|
1.Cahilly-Snyder, L., et al., Molecular analysis and chromosomal mapping of amplified genes isolated from a transformed mouse 3T3 cell line. Somat Cell Mol Genet, 1987. 13(3): p. 235-44. 2.Oliner, J.D., et al., Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature, 1992. 358(6381): p. 80-3. 3.Fakharzadeh, S.S., S.P. Trusko, and D.L. George, Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. Embo J, 1991. 10(6): p. 1565-9. 4.Finlay, C.A., P.W. Hinds, and A.J. Levine, The p53 proto-oncogene can act as a suppressor of transformation. Cell, 1989. 57(7): p. 1083-93. 5.Momand, J., et al., The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell, 1992. 69(7): p. 1237-45. 6.Martinez, J., I. Georgoff, and A.J. Levine, Cellular localization and cell cycle regulation by a temperature-sensitive p53 protein. Genes Dev, 1991. 5(2): p. 151-9. 7.Xiao, Z.X., et al., Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature, 1995. 375(6533): p. 694-8. 8.Martin, K., et al., Regulation of transcription by E2F1/DP1. J Cell Sci Suppl, 1995. 19: p. 91-4. 9.Marechal, V., et al., The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes. Mol Cell Biol, 1994. 14(11): p. 7414-20. 10.Momand, J., H.H. Wu, and G. Dasgupta, MDM2--master regulator of the p53 tumor suppressor protein. Gene, 2000. 242(1-2): p. 15-29. 11.Freedman, D.A., L. Wu, and A.J. Levine, Functions of the MDM2 oncoprotein. Cell Mol Life Sci, 1999. 55(1): p. 96-107. 12.Cordon-Cardo, C., et al., Molecular abnormalities of mdm2 and p53 genes in adult soft tissue sarcomas. Cancer Res, 1994. 54(3): p. 794-9. 13.Dubs-Poterszman, M.C., B. Tocque, and B. Wasylyk, MDM2 transformation in the absence of p53 and abrogation of the p107 G1 cell-cycle arrest. Oncogene, 1995. 11(11): p. 2445-9. 14.Jones, S.N., et al., Overexpression of Mdm2 in mice reveals a p53-independent role for Mdm2 in tumorigenesis. Proc Natl Acad Sci U S A, 1998. 95(26): p. 15608-12. 15.Sigalas, I., et al., Alternatively spliced mdm2 transcripts with loss of p53 binding domain sequences: transforming ability and frequent detection in human cancer. Nat Med, 1996. 2(8): p. 912-7. 16.Brown, D.R., C.A. Thomas, and S.P. Deb, The human oncoprotein MDM2 arrests the cell cycle: elimination of its cell-cycle-inhibitory function induces tumorigenesis. Embo J, 1998. 17(9): p. 2513-25. 17.Kubbutat, M.H., et al., Analysis of the degradation function of Mdm2. Cell Growth Differ, 1999. 10(2): p. 87-92. 18.Folberg-Blum, A., et al., Overexpression of mouse Mdm2 induces developmental phenotypes in Drosophila. Oncogene, 2002. 21(15): p. 2413-7. 19.Dilla, T., et al., The MDM2 oncoprotein promotes apoptosis in p53-deficient human medullary thyroid carcinoma cells. Endocrinology, 2000. 141(1): p. 420-9. 20.Zauberman, A., et al., A functional p53-responsive intronic promoter is contained within the human mdm2 gene. Nucleic Acids Res, 1995. 23(14): p. 2584-92. 21.Brown, C.Y., et al., Role of two upstream open reading frames in the translational control of oncogene mdm2. Oncogene, 1999. 18(41): p. 5631-7. 22.Bueso-Ramos, C.E., et al., Abnormal expression of MDM-2 in breast carcinomas. Breast Cancer Res Treat, 1996. 37(2): p. 179-88. 23.Matsumoto, R., et al., Short alternative splice transcripts of the mdm2 oncogene correlate to malignancy in human astrocytic neoplasms. Cancer Res, 1998. 58(4): p. 609-13. 24.Kraus, A., et al., Expression of alternatively spliced mdm2 transcripts correlates with stabilized wild-type p53 protein in human glioblastoma cells. Int J Cancer, 1999. 80(6): p. 930-4. 25.Ko, J.L., et al., MDM2 mRNA expression is a favorable prognostic factor in non-small-cell lung cancer. Int J Cancer, 2000. 