跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.103) 您好!臺灣時間:2026/01/16 09:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李其鴻
研究生(外文):Chi-Hung Lee
論文名稱:磺化聚亞醯胺半互穿型網狀體質子交換膜之研究
論文名稱(外文):The Study of Epoxy-based Semi-Interpenetrating Polymer Networks (Semi-IPNs) Sulfonated Polyimides Proton Exchange Membrane for Fuel Cell
指導教授:王怡仁王怡仁引用關係
指導教授(外文):Yee-Jen Wang
學位類別:博士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:341
中文關鍵詞:質子交換膜環氧樹脂聚矽氧烷磺化聚亞醯胺
外文關鍵詞:proton exchange membrancesepoxypolydimethylsiloxanesulfonated polyimide
相關次數:
  • 被引用被引用:1
  • 點閱點閱:392
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的在於合成一系列新穎磺化聚亞醯胺結構之半互穿型網狀結構體質子交換膜。其磺化聚亞醯胺結構主要由雙酸酐之1,2,4,5-Benzenetetracarboxylic dianhydride (PMDA)與1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA)及2,2-benzidinedisulfonic acid (BDSA)及不同單體結構之雙胺類形成磺化聚亞醯胺,並加入α,ω-diaminopropyl polydimethylsiloxane (PDMS)以作為增加質子交換膜特性用,最後與Neopentyl glycol diglycidyl ether (NGDE)在熱亞醯胺化過程下形成半互穿型網狀結構體質子交換膜。不同的單體結構之雙胺類可控制線性磺化聚亞醯胺結構形成不同質子交換膜特性之磺化聚亞醯胺半互穿型網狀結構體質子交換膜。NGDE所形成的網狀結構體,可提升磺化聚亞醯胺半互穿型網狀結構體質子交換膜的成膜性、質子導電度、熱安定性、機械性質、尺寸安定性、耐水解性、耐氧化特性及降低甲醇滲透率。
本研究之半互穿型網狀結構體是由線性磺化聚醯胺酸(SPAA)與環氧樹脂(NGDE)經由熱亞醯胺化過程同時形成NGDE網狀結構體與線性磺化聚亞醯胺結構之磺化聚亞醯胺結構半互穿型網狀結構體質子交換膜,我們以Differential scanning calorimetry (DSC) 、Solid State 13C-NMR及 Fourier transform infrared spectroscopy (FTIR)證明其反應的正確性及完整性。
我們詳細去討論及研究磺化聚亞醯胺半互穿型網狀結構體質子交換膜中的各部份化學結構,包含雙酸酐單體結構、雙胺類單體結構及環氧樹脂含量,對於質子交換膜的吸水率、質子導電度、尺寸安定性、甲醇滲透率、耐水性與膜材內部奈米微結構之影響。本研究之一系列新穎磺化聚亞醯胺結構半互穿型網狀結構體質子交換膜經Transmission electron microscopy (TEM)分析其微結構,發現膜材結構的離子基含量、離子基分散程度、線性磺化聚亞醯胺結構是否柔韌及網狀體的存在皆會影響其微結構。當膜材微結構中親疏水相分離團聚點為5~20nm,可擁有高質子導電性質、高水解穩定性。本研究之磺化聚亞醯胺半互穿型網狀結構體質子交換膜是由聚醚型環氧樹脂形成半互穿型網狀結構體而成,可在100oC下承受120~200小時,且具有相當低的甲醇滲透率,可能可應用於中高溫型質子交換膜燃料電池。水與甲醇在本膜材中的滲透行為並非是電透析所造成,原因是本膜材有奈米級的球形微相分離,此結果與Nafion系統完全不同,我們認為未來有助於燃料電池的效能提升。
In the present study, we attempt to synthesize a series of novel epoxy-based sulfonated polyimides (SPIx-EPs) semi-interpenetrating polymer networks.Novel epoxy-based semi-interpenetrating polymer networks ((SPIx-EPs)) of aromatic polyimide, derived from 1,2,4,5-Benzenetetracarboxylic dianhydride (PMDA), 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA), 2,2-benzidinedisulfonic acid (BDSA), α,ω-diaminopropyl polydimethylsiloxane (PDMS), neopentyl glycol diglycidyl ether (NGDE) and common nonsulfonated diamines, were prepared via a thermal imidization reaction. The linear polymer composes of sulfonated polyimides (SPI) with various nonsulfonated diamines mixed to adjust the sulfonationity for control by the proton conductivity of the prepared proton exchange membrane. The network polymer of SPIx-EPs is formed from curing of the flexible polyether-type epoxy (NGDE) to enhance it’s film-forming capability, proton conductivity, thermal stability, mechanical property, dimension stability, hydrolytic stability, oxidation stability and to reduce