跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/30 00:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊佳達
研究生(外文):Chia-Ta Yang
論文名稱:下顎第一大臼齒近心牙根切除後之應力分析-有限元素法
論文名稱(外文):Biomechanical Analysis of Mandibular First Molar after Mesial Root Resection – Finite Element Method
指導教授:李惠娥李惠娥引用關係
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:牙醫學研究所碩士班
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:128
中文關鍵詞:根叉受侵犯牙根切除術有限元素分析應力分析
外文關鍵詞:Furcation-involvedRoot ResectionFinite Element AnalysisStress Analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
前言:大臼齒由於其所處牙弓位置與解剖型態之關係,是口腔中最易發生牙周病之牙齒。牙根切除術為治療根叉病變方式之一,而牙根切除術治療長期追蹤之結果,成功率約6成。失敗的原因不外乎蛀牙、牙周破壞、根管治療失敗及牙根斷裂,其中除了根管治療失敗的原因之外,其餘失敗的原因均與應力的發生有關。
目的:利用電腦輔助分析配合電阻應變實驗驗證的方式,在不同齒槽骨高度,以及不同方向受力負荷狀況下,對根叉受侵犯齒在接受近心牙根切除術並製作其遠心根與第二小臼齒相連之固定補綴物後,比較切除前後牙齒與齒槽骨應力分佈之情形。
材料與方法:模擬下顎第一大臼齒及第二小臼齒在牙釉牙骨質交界下 2 mm之齒槽骨高度為樣本,樣本經由鑽針修磨、牙髓組織樹脂複製及雷射掃描後,經影像處理建成三維有限元素模型,並由電阻應變實驗分析印證其有效性之後,利用電腦軟體處理將第一大臼齒近心牙根切除,並模擬其遠心根與第二小臼齒相連之固定補綴物設計,進行有限元素分析,施力設於固定補綴物頰側咬頭(此位置相當於切除前大臼齒近心頰側咬頭、頰側咬頭、第二小臼齒頰側咬頭),方向計有垂直咬合平面(P1)、頰側45°(P2)、舌側45°(P3)三個不同施力方向。本研究針對四種不同齒槽骨高度設計形式(分別為CEJ下4、5、6、7 mm)在三種方向咬合力下對根叉受侵犯齒在牙根切除合併補綴復形後,牙齒與齒槽骨之應力分佈情形來加以探討。
結果:下顎第一大臼齒近心牙根切除術後,牙齒應力(σvon Mises、σmax與σmax shear)集中處為牙齒頰舌側表面與第一大臼齒近心側牙髓腔開口下緣。牙齒應力(σvon Mises、σmax與σmax shear)於CEJ下7mm骨頭高度時為最大。在P3施力方向下,於牙齒應力(σvon Mises、σmax與σmax shear)為最大。齒槽骨應力(σmin)集中處為第一大臼齒之齒槽嵴。齒槽骨應力(σmin)於CEJ下4mm骨頭高度時為最大。在P3施力方向下,於齒槽骨應力(σmin)為最大。牙齒與齒槽骨的應力在牙根切除術後較牙根切除術前高。
結論:牙根切除後第一大臼齒近心側牙冠邊緣上方與牙髓腔開口之間為應力集中處,隨齒槽骨下降,應力有增加之趨勢。此外,齒槽嵴為齒槽骨應力集中處,應力並未隨齒槽骨下降而上升。側方施力會在牙齒與齒槽骨產生較大的應力,尤其舌側施力。牙根切除術後牙齒與齒槽骨應力均有增加的情形。
英文摘要
Introduction: Periodontal disease occurs mostly in molar area because of the position of the molar region and the complexity of the anatomical form. Root resection is one of the treatments, when the furcation of molar teeth is involved in periodontal disease. As long-term trace of root resection-treatment has shown, the success rate is about 60%. Main causes for failure include caries, periodontal disease, endodontic origin, and root fracture. Except endodontic origin, the other causes are all related to biomechanical stress.
Purpose: The objective of this study is to, firstly, analyze the stress of furcation-involved molars with mesial root resection; secondly, fixed prosthetic reconstruction at different alveolar bone heights with various loads by CAD/CAE; and finally, experiment on strain measurement for validity treatment. The stress after root resection is to be compared with that before resection.
