跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/03 10:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳小惠
研究生(外文):WU,HSIAO-HUI
論文名稱:TFT-LCD熱風多層爐內玻璃受熱均溫性之探討
論文名稱(外文):Temperature Uniformity of Panel in TFT-LCD Oven
指導教授:王啟昌王啟昌引用關係
指導教授(外文):WANG,CHI-CHANG
口試委員:黃敏男黃騰毅
口試日期:2019-07-02
學位類別:碩士
校院名稱:逢甲大學
系所名稱:機械與電腦輔助工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:33
中文關鍵詞:熱風多層爐均溫性多孔板固化率
外文關鍵詞:TFT-LCD ovenTemperature uniformityPerforated platesPorosity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
由於光電產業之平面顯示器對於TFT-LCD(Thin Film Transistor Liquid Crystal Display)面板的需求逐漸增加,自2001年起成為明星產業並興起了投資熱潮。近年來台灣製造液晶螢幕的產業外在競爭加劇,面臨技術提升的南韓以及逐漸崛起的中國相互競爭,改善製程技術以提升生產效率及產出良率,從基礎科學研究中開發出關鍵技術,讓台灣保持永久的競爭力。
本文以數值模擬方法探討玻璃於二維熱風多層爐中的受熱均溫性,均溫性會影響到玻璃面板產出的良率,由初步模擬結果觀察到流速會影響玻璃溫升的速率,嘗試將多孔板置於玻璃面板前的區域,透過不同孔隙率之多孔板調整各層入口速度,比較結果顯示加入多孔板後,各層的速度之標準差由2.34m/s降低至0.31m/s表示各層速度差值降低,且玻璃加熱所需時間由600多秒縮短至300秒。

In this paper, the numerical simulation method is used to investigate the temperature uniformity of glass in a two-dimensional TFT-LCD oven model. The temperature uniformity affects the processing quality of the glass panel. However, the velocity of air between two glass panel is the crucial factor. Placing the perforated plate with different porosity in front of the glass panel to adjust the inlet velocity of each layer. The simulation results show that the standard deviation of the speed is reduced from 2.34m/s to 0.31m/s after the addition of the perforated plate. In addition, heating time is shortened from 600 seconds to 300 seconds.
誌 謝 IV
摘 要 V
Abstract VI
目 錄 VII
圖目錄 VIII
表目錄 VIII
符號表 IX
第一章 緒論 1
1.1 前言 1
1.2 產業現況說明 2
1.3 文獻回顧 5
1.4 論文架構 8
第二章 模擬分析之物理模型與數學架構 10
2.1 物理模型簡化與基本假設 10
2.2 熱風多層爐熱分析數學架構 12
第三章 熱風多層爐數值模擬結果與討論 15
3.1爐內裝置對流場影響之探討 15
3.2 盲板及多孔板對於玻璃升溫與均溫性之影響 21
第四章 總結與未來展望 28
4.1 總結 28
4.2 未來展望 29
參考文獻 30
[1]U. Kokolj, L. Škerget, J. Ravnik, A numerical model of the shortbread baking process in a forced convection oven, Applied Thermal Engineering, Vol. 111, pp. 1304-1311, 2017.
[2]Michele Pinelli, Alessio Suman, Thermal and fluid dynamic analysis of an air-forced convection rotary bread-baking oven by means of an experimental and numerical approach, Applied Thermal Engineering, Vol. 117, pp. 330-342, 2017.
[3]Edgar Ramirez-Laboreo, Carlos Sagues, Sergio Llorente, Dynamic heat and mass transfer model of an electric oven for energy analysis, Applied Thermal Engineering, Vol. 93, pp. 683-691, 2016.
[4]Pieter Verboven, Nico Scheerlinck, Josse De Baerdemaeker, Bart M. Nicolai, Computational Fuid dynamics modelling and validation of the temperature distribution in a forced convection oven, Journal of Food Engineering, Vol. 43, pp. 61-73, 2000.
[5]M.N. Sabry, Analytic modeling of laminar forced convection in a circular duct for arbitrary boundary conditions and inlet temperature profile, International Journal of Heat and Mass Transfer, Vol. 112, pp. 933-939, 2017.
[6]M. Lucchi, M. Lorenzini, Control-oriented low-order models for the transient analysis of a domestic electric oven in natural convective mode, Applied Thermal Engineering, Vol. 147, pp. 438-449, 2019.
[7]F.Burlon, E.Tiberi, D.Micheli, R.Furlanetto, M.Simonato, Transient model of a Professional Oven, Energy Procedia, Vol. 126, pp. 2-9, 2017.
[8]Balazs Illes, Measuring heat transfer coefficient in convection reflow ovens, Measurement, Vol. 43, pp. 1134-1141, 2010.
[9]Balazs Illes, Distribution of the heat transfer coefficient in convection reflow oven, Applied Thermal Engineering, Vol. 30, pp. 1523-1530, 2010.
[10]Balazs Illes, Investigating direction characteristics of the heat transfer coefficient in forced convection reflow oven, Experimental Thermal and Fluid Science, Vol. 33, pp. 642-650, 2009.
[11]Si-Min Huang, Laminar flow and heat transfer in plate membrane channels: Effects of the deformation heights, International Journal of Thermal Sciences, Vol. 109, pp. 44-53, 2016.
[12]RezaBehrou, RamRanjan, James K.Guest, Adaptive topology optimization for incompressible laminar flow problems with mass flow constraints, Computer Methods in Applied Mechanics and Engineering, Vol. 346, pp. 612-641, 2019.
[13]Sin-Yeob Kim, Dong-Ho Shin, Chan-Soo Kim, Goon-Cherl Park, Hyoung Kyu Cho, Flow visualization experiment in a two-side wall heated rectangular duct for turbulence model assessment in natural convection heat transfer, Nuclear Engineering and Design, Vol. 341, pp. 284-296, 2019.
[14]Pinker, R. A., Herbert, M. V., Pressure loss associated with compressible flow through square-mesh wire gauzes, J. Mech. Eng. Sci., 9(1), pp. 11-23, 1967.
[15] P.E. Roach, The Generation of Nearly Isotropic Turbulence by Means of Grids, Int. J. Heat and Fluid Flow, Vol. 8, pp. 82–92, 1986.
[16] S. Malavasi, G. Messa, U. Fratino, A. Pagano, On the pressure losses through perforated plates, Flow Meas. Instrum., Vol. 28, pp. 57-66, 2012.
[17] QuanLi, Xuxu Sun, Xing Wang, Zhi Zhang, Shouxiang Lu, Changjian Wang, Geometric influence of perforated plate onpremixed hydrogen-air flame propagation, Int J Hydrogen Energy, Vol. 43, pp. 21572-21581, 2018.
[18] J. Wang, P. Rubini, Q. Qin, Application of a porous media model for the acoustic damping of perforated plate absorbers, Appl Acoust, Vol. 127, pp. 324-335, 2017.
[19] Stefano Malavasi, G.V. Messa, U. Fratino, A. Pagano, On cavitation occurrence in perforated plates, Flow Meas. Instrum., Vol. 41, pp. 129-139, 2015.
[20] Mladen A.Tomić, Sadoon K.Ayed, Žana Ž.Stevanović, Petar S.Đekić, Predrag M.Živković, Mića V.Vukić, Perforated plate convective heat transfer analysis, International Journal of Thermal Sciences, Vol. 124, pp. 300-306, 2018.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top