water swelling effect, methanol permeability of proton exchange membrane. Differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) were utilized to verify the synchronization of the imidization of sulfonated poly(amic acid) (SPAA) and the crosslinking reactions of epoxy. The structure-property relationship of SPIx-EPs membranes is discussed in details with respect to the chemical structure of various nonsulfonated diamines, dianhydrides and morphology of SPIx-EPs membranes from the viewpoints of water uptake, dimension stability, proton conductivity and methanol permeability. Ion exchange capacity (IEC), content of epoxy, configuration (para-, meta-, or function groups) and chemical structure of polymer chain (linear or semi-IPNs) show great influence on the proton conductivity, water stability and nano structure of SPIx-EPs membrane. The morphology of a series of semi-IPNs sulfonated polyimides was investigated by transmission electron microscopy (TEM) as a function of different parameters such as the ionic content, the ionic groups distribution, and the flexibility of the sulfonated polyimide chain and cured epoxy. Widespread and well-spherical hydrophilic domains (5~20nm) were confirmed in the TEM observations, proving the presence of the high proton-transporting properties and hydrolytic stability of the SPIx-EPs membrane. The SPIx-EPs with semi-IPNs structure and derived from cured flexible polyether-type epoxy (NGDE) display reasonably high water stability of more than 120–200 hr in water at 100oC, suggesting a high potential candidate as PEMs operating at temperatures up to 100 oC. The SPISX-EPs membranes own fairly high proton conductivity at higher relative humidities and low methanol permeability. The water and methanol crossover through membrane under the fuel cell operation conditions is not controlled by electro-osmosis due to proton transport but by diffusion due to the presence of the well-spherical hydrophilic nano domains. It is quite different from the case of perfluorosulfonated membranes such as Nafion and demonstrates the effects on to performance of fuel cell. SPISX-EPs membranes favorable display high PEFC performances comparable to those of Nafion 117.
中文摘要 I
英文摘要 III
誌謝 V
目錄 XXI
圖目錄 XXI
表目錄 XXIII
第一章 序論 1
1-1 燃料電池的發展簡史與現況 6
1-2 燃料電池的基本原理 9
1-3燃料電池的種類 10
1-3-1鹼液型燃料電池(AFC) 12
1-3-2 磷酸型燃料電池(PAFC) 13
1-3-3 熔融碳酸鹽型燃料電池(MCFC) 14
1-3-4 固態氧化物型燃料電池(SOFC) 15
1-3-5 質子交換薄膜型燃料電池(PEMFC) 15
1-3-6 甲醇直接反應燃料電池(DMFC) 16
1-4 質子交換膜燃料電池(PEMFC)之簡介與分類 17
1-5 直接甲醇燃料電池(DMFC) 19
1-5-1 良好的直接甲醇燃料電池電解質膜應具備以下的性質 21
1-5-2 直接甲醇燃料電池所面臨之瓶頸與發展方向 22
第二章 文獻回顧 24
2-1質子交換膜發展及進展 24
2-2 NAFION(全氟磺酸樹酯)簡介 26
2-3 全碳氫化合物質子交換膜 41
2-4 磺化聚亞醯胺(SULFONATED POLYIMIDE)的發展簡介 45
2-4.1交聯結構對磺化聚亞醯氨在質子交換膜上的影響 59
2-5 矽氧烷的簡介 61
2-6有機-無機混成高分子薄膜材料 64
2-7研究動機及目的 67
第三章 實驗設備與方法 71
3-1實驗材料及藥品 71
3-2實驗設備 77
3-3 儀器分析原理 80
