|
Bowerman, B. L. & O’Connell, R. T. (1990). Linear Statistical Models: An Applied Approach, 2nd ed. Belmont, CA: Duxbury Press. Charnes, A., Frome, E. L. & Yu, P. L. (1976). The equivalence of generalized least squares and maximum likelihood estimates in the exponential family. J. Amer. Statist. Assoc. 71, 169-71. Collett, D. (2003). Modelling Binary Data, 2nd ed. Boca Raton, FL: Chapman & Hall/CRC. Cox, D. R. & Snell, E. J. (1989). Analysis of Binary Data, 2nd ed. London: Chapman & Hall. Dobson, A. J. (2002). An Introduction to Generalized Linear Models, 2nd ed. Boca Raton, FL: Chapman & Hall/CRC. Fahrmeir, L. & Tutz, G. (2001). Multivariate Statistical Modelling Based on Generalized Linear Models, 2nd ed. New York, NY: Springer-Verlag. Firth, D. (1991). Generalized linear models. In: D. V. Hinkley, N. Reid & E. J. Snell (Eds), Statistical Theory and Modelling: In Honour of Sir David Cox, FRS, London: Chapman & Hall, pp. 55-82. Gail, M. H., Wieand, S. & Piantadosi, S. (1984). Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates. Biometrika 71, 431-44. Greene, W. H. (2003). Econometric Analysis, 5th ed. Upper Saddle River, NJ: Prentice-Hall. Hamilton, L. C. (1992). Regression with Graphics: A Second Course in Applied Statistics. Belmont, CA: Duxbury Press. Hosmer, D. W. & Lemeshow, S. (2000). Applied Logistic Regression, 2nd ed. New York, NY: John Wiley & Sons. Hu, F. -C., Tsai, T. -L., Shau, W. -Y. & Chang, H. -C. (2003). The omitted-variable bias in linear regression model: A general result. Unpublished manuscript, Division of Biostatistics, Graduate Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan, R.O.C. (To be Submitted) Landwehr, J. M., Pregibon, D. & Shoemaker, A. C. (1984). Graphical methods for assessing logistic regression models (with discussion). J. Amer. Statist. Assoc. 79, 61-83. McCullagh, P. (1991). Quasi-likelihood and estimating functions. In: D. V. Hinkley, N. Reid & E. J. Snell (Eds), Statistical Theory and Modelling: In Honour of Sir David Cox, FRS, London: Chapman & Hall, pp. 265-86. McCullagh, P. & Nelder, J. A. (1989). Generalized Linear Models, 2nd ed. London: Chapman & Hall. Mittlb¨ock, M. & Schemper, M. (1996). Explained variation for logistic regression. Statist. Med. 15, 1987-97. Mittlb¨ock, M. & Schemper, M. (2002). Explained variation for logistic regression – Small sample adjustments, confidence intervals and predictive precision. Biom. J. 44, 263-72. Nagelkerke, N. J. D. (1991). A note on a general definition of the coefficient of determination. Biometrika 78, 691-2. Nelder, J. A. & Wedderburn, R. W. M. (1972). Generalized linear models. J. Roy. Statist. Soc., Ser. A 135, 370-84. Neuhaus, J. M. & Jewell, N. P. (1993). A geometric approach to assess bias due to omitted covariates in generalized linear models. Biometrika 80, 807-15. Pregibon, D. (1981). Logistic regression diagnostics. Ann. Statist. 9, 705-24. Schemper, M. (2003). Predictive accuracy and explained variation. Statist. Med. 22, 2299- 308. Searle, S. R. (1971). Linear Models. New York, NY: John Wiley & Sons. Tsai, T. -L., Shau, W. -Y. & Hu, F. -C. (2003). Generalized path analysis and generalized simultaneous equations model for recursive systems with responses of a mixed type. Unpublished manuscript, Division of Biostatistics, Graduate Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan, R.O.C. (Submitted to Structural Equation Modeling) Wang, P. -C. (1985). Adding a variable in generalized linear models. Technometrics 27, 273-6. Wang, P. -C. (1987). Residual plots for detecting nonlinearity in generalized linear models. Technometrics 29, 435-8. Wedderburn, R. W. M. (1974). Quasilikelihood functions, generalized linear models and the Gauss-Newton method. Biometrika 61, 439-47.
|