跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.119) 您好!臺灣時間:2025/11/24 14:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝祈樂
研究生(外文):Chi-Le Hsieh
論文名稱:植基於最大距離可分離碼的秘密影像分享機制
論文名稱(外文):Secret Image Sharing Schemes by Using Maximum Distance Separable Codes
指導教授:楊慶隆楊慶隆引用關係
指導教授(外文):Ching-Nung Yang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
論文頁數:29
中文關鍵詞:秘密分享秘密影像分享里德-所羅門(RS)碼最大距離可分離(MDS)碼
外文關鍵詞:Secret sharingsecret image sharingReed Solomon (RS) codemaximum distance separable (MDS) code
相關次數:
  • 被引用被引用:0
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
透過網際網路的通訊以及社群網路,數位內容資料快速地傳播。因此,保護數位多媒體內容的安全成為重要的議題。秘密影像分享是結合了密碼與影像處理。所謂的秘密影像分享機制是將秘密影像分成多份子影像,分散給參與者保管。結合特定組合的子影像,就能解回秘密影像。若不是特定的子影像組合,則秘密影像無法回復。最常使用的秘密影像分享是 (k, n)-門檻式秘密影像分享機制,其中k≤n, k為解回秘密的門檻值,n為子影像的數目。k張以上的子影像可解回秘密影像,若是少於k張子影像則不能解回。
秘密影像分享機制的最重要一個分支是植基於Shamir的 (k, n) 秘密分享,將秘密像素嵌入至 (k-1) 次方多項式中的所有係數。代入影像的ID,可以產生n張子影像。由於多項式的k個係數都用來藏秘密像素,因此子影像大小可以縮小為秘密影像的1/k倍。此時秘密影像需要先隨機排列,才能產生雜亂的子影像。如果我們不排列秘密影像,子影像會有殘存的秘密影像。
本論文「植基於最大距離可分離碼的秘密影像分享機制」,我們採用里德所羅門碼 (一種最大距離可分離碼)來建置一種新型的(k, n)-秘密影像分享機制。我們的秘密影像分享機制可解決子影像上有殘存的秘密影像問題,而且不需要重新排列秘密影像。同時我們的機制跟基於Shamir秘密分享的(k, n)-秘密影像分享機制一樣,子影像大小也可以縮小為秘密影像的1/k倍。由於使用的里德所羅門碼是使用伽羅瓦代數體 GF(2^8),所以解回的秘密影像沒有失真。
Through Internet and social network, digital multimedia can be rapidly delivered and shared in network. Therefore, protecting digital image is an important issue. Secret image sharing (SIS) combines methods and techniques from cryptography and image processing. A SIS scheme shares a secret message into shadow images, which are referred to as shadows, in the way that if shadows are combined in a specific way, the secret image can be recovered. SIS scheme is usually implemented as a threshold (k, n)-SIS scheme, where k≤n, that divides a secret image into n shadows. By collecting any k shadows, we can reconstruct the secret image, but use of (k1) or fewer shadows will not gain any information about the secret image.
The most important category of (k, n)-SIS scheme is based on Shamir’s (k, n) secret sharing. In (k, n)-SIS scheme, we embed secret pixels into all coefficients in (k1)-degree polynomial to share the secret image and meantime reduced shadow size to 1/k of secret image size. However, this polynomial-based (k, n)-SIS scheme needs permuting the pixels of secret image. If we do not permute secret image first, there will be a problem of remanent secret image on shadows.
In this thesis, we adopt Reed Solomon code, a maximum distance separable code, to propose a (k, n)-SIS scheme. Our (k, n)-SIS scheme solves the problem of remanent secret image on shadows, and does not need permuting secret image. Meantime, we can reduce the shadow size like polynomial-based (k, n)-SIS that reduces shadow size to 1/k of secret image size. Since the Reed Solomon code is based on Galois Field GF(2^8), our reconstructed image is distortion-less.

Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 3
1.3 Contribution of the Thesis 4
1.4 Organization of the Thesis 4
Chapter 2 Preliminaries 5
2.1 Polynomial-based (k, n)-SIS Scheme 5
2.2 Reed-Solomon Code 6
Chapter 3 The Proposed SIS Schemes 9
3.1 Motivation 9
3.2 The Proposed (k, n)-SIS Scheme Using RS code 12
Chapter 4 Experimental Results and Discussion 18
4.1 Experimental Results 18
4.2 Discussion 20
Chapter 5 Conclusion and Future Work 22
References 23
[CHAN08] C.C. Chang, Y.P. Hsieh, and C.H. Lin, “Sharing secrets in stego images with authentication,” Pattern Recognition, vol. 41, pp. 3130-3137, 2008.
[CIMA06] S. Cimato, R. De Prisco, and A. De Santis, “Probabilistic visual cryptography schemes,” The Computer Journal, vol. 49, pp. 97-107, 2006.
[CIMA11] S. Cimato, and C.N. Yang, Visual cryptography and secret image sharing, CRC Press, Taylor & Francis, 2011.
[ESLA11] Z. Eslami, S.H. Razzaghi, and J. Zarepour Ahmadabadi, “Secret image sharing with authentication-chaining and dynamic embedding,” Journal of Systems and Software, vol. 84, pp. 803-809, 2011.
[FANG10] L.G. Fang, Y.M. Li, and B. Yu, “Multi-secret visual cryptography based on reversed images,” Information and Computer, vol. 4, pp. 195-198, 2010.
[FENG08] J.B. Feng, H.C. Wu, C.S, Tsai, Y.F. Chang, and Y.P. Chu, “Visual secret sharing for multiple secrets,” Pattern Recognition, vol. 41, pp. 3572–3581, 2008.
[GORE61] D. Gorenstein and N. Zierler, “A Class of Cyclic Linear Error-Correcting Codes in Symbols,” Journal of the Society for Industrial and Applied Mathematics, vol. 9, pp. 107-214, 1961.
[ITO99] R. ITO, H. Kuwakado, and H. Tanaka, “Image size invariant visual cryptography,” IEICE Trans. on Fund. of Elect. Comm. and Comp. Sci., vol. E82-A, pp. 2172-2177, 1999.
[LEE11] K.H. Lee and P.L. Chiu, “A high contrast and capacity efficient visual cryptography scheme for the encryption of multiple secret images,” Optics Communications, vol. 284, pp. 2730-2741, 2011.
[LI12] P. Li, P.J. Ma, X.H. Su, and C.N. Yang, “Improvements of a two-in-one image secret sharing scheme based on gray mixing model,” Journal of Visual Communication and Image Representation, vol. 23, pp. 441-453, 2012.
[LIN04A] C.C. Lin, and W.H. Tsai, “Secret image sharing with steganography and authentication,” Journal of Systems and Software, vol. 73, pp. 405-414, 2004.
[LIN04B] S. Lin, and D.J. Costello, Error control coding, Pearson Prentice Hall, 2004.
[LIN07] S.J. Lin, and J.C. Lin, “VCPSS: A two-in-one two-decoding-options image sharing method combining visual cryptography (VC) and polynomial-style sharing (PSS) approaches,” Pattern Recognition, vol. 40, pp. 3652-3666, 2007.
[LIN10] Y.Y. Lin, and R.Z. Wang, “Scalable secret image sharing with smaller shadow image,” IEEE Signal Processing Letters, vol. 17, pp. 316-319, 2010.
[NOAR94] M. Naor and A. Shamir, “Visual cryptography,” Advances in Cryptology- EUROCRYPT’94, pp. 1-12, 1994.
[REED60] I.S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” Journal of the Society for Industrial and Applied Mathematics, vol. 8, pp. 300-304, 1960.
[SHAM79] A. Shamir, “How to share a secret,” Communications of the Association for Computing Machinery, vol. 22, pp. 612-613, 1979.
[SHYU07] S.J. Shyu, S.Y. Huang, Y.K. Lee, R.Z. Wang, and K. Chen, “Sharing multiple secrets in visual cryptography,” Pattern Recognition, vol. 40, pp. 3633-3651, 2007.