3-3.1傅立葉轉換紅外光譜儀(Fourier Transform Infrared Sepectromter, FT-IR, ATR) 80
3-3.2定電位/電流儀 (Potentiostat/Galvanostat) 83
3-3.3氣相層析分析儀 (Gas chromatography) 92
3-3.4熱重損失分析儀 (Thermo Gravimetric analysis,TGA) 95
3-3.5微差掃描熱卡計 (Differential Scanning Calorimeter,DSC) 98
3-4 研究方法及實驗步驟 101
3-4-1【I】五員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜研究方法及實驗步驟 101
3-4-1.1五員環磺化聚醯胺酸 SULFONATED POLY(AMIC ACID) (SPAA)的合成與鑑定 101
A.原料 101
B.五員環磺化聚醯胺酸Sulfonated Poly(amic acid) (SPAA)之製備 102
C.五員環磺化聚醯胺酸Sulfonated Poly(amic acid), (SPAA)之鑑定 103
3-4-1.2五員環磺化聚醯胺酸SULFONATED POLY(AMIC ACID), (SPAA)/環氧樹脂(NGDE)之合成與鑑定 103
A.原料 103
B.五員環磺化聚醯胺酸Sulfonated Poly(amic acid), (SPAA)/環氧樹脂(NGDE)之製備 104
C.五員環磺化聚醯胺酸Sulfonated Poly(amic acid), (SPAA)/環氧樹 脂(NGDE)之鑑定 105
3-4-1.3五員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之合成與鑑定 105
A.五員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之製備 105
B.五員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之鑑定 105
3-4-1.4五員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之性能測試 108
A.五員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之吸水率測試 108
B.五員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之尺寸安定測試 108
C.五員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之離子交換容量(Ionic Exchange Capacity, IEC)測試 109
D.五員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之質子傳導度量測(proton conductivity)測試 109
E.五員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之不同溫度與質子傳導度量測(proton conductivity)分析測試 111
F.五員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之甲醇穿透率量測(methanol pemeation)測試 112
G.五員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之熱重損失分析儀(TGA)分析測試 114
H.五員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之抗張強度、應力-應變曲線測試(tensile)測試 115
I.五員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之耐水及耐候性分析 115
3-4-1.5 五員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之微結構分析 116
A.五員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之原子力顯微鏡(Atomic Force Microscopy, AFM)分析 116
B.五員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之穿透式電子顯微鏡(TEM)分析 117
3-4-2【Ⅱ】六員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜研究方法與進行步驟 118
3-4-2.1六員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之製備與鑑定 119
A.原料 119
B.不同磺化程度之六員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜製備 120
3-4-2.2 不同磺化程度之六員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之鑑定 121
3-4-2.3 不同磺化程度之六員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之性能測試 123
A.不同磺化程度之六員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之之吸水率測試 123
B.不同磺化程度之六員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之尺寸安定測試 123
C.不同磺化程度之六員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之離子交換容量(Ionic Exchange Capacity, IEC)測試 124
D.不同磺化程度之六員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之熱重損失分析儀(TGA)及動態DSC分析測試 124
E.不同磺化程度之六員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之質子導電度 125
F.不同磺化程度之六員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之微結構分析 126