89(3): p. 265-70. 26.Bartel, F., et al., Amplification of the MDM2 gene, but not expression of splice variants of MDM2 MRNA, is associated with prognosis in soft tissue sarcoma. Int J Cancer, 2001. 95(3): p. 168-75. 27.Lukas, J., et al., Alternative and aberrant messenger RNA splicing of the mdm2 oncogene in invasive breast cancer. Cancer Res, 2001. 61(7): p. 3212-9. 28.Evdokiou, A., et al., Expression of alternatively-spliced MDM2 transcripts in giant cell tumours of bone. Int J Oncol, 2001. 19(3): p. 625-32. 29.Wurl, P., et al., High prognostic significance of Mdm2/p53 co-overexpression in soft tissue sarcomas of the extremities. Oncogene, 1998. 16(9): p. 1183-5. 30.Bartel, F., H. Taubert, and L.C. Harris, Alternative and aberrant splicing of MDM2 mRNA in human cancer. Cancer Cell, 2002. 2(1): p. 9-15. 31.Evans, S.C., et al., An alternatively spliced HDM2 product increases p53 activity by inhibiting HDM2. Oncogene, 2001. 20(30): p. 4041-9. 32.Steinman, H.A., et al., An alternative splice form of Mdm2 induces p53-independent cell growth and tumorigenesis. J Biol Chem, 2004. 279(6): p. 4877-86. 33.Shinozaki, R., S. Inoue, and K.S. Choi, Flow cytometric measurement of benzo[a]pyrene-diol-epoxide-DNA adducts in normal human peripheral lymphocytes and cultured human lung cancer cells. Cytometry, 1998. 31(4): p. 300-6. 34.Weston, A., et al., Fluorescence and mass spectral evidence for the formation of benzo[a]pyrene anti-diol-epoxide-DNA and -hemoglobin adducts in humans. Carcinogenesis, 1989. 10(2): p. 251-7. 35.Li, D., et al., In vitro induction of benzo(a)pyrene diol epoxide-DNA adducts in peripheral lymphocytes as a susceptibility marker for human lung cancer. Cancer Res, 1996. 56(16): p. 3638-41. 36.Hsing, A., D.V. Faller, and C. Vaziri, DNA-damaging aryl hydrocarbons induce Mdm2 expression via p53-independent post-transcriptional mechanisms. J Biol Chem, 2000. 275(34): p. 26024-31. 37.Hayashi, Y., [Mechanism of tumorigenesis caused by tumor suppressor gene]. Nippon Rinsho, 2000. 58(6): p. 1231-6. 38.Connelly, M.A., et al., Alternate splice-site utilization in the gene for the catalytic subunit of the DNA-activated protein kinase, DNA-PKcs. Gene, 1996. 175(1-2): p. 271-3. 39.Mannino, J.L., et al., Evidence for alternate splicing within the mRNA transcript encoding the DNA damage response kinase ATR. Gene, 2001. 272(1-2): p. 35-43. 40.Xu, C., C.Y. Li, and A.N. Kong, Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch Pharm Res, 2005. 28(3): p. 249-68. 41.Sheehan, D., et al., Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J, 2001. 360(Pt 1): p. 1-16. 42.Yang, S.K. and H.V. Gelboin, Nonenzymatic reduction of benzo(a)pyrene diol-epoxides to trihydroxypentahydrobenzo(a)pyrenes by reduced nicotinamide adenine dinucleotide phosphate. Cancer Res, 1976. 36(11 Pt 1): p. 4185-9. 43.Sundberg, K., et al., Glutathione conjugation of bay- and fjord-region diol epoxides of polycyclic aromatic hydrocarbons by glutathione transferases M1-1 and P1-1. Chem Res Toxicol, 1997. 10(11): p. 1221-7. 44.Robertson, I.G., et al., Differences in stereoselectivity and catalytic efficiency of three human glutathione transferases in the conjugation of glutathione with 7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-oxy-7,8,9,10-tetrahydrobenzo(a)pyrene. Cancer Res, 1986. 46(5): p. 2220-4. 45.Robertson, I.G., et al., Glutathione transferases in rat lung: the presence of transferase 7-7, highly efficient in the conjugation of glutathione with the carcinogenic (+)-7 beta, 8 alpha-dihydroxy-9 alpha, 10 alpha-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene. Carcinogenesis, 1986. 