[THIE02] C.C. Thien, J.C. Lin, “Secret image sharing,” Computer & Graphics, vol. 26, pp. 765-770, 2002.
[THIE03] C.C. Thien and J.C. Lin, “An image-sharing method with user-friendly shadow images,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, pp.1161-1169, 2003.
[TSAI07] D.S. Tsai, T.H. Chen, and G. Horng, “A cheating prevention scheme for binary visual cryptography with homogeneous secret images,” Pattern Recognition, vol. 40, pp. 2356-2366, 2007.
[VERH97] E.R. Verheul and H.C.A. Van Tilborg, “Constructions and properties of k out of n visual secret sharing scheme,” Designs, Codes and Cryptography, vol. 1, pp. 179–196, 1997.
[WANG06] R.Z. Wang and C.H. Su, “Secret image sharing with smaller shadow images,” Pattern Recognition Letters , vol. 26, pp. 551-555, 2006.
[WANG07] R.Z. Wang, and S.J. Shyu, “Scalable secret image sharing,” Signal Processing: Image Communication, vol. 22, pp. 363-373, 2007.
[WANG11] D. Wang, F. Yi, and X. Li, “Probabilistic visual secret sharing schemes for grey-scale images and color images,” Information Sciences, vol. 181, pp. 2189-2208, 2011.
[WU05] H.C. Wu and C.C. Chang, “Sharing visual multi-secrets using circle shares,” Computer Standards & Interfaces, vol. 28, pp. 123-135, 2005.
[WU11] C.C. Wu, S.J. Kao, and M.S. Hwang, “A high quality image sharing with steganography and adaptive authentication scheme,” Journal of Systems and Software, vol. 84, pp. 2196-2207, 2011.
[YANG04] C.N. Yang, “New Visual Secret Sharing Schemes Using Probabilistic Method,” Pattern Recognition Letters, vol. 25, pp. 481-494, 2004.
[YANG07] C.N. Yang, T.S. Chen, K.H. Yu and C.C. Wang, “Improvements of image sharing with steganography and authentication,” Journal of Systems and software, vol. 80, pp. 1070-1076, 2007.
[YANG08A] C.N. Yang, C.C. Wang, and T.S. Chen, “Visual cryptography schemes with reversing,” The Computer Journal, vol. 51, pp. 710-722, 2008.
[YANG08B] C.N. Yang and T.S. Chen, “Colored visual cryptography scheme based on additive color mixing,” Pattern Recognition, vol. 41, pp. 3114–3129, 2008.
[YANG09] C.N. Yang and C.B. Ciou, “A comment on sharing secrets in stego images with authentication,” Pattern Recognition, vol. 42, pp. 615-1619, 2009.
[YANG10A] C.N. Yang and C.B. Ciou, “Image secret sharing method with two-decoding-options: lossless recovery and previewing capability,” Image and Vision Computing, vol. 28, pp. 1600-1610, 2010.
[YANG10B] C.N. Yang, and S.M. Huang, “Constructions and properties of k out of n scalable secret image sharing,” Optics Communications, vol. 283, pp. 1750-1762, 2010.
[YANG11] C.N. Yang, and Y.Y. Chu, “A general (k, n) scalable secret image sharing scheme with the smooth scalability,” Journal of System and Software, vol. 84, pp. 1726-1733, 2011.
[YANG12] C.N. Yang, J.F. Ouyang, and L. Harn, “Steganography and authentication in image sharing without parity bits,” Optics Communications, vol. 285, pp. 1725-1735, 2012.
[YANG13] P. Li, C.N. Yang, C.C. Wu, Q. Kong, and Y. Ma, “Essential secret image sharing scheme with different importance of shadows,” Journal of Visual Communication and Image Representation, vol. 24, pp. 1106-1114, 2013 .
[YANG14] C.N. Yang, W.J Chang, S.R. Cai and C.Y. Lin, “Secret image sharing without keeping permutation key,” International Conference on Information and Communications Technologies, pp. 513-519, 2014.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