Material and method: The sample is simulated to the mandibular first molar and second premolar when the alveolar bone height is below 2mm of CEJ. The three-dimensional models of finite element are constructed through mimicries of tooth preparation, resin casting of pulp tissue, and laser scanning. Following the test of effectiveness based on strain gauge technique, molar models after mesial root resection and fixed prosthesis reconstruction are formulated through computer software. Finite element analysis is also utilized to study the model. Force is applied to the fixed prosthesis buccal cusps–location as mesiobuccal cusp and buccal cusp of first molar and buccal cusp of second premolar before resection—from three different directions: directly perpendicular to the occlusal plane (P1), buccal 45˚ (P2), and linual 45˚ (P3). From the four alveolar bone height designs (below CEJ 4, 5, 6, 7mm) under three directions of occulusal loadings, this study analyzes the stress distribution of tooth and alveolar bone when furcaiton-involved first molar with mesial root resection and fixed prosthesis reconstruction.
Result: After mesial root-resection of lower first molar, the von Mises stress, maximal principal stress, and maximal shear stress concentrate on the teeth around the buccal and lingual surfaces and the lower margin of the pulpal chamber of first molar mesial surface. Stresses maximize either when the alveolar bone height is below CEJ 7mm or with P3 loading direction. Minimal principal stress in bone concentrates around alveolar crest. Stress maximizes either when the alveolar bone height is below CEJ 4mm or with P3 loading direction. In comparison with an untreated molar, an increase in stress on a furcaiton-involved molar with hemisection and fixed prosthetic reconstruction become more observable.
Conclusion: Stress on the teeth concentrate on the lower margin of the pulpal chamber of the first molar mesial surface, and it will increase with the reduction of bone level. Stress on the bone concentrate on alveolar crest, but it does not increase according to the reduction of bone level. Both stresses go higher when lateral forces are applied, especially from the lingual direction. Root resection increase and redistribute the stress on the bone and abutment teeth.
目錄
頁次
謝誌------------------------------------------------i
中文摘要-------------------------------------------ii
英文摘要------------------------------------------iv
第一章 緒論------------------------------------1
第一節 研究背景-----------------------------------1
第二節 研究目的-----------------------------------2
第二章 文獻回顧-------------------------------3
第一節 臼齒牙根型態與牙周疾病之相關性-------------3
第二節 牙根分叉受侵犯發生率-----------------------5
第三節 根叉受侵犯分類-----------------------------6
第四節 治療方式-----------------------------------7
第五節 牙根切除術---------------------------------8
第六節 牙根切除術預後之評估----------------------10
第三章 材料與方法---------------------------14
第一節 牙齒處理----------------------------------14
第二節 電阻應變實驗(驗證實驗) -------------------15
第三節 牙齒掃描----------------------------------15
第四節 影像處理----------------------------------16
第五節 有限元素模型建立 (模型一)-----------------16
第六節 模型有效性測試----------------------------17
第七節 模型修改(有限元素模型二)------------------18
第八節 有限元素模型元素材料特性及負荷條件輸入----18
第四章 結果-----------------------------------21
第一節 有效性驗證結果----------------------------21
第二節 不同齒槽骨高度受力時牙齒的應力分佈--------21
