跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 19:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林俊豪
研究生(外文):LIN,JUN-HAO
論文名稱:TiNiSi三元系形狀記憶合金微弧氧化之研究
論文名稱(外文):A Study of Micro-Arc Oxidation of TiNiSi Ternary Shape Memory Alloys
指導教授:謝世峯歐士輔
指導教授(外文):HSIEH,SHIH-FENGOU,SHIH-FU
口試委員:謝世峯歐士輔鄭宗杰蔡明欽
口試委員(外文):HSIEH,SHIH-FENGOU,SHIH-FUCHENG,TSUNG-CHIEHTSAI,MING-CHIN
口試日期:2018-07-25
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:106
中文關鍵詞:形狀記憶合金微弧氧化表面特性
外文關鍵詞:Shape meory alloyMicro-arc oxidationSurface properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本研目的為對Ti50Ni49Si1合金於電解液磷酸中進行定電壓微弧氧化處理,討論微弧氧化電壓 (80V、120V及150V)對氧化膜微結構與特性(表面粗糙、親水性、及氧化膜附著力)之影響。Ti50Ni49Si1合金晶格常數為a=2.8878Å、b=4.13208 Å、c=4.6240 Å、β=96.487˚,常溫下為麻田散體(B19’)結構,相轉換溫度Ms為72.76℃與Mf為48.83℃以及As為81.27℃與Af為112.19℃,經微弧氧化合金相變態溫度隨電壓上升而下降。提高微弧氧化電壓造成合金表面孔徑、氧化膜厚度、粗糙度及磷含量上升,同時,微弧氧化電壓上升造成氧化膜孔隙率與水滴接觸角下降,且合金形狀回復率下降。微弧氧化膜為非晶結構,微米級孔洞與奈米級孔洞各分部在氧化膜外部與內部,微弧氧化電壓愈高微米級孔洞尺寸增加。氧化膜拉伸附著力超過ISO13779規範(15MPa),且氧化膜無剝落,拉伸與彎曲試驗指出微弧氧化電壓愈高氧化膜附著性愈差。
Ti50Ni49Si1 shape memory alloy (SMA) surfaces were modified by micro-arc oxidation in phosphoric acid by applying constant voltages. The microstrusture and oxide-film properties (surface roughness, wettability, and film adhesion) were investigated. The results indicated that the pore size, film thickness, and P content increased with applied voltage. The porosity of surface, water contact angle, and shape recovery rate decreased with applied voltage. The micro-arcoxidized film, comprising Ti oxide, Ni oxide, and phosphate compounds, exhibited a glassy amorphous structure. Many micropores and nanopores distributed in the oxide film. The adhesive strengths of all the oxide films exceeded the requirements of ISO 13779 and no fracture of the oxide films occurred. The adhesion of the oxide film decreased with increasing applied voltage according to tensile and bending tests.
目錄
摘要 i
Abstract ii
圖目錄 vi
表目錄 ix
符號說明 x
第一章 前言 1
第二章 文獻回顧 2
2.1 形狀記憶合金簡介 2
2.2 熱彈性型麻田散體變態 2
2.3 形狀記憶效應介紹 5
2.4 擬彈性效應(Pseudoelastic Effect, PE) 10
2.5 TiNi合金的結構與相變態 15
2.6 第三元素的添加對TiNi合金變態行為的探討 19
2.7 微弧氧化 21
2.8 微弧氧化技術之應用 29
第三章 實驗方法 30
3.1合金的配製 30
3.2合金之熔煉 31
3.3微弧氧化 34
3.4 DSC量測 36
3.5 維克氏硬度量測 37
3.6 形狀記憶效應 37
3.7 表面粗糙度量測 39
3.8 SEM及EDS成份分析 40
3.9 XRD 晶體繞射分析 41
3.10 FIB TEM試片製作 41
3.11 XPS分析 42
3.12 TEM 晶體結構分析 42
3.13 水滴接觸角量測 43
3.14 附著力量測 44
3.15 恆電位儀 45
第四章 結果與討論 46
4.1 TiNiSi合金相變態行為探討 46
4.2維克氏硬度量測 49
4.3 TiNiSi合金之形狀記憶效應 50
4.4 TiNiSi合金之微弧氧化 54
4.4.1 經微弧氧化後電壓對氧化層孔洞的影響 54
4.4.2 經微弧氧化後電壓對氧化層表面粗糙度的影響 54
4.4.3 經微弧氧化後電壓對氧化層表面孔隙率的影響 54
4.4.4 經微弧氧化後電壓對氧化層厚度的影響 55
4.4.5 微弧氧化層生長機制 62
4.5 經微弧氧化後氧化層之特性 63
4.5.1 微弧氧化層EDS分析 63
4.5.2 XRD繞射分析 67
4.5.3 XPS氧化層分析 70
4.5.4 FIB製備橫截面TEM試片 74
4.5.5 TEM分析 75
4.5.5 水滴接觸角 78
4.5.6 附著力測試 79
4.5.7 電化學極化曲線測試 87
結論 88
參考文獻 89
個人簡歷 93


[1]L. C. Chang, & T. A. Read (1951). Trans. AIME. 47,189.
[2]K.H. Rateitschak, & H.F. Wolf (1995). Color Atlas of Dental Medicine. Thieme Medical Publishers. 11-24.
[3]J.B. Park. (1979) Biomaterials, An Introduction. Plenum Press, New York. 4-5.
[4]M.S. Block, J.N. Kent, & L.S. Guerra (1997) Implants in 80 dentistry. 45-62.