7(2): p. 295-9. 46.Eaton, D.L. and T.K. Bammler, Concise review of the glutathione S-transferases and their significance to toxicology. Toxicol Sci, 1999. 49(2): p. 156-64. 47.Habig, W.H., M.J. Pabst, and W.B. Jakoby, Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem, 1974. 249(22): p. 7130-9. 48.Hayes, J.D. and D.J. Pulford, The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol, 1995. 30(6): p. 445-600. 49.Mannervik, B., et al., Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc Natl Acad Sci U S A, 1985. 82(21): p. 7202-6. 50.Moscow, J.A., et al., Expression of anionic glutathione-S-transferase and P-glycoprotein genes in human tissues and tumors. Cancer Res, 1989. 49(6): p. 1422-8. 51.Lewis, A.D., et al., Amplification and increased expression of alpha class glutathione S-transferase-encoding genes associated with resistance to nitrogen mustards. Proc Natl Acad Sci U S A, 1988. 85(22): p. 8511-5. 52.Buller, A.L., M.L. Clapper, and K.D. Tew, Glutathione S-transferases in nitrogen mustard-resistant and -sensitive cell lines. Mol Pharmacol, 1987. 31(6): p. 575-8. 53.Hu, X., et al., Mechanism of differential catalytic efficiency of two polymorphic forms of human glutathione S-transferase P1-1 in the glutathione conjugation of carcinogenic diol epoxide of chrysene. Arch Biochem Biophys, 1997. 345(1): p. 32-8. 54.Sundberg, K., et al., Glutathione conjugation and DNA adduct formation of dibenzo[a,l]pyrene and benzo[a]pyrene diol epoxides in V79 cells stably expressing different human glutathione transferases. Chem Res Toxicol, 2002. 15(2): p. 170-9. 55.Comstock, K.E., et al., A comparison of the enzymatic and physicochemical properties of human glutathione transferase M4-4 and three other human Mu class enzymes. Arch Biochem Biophys, 1994. 311(2): p. 487-95. 56.Baez, S., et al., Glutathione transferases catalyse the detoxication of oxidized metabolites (o-quinones) of catecholamines and may serve as an antioxidant system preventing degenerative cellular processes. Biochem J, 1997. 324 ( Pt 1): p. 25-8. 57.Armstrong, R.N., Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem Res Toxicol, 1997. 10(1): p. 2-18. 58.Comstock, K.E., et al., Isolation and analysis of the gene and cDNA for a human Mu class glutathione S-transferase, GSTM4. J Biol Chem, 1993. 268(23): p. 16958-65. 59.Chomczynski, P. and N. Sacchi, Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem, 1987. 162(1): p. 156-9. 60.Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976. 72: p. 248-54. 61.Habig, W.H. and W.B. Jakoby, Assays for differentiation of glutathione S-transferases. Methods Enzymol, 1981. 77: p. 398-405. 62.Venkatachalam, S., M. Denissenko, and A.A. Wani, DNA repair in human cells: quantitative assessment of bulky anti-BPDE-DNA adducts by non-competitive immunoassays. Carcinogenesis, 1995. 16(9): p. 2029-36. 63.Santella, R.M., et al., Interlaboratory comparison of antisera and immunoassays for benzo[a]pyrene-diol-epoxide-I-modified DNA. Carcinogenesis, 1988. 9(7): p. 1265-9. 64.Vaziri, C. and D.V. Faller, A benzo[a]pyrene-induced cell cycle checkpoint resulting in p53-independent G1 arrest in 3T3 fibroblasts. J Biol Chem, 1997. 272(5): p. 2762-9. 65.Price, B.D. and S.J. Park, DNA damage increases the levels of MDM2 messenger RNA in wtp53 human cells. Cancer Res, 1994. 54(4): p. 896-9. 66.Saucedo, L.J., et al., Regulation of transcriptional activation of mdm2 gene by p53 in response to UV radiation. Cell Growth Differ, 1998. 9(2): p. 119-30. 67.Lin, P., et al., Reduction of androgen receptor expression by benzo[alpha]pyrene and 7,8-dihydro-9,10-epoxy-7,8,9,10-tetrahydrobenzo[alpha]pyrene in human lung cells. Biochem Pharmacol, 2004. 