第三節 不同齒槽骨高度受力時的齒槽骨的應力分佈----30
第五章 討論-----------------------------------34
第一節 有限元素分析法----------------------------34
第二節 牙周膜的影響------------------------------35
第三節 牙髓腔的考量------------------------------36
第四節 牙根切除後補綴物之考量--------------------37
第五節 邊界條件的設定----------------------------37
第六節 黏著劑與應力之相關性----------------------37
第七節 應力分佈於牙齒與齒槽骨之相關性------------38
第八節 牙齒應力分佈之探討------------------------39
第九節 齒槽骨應力分佈之探討----------------------40
第十節 牙根切除前後應力比較----------------------41
第十一節 牙根釘柱的影響-------------------------42
第十二節 研究限制-------------------------------40
第六章 結論與建議---------------------------44
第一節 結論--------------------------------------44
第二節 建議--------------------------------------45
第三節 未來展望----------------------------------45
參考文獻------------------------------------------47
附表-----------------------------------------------56
附圖-----------------------------------------------62


















表次
表1:根叉受侵犯程度之分類表------------------------------56
表2:根叉受侵犯牙齒治療時考慮之因子與治療方式------------57
表3:根叉受侵犯牙齒預後與失敗因素------------------------57
表4:實驗牙齒尺寸----------------------------------------58
表5:材料特性--------------------------------------------58
表6:誤差值之表------------------------------------------59
表7:牙齒與齒槽骨之應力值表(切除前)-----------------------59
表8:牙齒與齒槽骨之應力值表(切除後)-----------------------61










圖次
圖1:實驗流程圖------------------------------------------62
圖2:相對位置定位----------------------------------------63
圖3:標準模型的建立--------------------------------------63
圖4:電阻應變實驗----------------------------------------63
圖5:牙齒修磨--------------------------------------------64
圖6:牙齒掃描--------------------------------------------64
圖7:牙齒掃描後外形--------------------------------------65
圖8:體積組成牙齒結構------------------------------------65
圖9:有限元素模型一之建立--------------------------------66
圖10:利用Pro ENGINEER電腦軟體讀取模型-----------------66
圖11:Pro ENGINEER軟體上第一大臼齒與第二小臼齒模型------67
圖12:下顎第一大臼齒近心牙根移除-------------------------67
圖13:第一大臼齒遠心牙根之牙膠充填模擬-------------------67
圖14:Pro ENGINEER軟體完成近心牙根切除並予補綴復形後之模型---------------------------------------------------------68
圖15:四種不同齒槽骨高度設計-----------------------------69
圖16:有限元素模型二之建立-------------------------------69
圖17:三種施力方向---------------------------------------70
圖18-1:模型CEJ(4)受P1 100N時牙齒之應力分佈圖(σvon Mises) ---71
圖18-2:模型CEJ(4)受P1 100N時牙齒之應力分佈圖(σmax)-------72
圖18-3:模型CEJ(4)受P1 100N時牙齒之應力分佈圖(σmax shear) ---73
圖19-1:模型CEJ(5)受P1 100N時牙齒之應力分佈圖(σvon Mises) ---74
圖19-2:模型CEJ(5)受P1 100N時牙齒之應力分佈圖(σmax)-------75
圖19-3:模型CEJ(5)受P1 100N時牙齒之應力分佈圖(σmax shear) ---76
圖20-1:模型CEJ(6)受P1 100N時牙齒之應力分佈圖(σvon Mises) ---77
圖20-2:模型CEJ(6)受P1 100N時牙齒之應力分佈圖(σmax)-------78
圖20-3:模型CEJ(6)受P1 100N時牙齒之應力分佈圖(σmax shear) ---79
圖21-1:模型CEJ(7)受P1 100N時牙齒之應力分佈圖(σvon Mises) ---80
圖21-2:模型CEJ(7)受P1 100N時牙齒之應力分佈圖(σmax)-------81
圖21-3:模型CEJ(7)受P1 100N時牙齒之應力分佈圖(σmax shear) ---82
圖22-1:模型CEJ(4)受P2 100N時牙齒之應力分佈圖(σvon Mises) ---83
圖22-2:模型CEJ(4)受P2 100N時牙齒之應力分佈圖(σmax)------84
圖22-3:模型CEJ(4)受P2 100N時牙齒之應力分佈圖(σmax shear) ---85
圖23-1:模型CEJ(5)受P2 100N時牙齒之應力分佈圖(σvon Mises) ---86
圖23-2:模型CEJ(5)受P2 100N時牙齒之應力分佈圖(σmax)-------87
圖23-3:模型CEJ(5)受P2 100N時牙齒之應力分佈圖(σmax shear) ---88
圖24-1:模型CEJ(6)受P2 100N時牙齒之應力分佈圖(σvon Mises) ---89
圖24-2:模型CEJ(6)受P2 100N時牙齒之應力分佈圖(σmax)------90
圖24-3:模型CEJ(6)受P2 100N時牙齒之應力分佈圖(σmax shear)---91
圖25-1:模型CEJ(7)受P2 100N時牙齒之應力分佈圖(σvon Mises)---92
圖25-2:模型CEJ(7)受P2 100N時牙齒之應力分佈圖(σmax)-------93