3-4-3【Ⅲ】磺化聚(亞醯胺-矽氧烷)質子交換膜方法與進行步驟 127
3-4-3.1 磺化聚(亞醯胺-矽氧烷)質子交換膜之製備與鑑定 128
A.原料 128
B.磺化聚(亞醯胺-矽氧烷)質子交換膜製備 131
C.磺化聚(亞醯胺-矽氧烷)質子交換膜之鑑定 131
3-4-3.2 磺化聚(亞醯胺-矽氧烷)質子交換膜之性能測試 132
A. 磺化聚(亞醯胺-矽氧烷)質子交換膜之吸水率及變溫吸水率測試 133
B.磺化聚(亞醯胺-矽氧烷)質子交換膜之尺寸改變率測試 133
C.磺化聚(亞醯胺-矽氧烷)質子交換膜之離子交換容量(Ionic Exchange Capacity, IEC)測試 133
D.磺化聚(亞醯胺-矽氧烷)質子交換膜之熱重損失分析儀(TGA)及動態DSC分析測試 134
E.磺化聚(亞醯胺-矽氧烷)質子交換膜之質子導電度 135
F.磺化聚(亞醯胺-矽氧烷)質子交換膜之甲醇滲透性 135
3-4-3.3 磺化聚(亞醯胺-矽氧烷)質子交換膜之微結構分析 136
3-4-3.4 磺化聚(亞醯胺-矽氧烷)質子交換膜之耐水耐候及耐氧化分析 136
3-4-4【Ⅳ】磺化聚(亞醯胺-矽氧烷)半互穿型網狀結構體質子交換膜研究方法與進行步驟 137
3-4-4.1磺化聚(亞醯胺-矽氧烷)半互穿型網狀結構體質子交換膜之製備與鑑定 139
A.原料 139
B.磺化聚(亞醯胺-矽氧烷)半互穿型網狀結構體質子交換膜之製備 141
C.磺化聚(亞醯胺-矽氧烷)半互穿型網狀結構體質子交換膜之鑑定 141
3-4-4.2 磺化聚(亞醯胺-矽氧烷)半互穿型網狀結構體質子交換膜之性能測試 143
A.磺化聚(亞醯胺-矽氧烷)半互穿型網狀結構體質子交換膜之吸水率及變溫吸水率測試 143
B.磺化聚(亞醯胺-矽氧烷)半互穿型網狀結構體質子交換膜之尺寸安定測試 143
C.磺化聚(亞醯胺-矽氧烷)半互穿型網狀結構體質子交換膜之離子交換容量(Ionic Exchange Capacity, IEC)測試 144
D.磺化聚(亞醯胺-矽氧烷)半互穿型網狀結構體質子交換膜之熱重損失分析儀(TGA)及動態DSC分析測試 144
E.磺化聚(亞醯胺-矽氧烷)半互穿型網狀結構體質子交換膜之質子導電度 145
F.磺化聚(亞醯胺-矽氧烷)半互穿型網狀結構體質子交換膜之甲醇滲透性 146
3-4-4.3 磺化聚(亞醯胺-矽氧烷)半互穿型網狀結構體質子交換膜之微結構分析 146
3-4-4.4磺化聚(亞醯胺-矽氧烷)半互穿型網狀結構體質子交換膜之耐水耐候及耐氧化分析 147
第四章 結果與討論 148
4-1【I】五員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜 150
4-1-1五員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜結果與討論 150
4-1-2 五員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之合成與鑑定 151
A.五員環型磺化聚醯胺酸之製備與FT-IR分析鑑定 151
B五員環磺化聚醯胺酸 Sulfonated Poly (amic acid), SPAA/環氧樹脂(NGDE)之合成與FTIR分析鑑定 153
C.五員環磺化聚亞醯胺半互穿型網狀結構體之動態DSC分析 154
D.五員環磺化聚亞醯胺半互穿型網狀結構體之13C NMR光譜分析 158
4-1-3 五員環磺化聚亞醯胺半互穿型網狀結構體之質子交換膜性能測試 163
4-1-3.1五員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之吸水率、離子交換容量(Ionic Exchange Capacity, IEC)、質子傳導度量測(proton conductivity)測試 163
4-1-4五員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之溫度與水份含量對於其活化能之影響 167
4-1-5五員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之甲醇穿透率量測(METHANOL CROSSOVER)測試 170
4-1-6 五員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之熱重損失分析(TGA)測試 172
4-1-7五員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之抗張強度、應力-應變曲線測試(TENSILE)測試 175
4-1-8五員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之微結構分析 177
4-1-8.1五員環型磺化聚亞醯胺半互穿型網狀結構體質子交換膜之原子力顯微鏡(Atomic Force Microscopy, AFM)分析 177
4-1-8.2五員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之穿透式電子顯微鏡(TEM)分析 183
4-1-9五員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜之耐水耐候分析 188
4-2【Ⅱ】六員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜 193
4-2-1六員環磺化聚亞醯胺半互穿型網狀結構體質子交換膜結果與討論 193
4-2-2六員環型磺化聚亞醯胺半互穿型網狀結構體質子交換膜之製備與鑑定 194
4-2-2.1六員環型磺化聚亞醯胺半互穿型網狀結構體質子交換膜之FT-IR分析鑑定 195
4-2-2.2六員環型磺化聚亞醯胺半互穿型網狀結構體質子交換膜之13C NMR分析鑑定 198
4-2-3 不同磺化程度之六員環型磺化聚亞醯胺半互穿型網狀結構體質子交換膜之性能測試 201
4-2-3.1 不同磺化程度之六員環型磺化聚亞醯胺半互穿型網狀結構體質子交換膜之之吸水率測試 201
4-2-3.2 不同磺化程度之六員環型磺化聚亞醯胺半互穿型網狀結構體質子交換膜之之尺寸安定、離子交換容量(Ionic Exchange Capacity, IEC) 202
4-2-3.3 不同磺化程度之六員環型磺化聚亞醯胺半互穿型網狀結構體質子交換膜之質子導電度與活化能分析 206
4-2-4 不同磺化程度之六員環型磺化聚亞醯胺半互穿型網狀結構體質子交換膜之熱分析測試 210