67(8): p. 1523-30. 68.Graveley, B.R., Small molecule control of pre-mRNA splicing. Rna, 2005. 11(3): p. 355-8. 69.Sorensen, M., et al., Glutathione S-transferase T1 null-genotype is associated with an increased risk of lung cancer. Int J Cancer, 2004. 110(2): p. 219-24. 70.Reszka, E., et al., Glutathione S-transferase M1 and P1 metabolic polymorphism and lung cancer predisposition. Neoplasma, 2003. 50(5): p. 357-62. 71.Anttila, S., et al., Immunohistochemical localization of glutathione S-transferases in human lung. Cancer Res, 1993. 53(23): p. 5643-8. 72.Piipari, R., et al., Glutathione S-transferases and aromatic DNA adducts in smokers'' bronchoalveolar macrophages. Lung Cancer, 2003. 39(3): p. 265-72. 73.Hu, X., et al., Differential protection against benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide-induced DNA damage in HepG2 cells stably transfected with allelic variants of pi class human glutathione S-transferase. Cancer Res, 1999. 59(10): p. 2358-62. 74.Guo, N., D.V. Faller, and C. Vaziri, Carcinogen-induced S-phase arrest is Chk1 mediated and caffeine sensitive. Cell Growth Differ, 2002. 13(2): p. 77-86. 75.Harris, C.C., Chemical and physical carcinogenesis: advances and perspectives for the 1990s. Cancer Res, 1991. 51(18 Suppl): p. 5023s-5044s. 76.Fields, W.R., et al., Overexpression of stably transfected human glutathione S-transferase P1-1 protects against DNA damage by benzo[a]pyrene diol-epoxide in human T47D cells. Mol Pharmacol, 1998. 54(2): p. 298-304. 77.Burset, M., I.A. Seledtsov, and V.V. Solovyev, Analysis of canonical and non-canonical splice sites in mammalian genomes. Nucleic Acids Res, 2000. 28(21): p. 4364-75. 78.Tarn, W.Y. and J.A. Steitz, Pre-mRNA splicing: the discovery of a new spliceosome doubles the challenge. Trends Biochem Sci, 1997. 22(4): p. 132-7. 79.Ge, H. and J.L. Manley, A protein factor, ASF, controls cell-specific alternative splicing of SV40 early pre-mRNA in vitro. Cell, 1990. 62(1): p. 25-34. 80.Zahler, A.M., et al., Distinct functions of SR proteins in alternative pre-mRNA splicing. Science, 1993. 260(5105): p. 219-22. 81.Hirao, T., et al., Tobacco smoke-induced DNA damage and an early age of smoking initiation induce chromosome loss at 3p21 in lung cancer. Cancer Res, 2001. 61(2): p. 612-5. 82.Pfeifer, G.P., et al., Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene, 2002. 21(48): p. 7435-51. 83.Schlott, T., et al., Detection of MDM2 alterations in cultured human hepatocytes treated with 17beta-estradiol or 17alpha-ethinylestradiol. Anticancer Res, 2002. 22(3): p. 1545-51. 84.Mironov, A.A., J.W. Fickett, and M.S. Gelfand, Frequent alternative splicing of human genes. Genome Res, 1999. 9(12): p. 1288-93. 85.Brett, D., et al., EST comparison indicates 38% of human mRNAs contain possible alternative splice forms. FEBS Lett, 2000. 474(1): p. 83-6. 86.Denissenko, M.F., et al., Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science, 1996. 274(5286): p. 430-2. 87.Perry, M.E., et al., p76(MDM2) inhibits the ability of p90(MDM2) to destabilize p53. J Biol Chem, 2000. 275(8): p. 5733-8. 88.Liang, H., et al., Genomic organisation of the human MDM2 oncogene and relationship to its alternatively spliced mRNAs. Gene, 2004. 338(2): p. 217-23. 89.Modrek, B. and C. Lee, A genomic view of alternative splicing. Nat Genet, 2002. 30(1): p. 13-9. 90.Mita, H., et al., Regulation of MTK1/MEKK4 kinase activity by its N-terminal autoinhibitory domain and GADD45 binding. Mol Cell Biol, 2002. 22(13): p. 4544-55. 