圖25-3:模型CEJ(7)受P2 100N時牙齒之應力分佈圖(σmax shear)----94
圖26-1:模型CEJ(4)受P3 100N時牙齒之應力分佈圖(σvon Mises) ---95
圖26-2:模型CEJ(4)受P3 100N時牙齒之應力分佈圖(σmax)-------96
圖26-3:模型CEJ(4)受P3 100N時牙齒之應力分佈圖(σmax shear)---97
圖27-1:模型CEJ(5)受P3 100N時牙齒之應力分佈圖(σvon Mises)---98
圖27-2:模型CEJ(5)受P3 100N時牙齒之應力分佈圖(σmax)-------99
圖27-3:模型CEJ(5)受P3 100N時牙齒之應力分佈圖(σmax shear)---100
圖28-1:模型CEJ(6)受P3 100N時牙齒之應力分佈圖(σvon Mises) --101
圖28-2:模型CEJ(6)受P3 100N時牙齒之應力分佈圖(σmax)------102
圖28-3:模型CEJ(6)受P3 100N時牙齒之應力分佈圖(σmax shear)---103
圖29-1:模型CEJ(7)受P3 100N時牙齒之應力分佈圖(σvon Mises)---104
圖29-2:模型CEJ(7)受P3 100N時牙齒之應力分佈圖(σmax)------105
圖29-3:模型CEJ(7)受P3 100N時牙齒之應力分佈圖(σmax shear)---106
圖30:模型CEJ(4)受P1 100N時齒槽骨之應力分佈圖(σmin)----107
圖31:模型CEJ(5)受P1 100N時齒槽骨之應力分佈圖(σmin)----107
圖32:模型CEJ(6)受P1 100N時齒槽骨之應力分佈圖(σmin)---108
圖33:模型CEJ(7)受P1 100N時齒槽骨之應力分佈圖(σmin)---108
圖34:模型CEJ(4)受P2 100N時齒槽骨之應力分佈圖(σmin)---109
圖35:模型CEJ(5)受P2 100N時齒槽骨之應力分佈圖(σmin)---109
圖36:模型CEJ(6)受P2 100N時齒槽骨之應力分佈圖(σmin)---110
圖37:模型CEJ(7)受P2 100N時齒槽骨之應力分佈圖(σmin)---110
圖38:模型CEJ(4)受P3 100N時齒槽骨之應力分佈圖(σmin)---111
圖39:模型CEJ(5)受P3 100N時齒槽骨之應力分佈圖(σmin)---111
圖40:模型CEJ(6)受P3 100N時齒槽骨之應力分佈圖(σmin)---112
圖41:模型CEJ(7)受P3 100N時齒槽骨之應力分佈圖(σmin)---112
圖42:牙齒之von Mises最大應力--------------------------113
圖43:牙齒之最大張應力---------------------------------113
圖44:牙齒之最大剪應力---------------------------------113
圖45:齒槽骨之最大壓縮力-------------------------------114
圖46:切除前後牙齒之von Mises最大應力比較--------------114
圖47:切除前後齒槽骨之最大壓縮力比較-------------------114
參考文獻
1.Bower, R.C. Furcation morphology relative to periodontal treatment. Furcation entrance architecture. Journal of Periodontology 1979a; 50:23-27
2.Chiu , B. M., Zee, K.Y., Corbet, E.F. & Holmgren, C.J. Periodontal implications of furcation entrance dimensions in Chinese first permanent molars. Journal of Periodontology 1991; 62:308-311
3.Mandelaris, G.A., Wang, H-L. & MacNeil, R. L. A morphometric analysis of the furcaiton region of mandibular molars. Compendium of Continuing Dental Education 1998; 19:113-120
4.Larato D.C. Some anatomical factors related to furcation involvements. Journal of Periodontology. 1975;46:608
5.Bower, R.C. Furcation morphology relative to periodontal treatment. Furcation root surface anatomy. Journal of Periodontology 1979b; 50:366-374
6.Carranza, F.A. Jr. & Jolkovski, D.L. Current status of periodontal therapy for furcation involvement. Dental Clinics of North America 1991; 35:555-570
7.Masters, D.H. & Hoskins, S.W. Projection of cervical enamel into molar furcations. Journal of Periodontology 1964; 35:49-53
8.Hou G.L & Tsai C-C. Relationship between periodontal furcation involvement and molar cervical enamel projection. Journal of Periodontology 1987; 58:715
9.Hou G.L & Tsai C-C. Cervical enamel projection and intermediate bifurcational ridge correlatived with molar furcation involvement. Journal of Periodontology 1997; 68:687-693
10.Moskow, B.S. & Canut, P.M. Studies on root enamel (2) Enamel pearls. A review of their morphology, location, nomenclature, occurrence, classification, histogenesis and incidence. Journal of Clinical Periodontology 1990; 17:275-281
11.Richard P.K, Robert E.L. The teatment dilemma of the furcated molar: root resection versus single-tooth implant restoration. A literature review. International J of Oral and Maxillofacial Implant. 1998; 13:2-32
12.Glckman I. Clinical Periodontology. ed 2, pp 694-696, philadelphia, WB. Saunders Co., 1958.