4-2-4.1不同磺化程度之六員環型磺化聚亞醯胺半互穿型網狀結構體質子交換膜之熱重損失分析儀(TGA) 211
4-2-4.2不同磺化程度之六員環型磺化聚亞醯胺半互穿型網狀結構體質子交換膜之動態DSC分析測試 214
4-2-5不同磺化程度之六員環型磺化聚亞醯胺半互穿型網狀結構體質子交換膜之微結構分析 218
4-3【Ⅲ】磺化聚(亞醯胺-矽氧烷)質子交換膜 223
4-3-1第磺化聚(亞醯胺-矽氧烷)質子交換膜 結果與討論 223
4-3-2磺化聚(亞醯胺-矽氧烷)質子交換膜製備 225
4-3-2.磺化聚(亞醯胺-矽氧烷)質子交換膜之FT-IR分析鑑定 227
4-3-2.2磺化聚(亞醯胺-矽氧烷)質子交換膜之1H NMR分析鑑定 229
4-3-3磺化聚(亞醯胺-矽氧烷)質子交換膜之質子交換膜之性能測試 231
4-3-3.1磺化聚(亞醯胺-矽氧烷)質子交換膜之質子交換膜之IEC、尺寸改變率及吸水率與變溫吸水率測試 231
4-3-3.2磺化聚(亞醯胺-矽氧烷)質子交換膜之質子導電度 237
4-3-4 磺化聚(亞醯胺-矽氧烷)質子交換膜之熱重損失分析儀(TGA)及動態DSC分析測試 240
4-3-5磺化聚(亞醯胺-矽氧烷)質子交換膜之微結構分析 246
4-3-6磺化聚(亞醯胺-矽氧烷)質子交換膜之耐水耐候及耐氧化分析 250
4-4【Ⅳ】磺化聚(亞醯胺-矽氧烷)半互穿型網狀結構體 254
4-4-1磺化聚(亞醯胺-矽氧烷)半互穿型網狀結構體質子交換膜 254
4-4-2磺化聚(亞醯胺-矽氧烷)半互穿型網狀結構體質子交換膜之製備與鑑定 256
4-4-2.1 磺化聚(亞醯胺-矽氧烷)半互穿型網狀結構體質子交換膜之FT-IR分析鑑定 258
4-4-2.2 磺化聚(亞醯胺-矽氧烷)半互穿型網狀結構體質子交換膜之固態13C NMR分析鑑定 262
4-4-3 磺化聚(亞醯胺-矽氧烷)半互穿型網狀結構體質子交換膜之性能測試 266
4-4-3.1磺化聚(亞醯胺-矽氧烷)半互穿型網狀結構體質子交換膜之IEC、尺寸改變率及吸水率與變溫吸水率測試 267
4-4-3.2磺化聚(亞醯胺-矽氧烷)質子交換膜之質子交換膜之質子導電度 272
4-4-4磺化聚(亞醯胺-矽氧烷)半互穿型網狀結構體質子交換膜之熱重損失分析儀(TGA 275
4-4-5磺化聚(亞醯胺-矽氧烷)半互穿型網狀結構體質子交換膜之甲醇滲透性 279
4-4-6磺化聚(亞醯胺-矽氧烷)半互穿型網狀結構體質子交換膜之微結構分析 282
4-4-7 磺化聚(亞醯胺-矽氧烷)半互穿型網狀結構體質子交換膜之耐水耐候及耐氧化分析 287
第五章 結論 298
參考文獻 300
簡歷 308
[1] Woods Hole Oceanographic Institution, “Proposals Emerge to Transfer Excess Carbon into the Ocean”, Massachusetts, USA, 2008.
[2]紐約證交所, (2008).
[3]賴耿陽,“燃料電池與電力貯存系統“,復漢出版社,(1998).
[4]衣寶廉, “燃料電池”,五南圖書
[5]黃鎮江,“燃料電池”,全華科技圖書股份有限公司
[6] 詹世弘,”二十一世紀之星-燃料電池”,燃料電池研習會,元智大學(2000)
[7]鄭煜騰、鄭耀宗, ” 質子交換膜型燃料電池的製造技術 ” 能源季刊, 178 第27卷, 第2期, (1997) , p.118。
[8]翁芳柏.徐耀昇,“燃料電池實驗教材”,亞太燃料電池科技股份有限公司,(2006).
[9] Giner J. et al. J. Electrochem. Soc., 116, (1969), p.1124.
[10] H. G. Vad Haubold, T. Jungbluth, P. Hiller, Electrochem.Acta. 46, (2001), p.1559.
[11] Apleby, A. J. , and F. R. Folkes, Fuel Cell Handbooks, Van Nostrand Reinhold, New York,(1989).
[12] Savinell, R.; Yeager, E.; Tryk, D.; Landau, U.; Wainright, J.; Weng, D.; Lux, K.; Litt, M.; Rogers, C. J. Electrochem. Soc. 141, (1994), L46.
[13] Malhotra, S.; Datta, R. J. Electrochem. Soc. 144(1997) L23.
[14] Wang, H.; Holmberg, B. A.; Huang, L.; Wang, Z.; Mitra, A.; Norbeck, J. M.; Yan, Y. , J. Mater. Chem. 12, (2002), p.834.
[15] Ogumi Z., Kuroe T. and Takehara Z.I., J.Electrochem.Soc. 132, (1985), p.2601.
[16] Eisenberg et al., “A new multiplet-cluster model for the morphology of random ionomers”, Macromolecules, 23, (1990), p.4098-4107.
[17] Hsu W. Y., Gierke T. D. , “Elastic Theory for Ionic Clustering in Perfluorinated Ionomer”, Macromolecules, 15, (1982), p.101-105.
[18] Gierke, T.D.; Hsu, W.Y.; Eisenberg, A.; Yeager, H.L., ACS Symposium Series, 180, (1982), p.283.
[19] Eikerling et al., , “Electrophysical Properties of Polymer Electrolyte Membranes: A Random Network Model”, J. Physic. Chem. B, 101, (1997), p.10807-10820.
[20] Haubold H.-G. et al., , “Nano structure of NAFION: a SAXS study”, Electrochem.Acta. 46, (2001), p1559-1563.
