moments scattering computations using the fast multipole method,” IEEE Antennas and Propagation Society International Symposium, AP-S. Digest, vol. 1, pp.435-438, 1994. [20] J. M. Song and W. C. Chew, “Fast multipole method solution of three dimensional integral equation,” IEEE Antennas and Propagation Society International Symposium, AP-S. Digest, vol. 3, pp. 1528-1531, 1995. [21] R. P. Penno, G. A. Thiele, and K. M. Pasala, “Scattering from a perfectly conducting cube,” Proceedings of the IEEE, vol. 77, no. 5, pp. 815-823, May 1989. [22] C.-C. Lu, “Fast algorithms for solving integral equations of electromagnetic wave scattering,” Ph. D Thesis, University of Illinois at Urbana-Champaign, 1995. [23] M. J. Schuh and A. C. Woo, “The monostatic/bistatic approximation,” IEEE Antennas and Propagation Magazine, vol.36, no.4, pp.76-78 August 1994. [24] 位元文化,從C++、物件導向到視窗程式設計,文魁資訊,1999。 [25] N. Engheta, W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, “The fast multipole method (FMM) for electromagnetic scattering problems,” IEEE Trans. Antennas Propagat., vol. AP-40, no.6, pp. 414-439, June 1992. [26] C. C. Lu and W. C. Chew, “A fast algorithm for solving hybrid integral equation,” IEEE Proc. Pt. H, vol.140, no.6, pp. 455-460, Dec.1993. [27] M. Abromowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, New York,1972. [28] J. Han and M. Kamber, Data Mining Concepts and Techniques, Morgan Kaufmann, 2001. [29] R. L. Wagner and W. C. Chew, “A ray-propagation fast multipole algorithm,” Microwave Opt. Tehnol. Lett., vol. 7, no. 10, pp. 435-438, July 1994. [30] J.-H. Lin, “A study of iterative method on forward and inverse scattering problems,” Ph. D Thesis, University of Illinois at Urbana-Champaign, 1995.
|