13.Hamp S.E., Nyman S, Lindhe J. Periodontal treatment of multirooted teeth:Results after 5 years. J of Clinical Periodontology. 1975; 2:126-35
14.Al-Shammari K.F., Kazor C.E., Wang H-L. Molar root anatomy and management of furcation defect. Journal of Clinical Periodontology 2001; 28:730-740
15.Klavan B. Clinical observations following root amputation in maxillary molar teeth. Journal of Periodontology 1975; 46:1-5
16.Langer B., Stein S.D. & Wagenburg B. An evaluation of root resection. A ten-year study. Journal of Periodontology 1981; 52:719-722
17.Erpenstein H. A 3-year study of hemisectioned molars. Journal of Clinical Periodontology 1983;10:1-10
18.Bühler H. Evaluation of root-resected teeth. Results after 10 years. Journal of Periodontology 1988; 59:805-810
19.Carnevale G., Gianfranco D. Tonelli M., Martin C., & Massimo F. A retrospective analysis of the periodontal prosthetic treatment of molars with interradicular lesions. International Journal of Periodontics and Restorative Dentistry 1991; 11:189-205
20.Newell D.H. The role of the prosthodontist in restoring root-resected molars:A study of 70 molar root resections. Journal of Prosthetic Dentistry. 1991; 65:7-15
21.Christoph HJB, William F.A. Long-term evaluation of root-resected molars:a retrospective study. International Journal of Periodontal and Restorative Dentistry. 1996; 16:207-19
22.Carnevale G., Pontoriero R. & Febo G. Long-term effects of root-resective therapy in furcation-involved molars. A 10-year longitudinal study. Journal of Clinical Periodontology 1998; 25:209-214
23.Svärdstrom G, Wennström J.L. Periodontal treatment decisions for molars:An analysis of influencing factors and long-term outcome. Journal of Peridontology. 1986; 112:511-8
24.Glickman I., Stein R.S. & Smulow J.B. The effect of increased functional forces upon the periodontium of splinted and non-splinted teeth. Journal of Periodontology 1961; 32:290
25.Lindhe J. & Svanberg G. Influence of trauma from occlusion on progression of experimental periodontitis in the beagle dog. Journal of Clinical Periodontology 1974; 1:3-14
26.Donald H.N. Current status of the management of teeth with furcation invasions. Journal of Periodontology. 1981; 52:559-568
27.Larato D.C. Furcation involvements:incidence and distribution. Journalof Periodontology. 1970; 1:499
28.Greene J.C. Oral hygiene and periodontal disease. American. Journal of the Public Health. 1963; 53:913
29.Russell A.L. Epidemiology of periodontal disease. International Dental Journal 1967; 17:282
30.Hirschfeld L, Wasserman B. A long-term survey of tooth loss in 600 treated periodontal patients. Journal of Periodontology 1978; 49:225-237
31.Ross I.F., Thompson RH. Furcation involvement in maxillary and mandibular molars. Journal of Periodontology 1980;.51:450-454
32.McFall W.T. Tooth loss in 100 treated patients with periodontal disease. A long-term study. Journal of Periodontology. 1982; 53:539-549.
33.Tai H. Furcal defects in dry Mandibles. Part I:A Biometric study. Journal of Periodontology. 1982; 53:360-363
34.Ambjornsen E. Remaining teeth, periodontal condition oral hygiene and tooth cleaning habits in dentate old-age subjects. Journal of Clinical Periodontology. 1986; 13:583-589
35.Wang H.L., Burgett F.G. The influence of molar furcation involvement and mobility on future clinical periodontal attachment loss. Journal of Periodintology. 1994; 65:25-29
36.Hou G.L, Lin I.C. The study of molar furcation involvements in adult periodontitis II. Age, Sex, Location and Prevalence. Kaohsiung J. Med. Su. 1996; 12:514-521
37.Paul A, Ricchetti A. Furcation classification. based on pulp chamber-furcation relationships and vertical radiographic bone loss. International Journal of Periodontal and Restorative Dentistry. 1982; 5:51-59
38.Tarrnow D, Fletcher P.F. Classification of the vertical component of furcation involvement. J Periodontology. 1984; 3:283-284
39.Hou G.L, Tsai C.C. Types and dimension of root trunk correlating with diagnosis of molar furcation involvements. Journal of Clinical Periodontology. 1997; 24:129-135
40.American Academy of Periodontology (1992) Glossary of periodontal terms, 3rd edition. Chicago, Illiois.