[21] Rubatat L, Rollet AL, Gebel G, Diat O, Macromolecules, 35, (2002), p.4050.
[22] Rubatat L, Gebel G, Diat O, Macromolecules, 37, (2004), p.7772.
[23] Sumner, J. J.; Creager, S.E., Ma, J. J.; Desmarteau, D. D., Electrochem. Soc. 145, (1998), p.107.
[24] Gouerec P. et al., “High Energy Ballmilled Pt-Mo Catalysts for Polymer Electrolyte Fuel Cells and Their Tolerance to CO”, Journal Electrochem. Soc., 147, (2000), p.3989.
[25] Savinell, R.; Yeager, E.; Tryk, D.; Landau, U.; Wainright, J.; Weng, D.; Lux, K.; Litt, M.; Rogers, C. J. Electrochem. Soc. 141, (1994), L46.
[26] Malhotra, S.; Datta, R. J. Electrochem. Soc. 144, (1997), L23.
[27] Wang, H.; Holmberg, B. A.; Huang, L.; Wang, Z.; Mitra, A.; Norbeck, J. M.; Yan, Y. J. Mater. Chem. 12, (2002), p.834.
[28] Adjemian, K. T.; Srinivasan, S.; Benziger, J.; Bocarsly, A. B. J. Powe. Sour. 109, (2002), p.356.
[29] Adjemian, K. T.; Lee, S. J.; Srinivasan, S.; Benziger, J.; Bocarsly, A. B. J. Electrochem. Soc. 149, (2002), A256.
[30] Lin, J. C.; Jnuz, H. R.; Fenton, J. M. In Handbook of Fuel Cells; Vielstich, W., Lamm, A., Gasteiger, H. A., Eds.; John Wiley & Sons Ltd.: New York, 3, (2003), p.457.
[31] Costamagna, P.; Yang, C.; Bocarsly, A. B.; Srinivasan, S. Electrochim. Acta, 47, (2002), p.1023.
[32] Park, Y.-I.; Kim, J.-D.; Nagai, M. J. Mater. Sci. Lett. 19, (2000), p.1621.
[33] Tazi, B.; Savadogo, O. Electrochim. Acta , 45, (2000), p.4329.
[34] Staiti, P.; Arico, A. S.; Baglio, V.; Lufrano, F.; Passalacqua, E.; Antonucci, . Solid State Ionics, 145, (2001), p.101.
[35] Dimitrova, P.; Friedrich, K. A.; Stimming, U.; Vogt, B. Solid State Ionics 150, (2002), p.115.
[36] Antonucci, P. L.; Arico´, A. S.; Creti, P.; Ramunni, E.; Antonucci,V. Solid State Ionics 125, (1999), p.431.
[37] Yang, C.; Srinivasan, S.; Arico, A. S.; Creti, P.; Baglio, V.; Antonucci, V. Electrochem. Solid-State Lett. 4, (2001), A31.
[38] Rikukawa, M.; Sanui, K. Prog. Polym. Sci. 25, (2000), p.1463.
[39] Kornyshev A. A., “Kinetics of Proton Transport in Water”, J. Phys. Chem. B., 107, (2003), p.3351-3366.
[40] Eikerling M., “Mechanisms of Proton Conductance in Polymer Electrolyte Membranes”, J. Phys. Chem. B., 105, (2001), p.3646-3662.
[41] Tuckerman M.E., Marx D., Klein M.L., Parrinello M., Science 275 (1997), p.817.
[42] Kreuer K. D., “On the complexity of proton conduction phenomena”, Solid State Ionics, 136-137, (2000), p.149-160.
[43] Duan X., Scheiner St. ,Journal Molecular Structure, 270, (1992), p.173-185.
[44] Laurs N., Bopp Ph., Bunsenges Ber., , Phys. Chem. 97, (1993), p.982.
[45] P. Jannasch, Fuel Cells, 2, (2005),p.5.
[46] Kawahara, M.;Rikukawa, M.;Sanui, K.;Ogata, N., Solid State Ionics , 136-137 (2000), p.1193.
[47] Kawahara, M.;Rikukawa, M.;Sanui, K. Polym. Adv. Technol. 11, (2000), p.544.
[48] Asensio, J.A.;Borros, S.;Gomez ,Romero, J. Polym. Sci. Part A :Polym. Chem.40, (2002), p.3703.
[49] J. W. Rhima, H. B. Park, C. S. Lee, J. H. Jun, D. S. Kim, Y. M. Lee, J. Membr. Sci., 238, (2004),p.143–151.
[50] C. Zhao, H. Lin, K. Shao, X. Li, H.e Ni, Z. Wang, H. Na, J. Power Sour., 162, 2006, p.1003–1009.
