跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 21:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳彥丰
研究生(外文):Yan-Feng Chen
論文名稱:以不同材料修飾幾丁聚醣奈米粒子加速血液凝固及其性質探討
論文名稱(外文):Influences of CS NP coated with various activators on accelerating the formations of blood clots and their properties.
指導教授:鍾次文
指導教授(外文):Tze-Wen Chung
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:80
中文關鍵詞:纖維蛋白原二磷酸腺止血幾丁聚醣奈米粒子石英晶體微天平
外文關鍵詞:FibrinogenChitosannanopaticlesADPhemostasisQuartz crystal microbalance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以離子凝膠法製備幾丁聚醣(chitosan)奈米粒子,且表面披覆二磷酸腺? (ADP)及纖維蛋白原(Fibrinogen),探討幾丁聚醣奈米粒子對血液凝固的影響,並了解其血塊形成的的特性。
由實驗結果顯示,製作出之幾丁聚醣奈米粒子粒徑大小在於240~330nm之間,且在凝血實驗方面,血液中加入0.05wt%的奈米粒子,可使血液凝固的時間明顯縮短,凝血時間相較於的未添加奈米粒子的血液NP為63.63±3.09%、ANPx0.25為55.25±2.09%、ANPx1.00為48.28±6.21%、FNP為63.19±4.69%。
血塊質地分析結果得知添加奈米粒子會使得血塊(clot)的硬度(hardness)降低,反之其黏附性(adhesiveness)會增加,並由掃描式電子顯微鏡(SEM)發現,添加奈米粒子的血塊,其血液凝固形成的纖維蛋白(fibrin)較未放粒子的血塊中短且少。
因此,本研究提供一個可以促進血液凝固的方式,未來應可有效應用於生醫材料領域,達到快速止血的目的。
The experiment prepares chitosan nanoparticles by ionic gelation method, and later uses ADP and Fibrinogen respectively to cover the surface of the chitosan nanoparticles to create another two types of nanoparticles, ANP and FNP. The thesis is to explore the effects of chitosan nanoparticles on the formations of blood clots and to understand the properties of clots formation.
According to the experimental results, the particle size of the chitosan nanoparticles is among 240~330nm. Also, in coagulation experiments the clotting time decreases obviously when adding 0.05wt% nanoparticles into blood. Compared to the blood without nanoparticles, the data of experiment group is as followed: NP is 63.63±3.09%, ANPx0.25 is 55.25±2.09%, ANPx1.00 is 48.28±6.21%, and FNP is 63.19±4.69%.
According to the texture profile analysis, adding nanoparticles will decrease the hardness of clots but increase its adhesiveness on the other hand. Furthermore, observation from Scanning Electron Microscopy (SEM) shows that fibrin formed by coagulation in the clots with nanoparticles is shorter and less than which in the clots without nanoparticles.
Consequently, the research provides a method to improve coagulation. This method should be able to be effectively applied to biomaterial field to reach the goal of fast hemostasis in the future.
目錄
中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章、緒論 1
§ 1-1 血液的組成 1
§ 1-2 止血生理學 3
§ 1-2-1 初步止血(Primary Hemostasis) 3
§ 1-2-2 繼發止血(Secondary Hemostasis) 7
§ 1-3 凝血之基本理論 8
§ 1-4 幾丁聚醣 (chitosan) 10
§ 1-5 二磷酸腺? (ADP)及纖維蛋白原 (Fibrinogen) 12
§ 1-6 石英晶體微天平 (Quartz crystal microbalance, QCM) 14
§ 1-6-1 石英晶體微天平( QCM )簡介 14
§ 1-6-2 石英晶體微天平( QCM )感測原理 15
§ 1-7 血液動力黏度參數 19
§ 1-7-1 黏度 19
§ 1-7-2 影響血液黏度的因素 19
§ 1-8質地分析 (Texture profile analysis) 21
§ 1-9 研究動機與目的 23
第二章、實驗設備與方法 24
§ 2-1 實驗藥品 24
§ 2-2 實驗儀器 25
§ 2-3 實驗流程架構 26
§ 2-4 材料製備與分析 27
§ 2-4-1 奈米粒子製作 27
§ 2-4-2 奈米粒子之特性分析 29
§ 2-5 生醫凝血應用測試 34
§ 2-5-1 QCM量測 35
§ 2-5-2 動態錄影血液凝固測量 36
§ 2-5-3凝血過程黏度測試 37
§ 2-5-4血塊力學測試 38
§ 2-5-5血塊形態鑑定 39
第三章、結果與討論 40
§ 3-1 奈米粒子特性分析 41
§ 3-1-1 粒徑分析(Particle size)及界面電位(Zeta potential) 41
§ 3-1-2 傅立葉轉換紅外線光譜儀(FTIR)檢測 42
§ 3-1-3 穿透式電子顯微鏡(TEM)觀察 44
§ 3-2 生醫凝血應用測試 46
§ 3-2-1 QCM量測 46
§ 3-2-2 凝血過程黏度測試 52
§ 3-2-3 血塊力學測試 55
§ 3-2-4 血塊掃描式電子顯微鏡(SEM)觀察 58
第四章、結論 61
參考文獻 62
附錄(一) 65
附錄(二) 66
附錄(三) 67
1.何敏夫 血液學. (2002).