41.Isaac E. Appleton. Restoration of root-resected teeth. Journal of Prosthetic Dentistry 1980; 44: 150-153
42.Weine F.S. Endodontic therapy. 3rd ed. St. Louis:C.V. Mosby Co., 1982.
43.Lommel T.J, Meister F.J. Alveolar bone loss associated with vertical root fractures. Report of six cases. Oral surgery, Oral Medicine, Oral Pathology. 1978; 45:909-919
44.Anand A, Anil K. A strain gauge and photoelastic analysis of in vivo strain and in vitro stress distribution in human dental supporting structure. Archives of Oral Biology. 2000; 45:543-550
45.Chatri K, Kunimichi S. Stress of tooth and PDL structure created by bite force. Bull. Tokyo. Med. Dent. Univ. 1993; 40:217-232
46.Wheeler R.C. Dental anatomy, physiology and occlusion. 5th edi, p208, 246, USA, Saunders company, 1974.
47.Sangiorgi S, Manelli A, Protasoni M, Reguzzoni M, Congiu T, Raspanti M. Structure and ultrastructure of microvessels in the kidney seen by the corrosion casting method. Ital J Anat Embryol 2004; 109(1):35-44
48.Kamposiora P, Papavasilious G, Bayne S.C, Felton D.A. Finite element analysis estimates of cement microfracture under complete veneer crowns. J of Prosthetic Dentistry 1994; 71(5):435-441
49.Felton D.A. Prosthetic Restoration after coronoradicular resection : Mechanical behavior of the distal root remaining and surrounding bone. J of Prosthetic Dentistry 1998; 80:467~473
50.Ming-Hsun Ho. Three-dimensional finite element analysis of the effects of post on stress distribution in dention. Journal of Prosthetic Dentistry 1994; 72: 367-372
51.Akça Kivanç, liplikçioğlu Haldun. Evaluation of the effect of the residual bone angulation on implant-supported fixed prosthesis in mandibular posterior edentulism Part II: 3D finite element stress analysis. Implant Dentistry 2001; 10:238-245
52.Lee H.E, Wang C.H. Stress at the cervical lesion maxillary premolar-a finite element investigation. J of Dentistry 2002; 30:283-290
53.Anand A, Anil K. A strain gauge and photoelastic analysis of in vivo strain and in vitro stress distribution in human dental supporting structure. Archives of Oral Biology 2000; 45: 543-50
54.Andersen K.L, Pedersen E.H. Material parameters and stress profiles within the periodontal ligament. American J of Orthodontic and Dentofacial Orthopedics 1991; 99:427-440
55.DeTolla D.H, Andreana S, Patra A, Buhite R, Comella B. The role of the finite element model in dental implants. Journal of Oral Implantology 2000; 16:77-81
56.Baiamonte T, Abbate MF, Pizzarello F, Lozada J, James R. The experimental verification of the efficacy of finite element modeling to dental implant systems. J of Oral Implantology 1996; 12:104-110
57.Farah J.W, Craig R.G. Photoelastic and finite element stress analysis of a restored axisymmetric first molar. J of Biomechanics 1973; 6:511-520
58.Goel VK, Khera S.C, Ralston J.L, Chang K.H. Stresses at the dentinoenamel junction of human teeth-a finite element investigation. [comment]. J of Prosthetic Dentistry 1991; 66:451-459
59.Khera S.C. A three dimensional finite element model. Operative Dentistry 1984 pp.128-137
60.Larry J.S. Applied finite element analysis. John Wiley & Sons, Inc. 1984.
61.Steele J.M. Applied finite element modeling. Marcel Dekker, Inc. 1989.