[51] Wang, F.;Hickner, M.;Kim, Y.S.;Zawodinski, T.A.;McGrath, J.E. J. Membr. Sci. 197, (2002), p.231.
[52] Elabd,Y.A.;Napadensky,E.;Sloan,J.M.;Crawford,D.M.;Walker,C.W. J. Membr. Sci. 217, (2003), p.227.
[53] Won, J.;Park, H. H.;Kim, Y. J.;Choi, S. W.;Ha, H.Y.;OH, I. H.;Kim ,H. S.;Kang, Y. S.;Ihn, K. J. Marcomolecules 36, (2003), p.3228.
[54] Rikukawa, M.; Sanui, K. Prog. Polym. Sci. 25, (2000), p.1463.
[55] Bae, J.M.; Honma, I.; Murata, M.; Yamamoto, T.; Rikukawa,M.; Ogata, N. Solid State Ionics 147, (2002), p.189.
[56] Child, A. D.; Reynolds, J. R. Macromolecules 27, (1994), p.1975.
[57] Rulkens, R.; Schulze, M. Macromol. Rapid Commun.15, (1994), p.669.
[58] Miyatake, K.; Iyotani, H.; Yamamoto, K.; Tscuchida, E. Macromolecules 29, (1996), p.6969.
[59] Hruszka, P.; Jurga, J.; Brycki, B. Polymer 33, (1992), p.248.
[60] Kosmala, B.; Schauer, J. J. Appl. Polym. Sci. 85, (2002), p.1118.
[61] Miyatake, K.; Shouji, E.; Yamamoto, K.; Tsuchida, E. Macromolecules 30, (1997), p.2941.
[62] Kopitzke, R. W.; Linkous, C. A.; Nelson, G. L. J. Polym. Sci. 36, (1998), p.1197.
[63] Guo, Q.; Pintauro, P. N.; Tang, H.; O’Connor, S. J. Polym. Sci.154, (1999), p.175.
[64] Gouin,J.P.;Williams,C.E.;Eisenberg,A. Macromolecules 22, (1989), p.4573.
[65] Weiss,R.A.;Sen,A.;Willis,C.L.;Pottick,L.A. Polymer 32, (1991), p.1867.
[66] Venkateshwaran,L.N.;York,G.A.;DePorter,C.D.;McGrath,J.E.;Wilkes,G.L. Polymer 33, (1992), p.2277.
[67] M.T. Bogert, M. T. Renshaw, J. Am. Chem. Soc., 30, (1908), p.1135.
[68] Edwards M. W., “ Polyimides of pyromellitic acid” U. S. patent, (1955), 2710853.
[69] C. L. Chiang, C. M. Ma, J. Polym. Sci. Polym Chem, 41, (2003), p.1371 .
[70] J. Preston, J. Polym. Sci. B. Polym Physi, 9, (1971), p.230.
[71] S. B. Tian, G. Xu, 36, (1994), p.1555-1558.
[72] C. Genies, R. Mercier, B. Sillion, R. Petiaud, N. Cornet, G. Gebel, M. Pineri, Polymer. 42, (2000), p5097-5105.
[73] Z. Hu, Y. Yin, S. Chen,.O. Yamada, K. Tanaka, H. Kita, K.-I. Okamoto, J. Polym. Sci. A. Polym. Chem., 44, (2006), p2862–2872.
[74] Y. Yin, Y. Suto, T. Sakabe, S. Chen, S. Hayashi, T. Mishima, O. Yamada, K. Tanaka, H. Kita, K-I. Okamoto, Macromolecules , 39, (2006), p.1189-1198.
[75] W. Jang, C. Lee, S. Sundar, Y. G. Shul, H. Han, Polym. Degrad. Stab., 90, (2005), p.431-440.
[76] E. Vallejo, G. Pourcelly, C. Gavach, R. Mercier, M. Pineri, J. Membr. Sci. 160, (1999), p127–137.
[77] C. Genies, R. Mercier, B. Sillion, N. Cornet, G. Gebel, M. Pineri, Polymer 42, (2001), p.359–373.
[78] X. Ye, H. Bai, W.S. W. Ho, J. Membr. Sci., 279, (2006), p570–577.
[80] B. R. Einsla Y. S. Kim, M. A. Hickner, Y. T. Hong, M. L. Hill, B. S. Pivovar, J. E. McGratha, J. Membr. Sci., 255, (2005), p141–148.
[81] N. Asano, K.Miyatake, MA. Watanabe, J. Poly. Sci., Part A, 44, (2006), p2744–2748.
[82] Y. Yin, J. Fang, T. Watari, K. Tanaka, H. Kita, K.I. Okamoto, J . Mater . Chem. , 14, ( 2004) , p.1062 – 1070
[83] J. Fang, X. Guo, S. Harada, T. Watari, K. Tanaka, H. Kita, K-I. Okamoto, Macromolecules, 35,(2002), p.9022-9028.