91.Wang, A., et al., Response of human mammary epithelial cells to DNA damage induced by BPDE: involvement of novel regulatory pathways. Carcinogenesis, 2003. 24(2): p. 225-34. 92.Whitmarsh, A.J. and R.J. Davis, Structural organization of MAP-kinase signaling modules by scaffold proteins in yeast and mammals. Trends Biochem Sci, 1998. 23(12): p. 481-5. 93.Herlaar, E. and Z. Brown, p38 MAPK signalling cascades in inflammatory disease. Mol Med Today, 1999. 5(10): p. 439-47. 94.Vivanco, I. and C.L. Sawyers, The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer, 2002. 2(7): p. 489-501. 95.Cantley, L.C., The phosphoinositide 3-kinase pathway. Science, 2002. 296(5573): p. 1655-7. 96.Shiojima, I. and K. Walsh, Role of Akt signaling in vascular homeostasis and angiogenesis. Circ Res, 2002. 90(12): p. 1243-50. 97.Gui, J.F., W.S. Lane, and X.D. Fu, A serine kinase regulates intracellular localization of splicing factors in the cell cycle. Nature, 1994. 369(6482): p. 678-82. 98.Mermoud, J.E., P.T. Cohen, and A.I. Lamond, Regulation of mammalian spliceosome assembly by a protein phosphorylation mechanism. Embo J, 1994. 13(23): p. 5679-88. 99.Matter, N., P. Herrlich, and H. Konig, Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature, 2002. 420(6916): p. 691-5. 100.Patten Hitt, E., M.J. DeLong, and A.H. Merrill, Jr., Benzo(a)pyrene activates extracellular signal-related and p38 mitogen-activated protein kinases in HT29 colon adenocarcinoma cells: involvement in NAD(P)H:quinone reductase activity and cell proliferation. Toxicol Appl Pharmacol, 2002. 183(3): p. 160-7. 101.Perlow, R.A., et al., DNA adducts from a tumorigenic metabolite of benzo[a]pyrene block human RNA polymerase II elongation in a sequence- and stereochemistry-dependent manner. J Mol Biol, 2002. 321(1): p. 29-47. 102.Bartel, F., et al., Novel mdm2 splice variants identified in pediatric rhabdomyosarcoma tumors and cell lines. Oncol Res, 2000. 12(11-12): p. 451-7. 103.Bartl, S., et al., A small nuclear RNA, hdm365, is the major processing product of the human mdm2 gene. Nucleic Acids Res, 2003. 31(4): p. 1136-47. 104.Campling, B.G. and W.S. el-Deiry, Clinical implications of p53 mutations in lung cancer. Methods Mol Med, 2003. 75: p. 53-77. 105.Oguri, T., et al., The carcinogen (7R,8S)-dihydroxy-(9S,10R)-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene induces Cdc25B expression in human bronchial and lung cancer cells. Cancer Res, 2003. 63(4): p. 771-5. 106.Pinkas, J., et al., Expression of MDM2 during mammary tumorigenesis. Int J Cancer, 1999. 81(2): p. 292-8. 107.Uchida, K., Induction of glutathione S-transferase by prostaglandins. Mech Ageing Dev, 2000. 116(2-3): p. 135-40. 108.Remington, K.M., et al., Highly mutagenic bypass synthesis by T7 RNA polymerase of site-specific benzo[a]pyrene diol epoxide-adducted template DNA. J Biol Chem, 1998. 273(21): p. 13170-6. 109.Ivarsson, Y., et al., Identification of residues in glutathione transferase capable of driving functional diversification in evolution. A novel approach to protein redesign. J Biol Chem, 2003. 278(10): p. 8733-8. 110.Wang, C., et al., Mu-class GSTs are responsible for aflatoxin B(1)-8, 9-epoxide-conjugating activity in the nonhuman primate macaca fascicularis liver. Toxicol Sci, 2000. 56(1): p. 26-36. 111.Yang, Z., Maximum likelihood estimation on large phylogenies and analysis of adaptive evolution in human influenza virus A. J Mol Evol, 2000. 51(5): p. 423-32. 112.Levine, A.J., p53, the cellular gatekeeper for growth and division. Cell, 1997. 88(3): p. 323-31. 113.Wood, R.D., Nucleotide excision repair in mammalian cells. J Biol Chem, 1997. 272(38): p. 23465-8.
|