2.EA., B. The chemistry of blood coagulation: a summary by Paul Morawitz (1905). Thromb Haemost 37, 376-379 (1977).
3.Su, C.-H. et al. Fungal mycelia as the source of chitin and polysaccharides and their applications as skin substitutes. Biomaterials 18, 1169-1174 (1997).
4.Onishi, H. & Machida, Y. Biodegradation and distribution of water-soluble chitosan in mice. Biomaterials 20, 175-182 (1999).
5.Rao, S.B. & Sharma, C.P. Use of chitosan as a biomaterial: Studies on its safety and hemostatic potential. Journal of Biomedical Materials Research 34, 21-28 (1997).
6.Thomas, H.F. & et al. Non-classical processes in surface hemostasis: mechanisms for the poly- N -acetyl glucosamine-induced alteration of red blood cell morphology and surface prothrombogenicity. Biomedical Materials 3, 015009 (2008).
7.Muzzarelli, R.A.A. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydrate Polymers 76, 167-182 (2009).
8.Xie H, K.Y., Shaffer BS. Chitosan hemostatic dressing for renal parenchymal wound sealing in a porcine model: implications for laparoscopic partial nephrectomy technique. Journal of the Society of Laparoendoscopic Surgeons 12, 18-24 (2008).
9.Gu, R. et al. The performance of a fly-larva shell-derived chitosan sponge as an absorbable surgical hemostatic agent. Biomaterials 31, 1270-1277 (2010).
10.Xie, H., Khajanchee, Y.S., Teach, J.S. & Shaffer, B.S. Use of a chitosan-based hemostatic dressing in laparoscopic partial nephrectomy. Journal of Biomedical Materials Research Part B: Applied Biomaterials 85B, 267-271 (2008).
11.Kunapuli, S.P. Multiple P2 receptor subtypes on platelets: a new interpretation of their function. Trends in Pharmacological Sciences 19, 391-394 (1998).
12.MacKenzie, A.B., Mahaut-Smith, M.P. & Sage, S.O. Activation of Receptor-operated Cation Channels via P Not P Purinoceptors in Human Platelets. Journal of Biological Chemistry 271, 2879-2881 (1996).
13.Daniel, J.L. et al. Molecular Basis for ADP-induced Platelet Activation. Journal of Biological Chemistry 273, 2024-2029 (1998).
14.Lyman, A.B.D.J. The interaction of plasma proteins with polymers. Journal of Biomedical Materials Research 14, 393-403 (1980).
15.Wagner, C. et al. Analysis of GPIIb/IIIa receptor number by quantification of 7E3 binding to human platelets. Blood 88, 907-914 (1996).
16.Curie, P., et al. D?臀eloppement, par pression, de l''?翼ectricit? polaire dans les cristaux h?聱i?墂res ? faces inclin?縹s. Comptes Rendus 91, 294-295 (1880).
17.O''Sullivan, C.K. & Guilbault, G.G. Commercial quartz crystal microbalances - theory and applications. Biosensors and Bioelectronics 14, 663-670 (1999).
18.Sauerbrey, G. Verwendung von Schwingquarzen zur W?讚ung d?刡ner Schichten und zur Mikrow?讚ung. Zeitschrift f?卣 Physik A Hadrons and Nuclei 155, 206-222 (1959).
19.White, F.M. Viscous Fluid Flow. McGraw-Hill Mechanical Engineering (2005).
20.Bruckenstein, S., and M Shay Experimental aspects of use of the quartz crystal microbalance in solution. Electrochimica Acta 30, 1295-1300 (1985).
21.Kanazawa, K., & Gordon, J. Frequency of a quartz microbalance in contact with liquid. Analytical Chemistry 57, 1770-1771 (1985).
22.Szczesniak, A.S. Classification of Textural Characteristicsa. Journal of Food Science 28, 385-389 (1963).
23.Bourne, M.C. Food texture and viscosity. Academic Press, 44-177 (1982).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