[84] X. Guo, J. Fang, T. Watari, S. Harada, K. Tanaka, H. Kita, K.I. Okamoto, Macromolecules, (2002), p.6707-6713.
[85] J. Seo, J. Jeon, Y. G. Shul, H. Han,. J. Polym. Sci. B. Polym. Phys., 38, (2000), p.2714–2720.
[86] X. Ye , H. Bai, W. S. Winston Ho, J. Membr. Sci., 279, (2006), p.570–577.
[87] Y. Yin, O. Yamada, Y. Tkashi, T. Mishima, K. Tanaka , H. Kita, K-I. Okaomoto, J. Polym. Scie. A: Polym. Chem., 43, (2004), p.1545–1553.
[88] S. Jongchul, J. Wonbong, L. Seokkyu, H. Han, Polym. Degrad. Stab. 93, (2007), p.298-304.
[89] S. J. Yang, W. Jang, C. Lee, Y. G. Shul, H. Han,, J. Polym. Sci. B: Poly. Physi., 43, (2005), p.1455–1464.
[90] C. Lee, S. Sundar, J. Kwon, H. Han, J. Polym. Sci. A: Poly. Chem. 42, (2004), p3621–3630.
[91] K. Miyatake, H. Zhou, H. Uchida, M. Watanabe, (2002), p.368-369.
[92] Y. Yin, O. Yamada, Y., Tkashi, T. Mishima, K. Tanaka , H. Kita, K.I. Okaomoto, Polymer, 44, (2003), p.4509–4518.
[93] H. B. Park, C. H. Lee, J. Y. Sohn, Y. M. Lee , B. D. Freeman, H. J. Kim, J. Membr. Sci. 285, (2006), p432-443.
[94] M. G. Voronkov, V. P. Mileshkevich, Y. A. Yuzhev-skil, The Siloxane Bond, Consultants Burwan New York and London, (1978), p159.
[95] A. K. Clair, T. L. St Clair, E. N. Smith, Polym. Prepr., 17, (1976), p.359,.
[96] T. L. Clair St, D. A. Yamaki, , Polyimides: Synthesis, characterization, and Applications, Plenum, New York, 1, (1984), 99.
[97] H. Kim, J. Jang, Polymer, 41, (2000), p.6553-6561.
[98] Homma, M. Yamaguchi, Y. Kutsuzawa, N. Otsuka, Thin Solid Films , 340, (1999), p.237-241.
[99] H. R. Kricheldorf, V. Linzer, Polymer, 36, (1995), p1893-1902.
[100] N. Furukawa, Y. Yamada, Y. Kimura, High. Perform. Polym., 9, (1997), p.17.
[101] Y. Okuawa, T. Yoshida, T. Suzuki, H. Nakayoshi, New Type LOC Adhesive Tapes, IEE, (1994), p.570-574.
[102] J. Abajo, J. G. Campa, ” in Advances In Polymer Science:Progress In Polyimide Chemistry”, H. R. Kricheldorf, Editor, (1999), p.26, Springer, Berlin.
[103] D. S. Kim, B. Liu, M. D. Guiver, Polymer, 47, (2006), p.7871-7880.
[104] Z. Hu, Y. Yin, S. Chen, O. Yamada, K. Tanaka, H. Kita, K.-I. Okamoto, J. Polym. Sci. A: Poly. Chem, 44, (2006), p.2862–2872.
[105] D. H. Jung, S. Y. Cho, D. H. Peck, D. R. Shin, J. S. Kim, J. Pow. Sour., 106, (2002), p.173-177.
[106] T. Uragami, K. Okazaki, H. Matsugi, T. Miyata, Macromolecules, 35, (2002), p.9156-9163.
[107] Yan Yin, Shunsuke Hayashi, Otoo Yamada, Hidetoshi Kita, Ken-Ichi Okamoto, Macromol. Rapid Commun. 26, (2005), p696–700.
[108] R. Thangamuthu, C. W. Lin, J. Power Sources, 161, (2006), p.160.
[109] R. Thangamuthu, C. W. Lin*, J. power sources,150C ,(2005), p.48.
[110] R. Thangamuthu, C. W. Lin, Solid state ionics, 176, (2005), p.531.
[111] H. C. Liou, P. S. Ho, B. Tung, J. Appl. Poly. Sci., 70, (1998), p.261–272
[112] S. J. Yang, C. Lee, W. Jang, J. Kwon, S. Sundar, H. Han, J. Polym. Sci. B: Poly. Phys., 42, (2004), p.4293–4302
[113] Lee C. H. and Wang Y. Z., , J. Poly. Sci. Part A: Poly. Chem., 2008, 46, p.2262–2276.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top