62.Khera S.C et al, A three dimensional finite element model. Operative Dentistry 1984 pp.128-37
63.Goel V.K, Khera S.C, Gurusami S, Chen R.C. Effect of cavity depth on stresses in a restored tooth. J of Prosthetic Dentistry 1992; 67:174-83
64.Chang C.H, Ko C.C. Multifactorial analysis of an MOD restored human premolar using auto-mesh finite element approach. J of Oral Rehabilitation 2001; 28:576-585
65.YC. A First Course in Continuum Mechanics. 2nd edition, p320, USA, Prentice-Hall, Inc., 1977.
66.Sami S.A. Stress in human teeth-an application of the finite element technique. Master’s Thesis. Iowa City, Iowa: University of Iowa Graduate College, 1985. Cited by Goel VK. et al., 1992.
67.Tanne K, Sakuda M. Three-dimensional finite element analysis for stress in the periodontal tissues by orthodontic forces. American J of Orthodontal Dentofacial Orthopedics 1987; 92:499-505
68.McGuinness N, Wilson AN. A stress analysis of the periodontal ligament under various orthodontic loadings. European J of Orthodontics 1991; 13:231-242
69.McGuinness N, Tones M. Stress induced by edgewise appliances in the periodontal ligament-a finite element study Angle Orthod 1992; 62:15-21
70.Chatri K, Kunimichi S. Stress of tooth and PDL structure created by bite force. Bull. Tokyo. Med. Dent. Univ 1993; 40: 217-232
71.Coolidge E.D. The thickness of the human periodontal membrane. J of the American Dental Association 1937; 24:1260
72.Gobind H, Hamdi M. Estimation of physiologic stresses with a natural tooth considering fibrous PDL structure. J of Dental Research 1981; 60:873-877
73.Rubin C, Krishnamurthy N, Capilouto E, Yi H. Stress analysis of the human tooth using a three-dimensional finite element model. J of Dental Research 1983; 62:82-86
74.Richard E. Walton & Mahmoud Torabinejad. Principles and Practice of Endodontics 2 Edition 1996
75.Greenstein G, Caton J, Polson A. Trisection of maxillary molars. Compend. Contin. Dent. Educ 1984; 5:624-628
76.Dragco M.R, Williams G.B. Periodontal tissue reactions to restorative procedures. International J of Periodontal and restorative Dentistry 1981; 1:9-23
77.Richard A. Reinhardt and Joan E. Sivers. Management of classⅢ furcally involved abutments for fixed prosthodontic restorations. Journal of Prosthetic Dentistry 1988; 60:23-28
78.Robert F.B. Considerations for furcation treatment. Part III: Restorative therapy. J of Prosthetic Dentistry 1987; 58:145-147
79.Eastman J.R, Backmeyer J. A review of the periodontal, endodontic, and prosthetic considerations in odontogenic resection procedures. International J. Peroidontal and Restorative Dentistry 1986; 6:35-51
80.Herbert E.W. Preparation of furcally involved teeth. J of Prosthetic Dentistry 1982; 48: 261-263
81.Junro Yamashita, Ikumi Shiozawa. Deformation of restoration and fracture of luting cement film. Journal of Dentistry 1998; 26:459-466
82.Kamposiora P, Bayne S.C, Felton D.A, Papavasiliou G. In vivo identification of cement microfracture channels for microleakage. Poster presentation.Reno (NV): ACP Meeting, 1991
83.Libman W.J, Nicholls J.I. Load fatigue of teeth restored with cast posts and cores and complete crowns. Int J Prosthodont 1995; 8:155-61.
84.Fan P, Nicholls J.I, Kois J.C. Load fatigue of five restoration modalities in structurally compromised premolars. Int J Prosthodont 1995; 8:213-20.
85.Brannstrom M, Nyborg H. Bacterial growth and pulpal changes under inlays cemented with zinc phosphate cement and Epoxylite CBA 9080.J of Prosthet Dent 1974; 31:556-65.
86.Mejare B, Mejare I, Edwardsson S. Bacteria beneath composite restorations—a culturing and histolobacteriological study. Acta Odontol Scand 1979; 37:267-75
87.Hayashi R.K, Chaconas S.J, Caputo A.A. Effects of force direction on supporting bone during tooth movement. J of the American Dental Association. 1975; 90:1012-7
88.Angle E.H. Treatment of malocclusion of the teeth. 7th edi, Philadelphia S.S. white Dental Mfg. Co. 1907.
89.Oppenheim A. Tissue changes, particularly of the bone, incident to tooth movement. Osterreichisch Viertelja hrsschrift Zahnkeilkd. 1911; 27:303
90.Johnson A.L, Appleton J.C. Tissue changes involved in tooth movement. International J of Orthodontics. 1926; 12:889
91.Schwartz A.H. Tissue changes incidental to orthodontic tooth movement. International J of Orthodontics, Oral Surgery, Radiology. 1932; 18:31
92.A. Kevser Aydin, A. Erman Tekkaya. Stresses induced by different loadings around weak abutment. J Prosthet Dent 1992
93.Hong-So Yang, Lisa A. Lang, David A. Felton. Finite element stress analysis on the effect of splinting in fixed partial denture. J Prosthet Dent 1999; 81: 721-728
94.Carter J.M, Sorensen S.E., Johnson R.R., Teitelbaum R.L. & Levine M.S. Punch shear testing of extracted vital and endodontally treated teeth. J Biomechanics 1983; 16:841
95.Roydhouse R.H. Punch shear stress for dental purposes. J Dent Res 1970; 49:131
96.Sheats C.E. Dowel and core foundations. J Prosthet Dent 1970; 23:58-65
97.Kantor M.E., Pines M.S. A comparative study of restorative techniques for pulpless teeth. J Prosthet Dent 1977; 38:405-412Perel M.L. & Muroff F.I. Clinical criteria for posts and cores. J Prosthet Dent 1972; 28:405-411
98.Steele G.D. Reinforced composite resin foundations for endodontically treated teeth. J Prosthet Dent 1973; 30:816-9
99.Henry P.J. & Bower R.C. Post core systems in crown and bridgwork. Aust Dent J 1977; 22:128-31
100.Lau V.M. The reinforcement of endodontically treated teeth. Dent Clin North Am 1976; 20:313-28
101.Colman H.L. Restoration of endotontically treated teeth. Dent Clin North Am 1979; 23:647-62
102.Sapone J. & Lorenchi S.F. An endodontic-prosthodontic approach to internal tooth reinforcements. J Prosthet Dent 1981; 45:164-74
103.Sorenson J.A. & Martinoff J.T. Intracoronal reinforcement and coronal coverages: a study of endodontically treated teeth. J Prosthet Dent 1984; 51:780-4
104.Reeh E.S., Douglas W.H. & Messer H.H. Stiffness of endodontically treated teeth related to restoration technique. J Dent Res 1989; 65:1540-4
105.Standlee J.P., Caputo A.A., Collard E.W. & Pollack M.H. Analysis of stress distribution by endodontic posts. Oral Surg 1972; 33:952-60
106.Standlee J.P., Caputo A.A., Holcomb J. & Trabut K.C. The retentive and stress-distributing properties of a threaded endodontic dowel. J Prosthet Dent 1980; 44:398-404
107.Eshelman E.G. Jr & Sayegh F.S. Dowel materials and root fracture. J Prosthet Dent 1980; 50:342-4
108.Cooney J.P., Caputo M. & Trabert K.C. Retention and stress distribution of tapered-end endodontic posts. J Prosthet Dent 1986; 55:540-6
109.Guzy G.E. & Nicholls J.I. In vitro comparison of endodontically treated teeth with annd without endodontic post reinforcement. J Prosthet Dent 1979; 42:39-44
110.Mc Kerracher P.W. Rational restoration endodontically treated teeth. Aust Dent J 1981; 26:205-8
111.Ross I.F. Fracture susceptibility of endodontically treated teeth. J Endodont 1980; 6:560-5
112.Greenfeld R.S. & Marshall F.J. Factors affecting dowel (post) selection and use in endodontically treated teeth. Can Dent Assoc J 1983; 49:777-83
113.Bravin R.V. Post reinforcement tested: the functional stress analysis of post reinforcement. Calif Dent J 1976; 4:66-71
114.Dominique Augereau. Prosthetic restoration after coronoradicular resection: Mechanical behavior of the distal root remaining and surrounging bone
115.Jan Lindhe. Clinical Periodontology and implant Dentistry. Third Edition. 703
116.杜哲光醫師:下顎第一大臼齒根叉侵犯前後之應力分佈變化-有限元素法. 私立高雄醫學大學口腔醫學院牙醫學研究所碩士論文; 中華民國九十三年七月
117. H. S. Yang; V.P. Thompson. A two-dimensional stress analysis comparing fixed prosthodontic approaches to the tilted molar abutment. Int J Prosthodont 1991; 4:416-424
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top