[5]R. Arrabal, E. Matykina, T. Hashimoto, P. Skeldon, G.E. Thompson Characterization of AC PEO coatings on magnesium alloys Surf. Coat.Technol., 203 (2009), pp. 2207–2220.
[6]Zong Wei Niu et al., (2013), Key Engineering Materials, 591, 61 Influence of Process Parameters on Surface Morphology of Ceramic Layer Prepared by Micro Arc Oxidation on Aluminum Alloy 6061 Key Engineering Materials Vol 591 (2014) pp. 61-65.
[7]Yerokhin AL, Nie X, Leyland A, Matthews A, Dowey SJ. Plasma electrolysis for surface engineering. Surface and Coatings Technology, 122: 73-93, 1999.F. X. Michael, W. S. John, FreshPatents, Erosion and wear resistant protective structures for turbine engine components, 2005, #20050207896.
[8]C.M.Wayman,J.Metal.32(1980)129.
[9]K. Otsuka and K. Shimizu, Int.met.Rev. ,31(1986)93.
[10]W. J. Buehler, J. W. Gilfrich and R. C. Wiley,J.Apply.Phys.,34 (1963).
[11]L. Mc. D. Scketky, Scientific American ,241(1979)74.
[12]L. Delaet,R. V. krishnan, H. Tas and H. Warlimont, J Mater. Sci., 9 (1974) 1521.
[13]P. Jardline ,K. H. G.Ashbee and M. J. Bassett, J. Mater. Sci., 23(1988) 4273.
[14]T. Tadaki, K. Otsuka and K. Shimizu , Ann.Rev.Mater.Sci.,18 (1988) 25.
[15]J. Ortin and A. Planes, Acta Metall.,36(1988)1873.
[16]R. J. Salzbrenner and M. Cohen, Acta Metall.,27(1979)739.103.
[17]H. C. Tong and C. M. Wayman , Acta Metall.,22(1974)887.
[18]L. Kaufman and M. Cohen , Prog.Met.Phys., 7(Pergamon Press,Oxford,1957)169.
[19]D. P. Dunne and C.M.Wayman,Met.Trans.,4(1973)147.
[20]C.M.Wayman,Trans,JIM.(Supplement),17(1976)159.
[21]G. B. Olson and Cohen, Script Met.,9(1975)1274.
[22]T. Saburi, S. Nenno, in: Proc. Int. Conf. On Solid to Solid Phase Transformation,Asm,Metals Park,Ohio,(1982)1455.
[23]T. Saburi, S. Nenno and C. M. Wayman, ICOMAT-79(1979)619.
[24]L. Delaey and J. Thienel ; in: Shape Memory Effect in Alloys,(J.Perkins,ed),Plenum Press ,New York,1975,p341.
[25]T. A. Schoder and C. M. Wayman , Scripta Met.,11(1977)225.
[26]M. Nishida and T.Honma,Scripta Met.,18(1984)138,1293,1299.
[27]M. Nishida and T.Honma,ICOMAT-82,43(1982)C4-225.
[28]T.Honma;ICOMAT-86 (1986),709.
[29]T. Honma ;Proc.Guilin Symp. Of Shape Memory Alloys, SMA 86 Guilin,China(1986),83.
[30]C.M.Wayman and K.Shimizu;Met.Sci.J.6(1972),175.
[31]盧錫全 國立台灣大學材料科學與工程學研究所 碩士論文,1992。
[32]K. Otsuke, Proc. Int. Conf. On Solid in Solid Phase Transformation, TMs-AIME, Pittsburgh, Pa (USA) (1981)1267.
[33]K.Otsuka and K.Shimizu,Metals Forum,4(1981)142.
[34]K. Otsuka and C.M. Wayman, in: Review on the Deformation Behavior of Materials,(P.Feltham ed),Israel(1977)1267.
[35]K. Otsuke, C. M. Wayman, K. Nakai, H. Sakamoto and K.Shimizu, Acta Met.,24(1976)207.
[36]J. W. Chistian, Met. Trans.,13 (1982) 509.
[37]S. K. Wu and C. M. Wayman ,Acta Met.,37(1989) 2805.
[38]K. Otsuka, X. Ren, Intermetellics, 7,1999,511.
[39]TB Massalki, H. Okamoto, PR. Subramanian, L. Kacprzak. Editor.
[40]S. Miyazaki, T. Imai, Y. Igo and K. Otsuke; Met. Trans.17A(1986)115.
[41]Mercier, K. N. Melton, 1971, Acta Met., 27, pp.137-144.
[42]R. R Hasiguti and K. Iwasaki; J. Appl. Phys 39 (1968) 2182.
[43]楊政修 逢甲大學材料科學研究所 碩士論文 (2002)。
[44]K. Otsuka, S. Sawamura and K. Shimizu; Phys. Stat. sol. (a)5(1971)457.
[45]K. M. Knowls and K. A. Smith, Acta Mater., 29 (1981) 101.
[46]O. Mastsumoto, S. Miyazaki, K. Ostuka and H. Tamura, Acta Mater.,35 (1987 ) 2137.
[47]C. M. Wayman, I.Cornelis, Scripta, Metall.,6,1972,115.
[48]D. P. Dautovich, G. R. Purdy, Can. Mateall. ,6,1972,115.
[49]D. Bradley, J. Acoust, Soc. Am. ,37,1965,700.
[50]H. C. ling, R. Kaplow, Met. Trans.11,1980,A77.
[51]F. E. Wang, B. F. Desavage and W. I. Buehler, J. Appl. Phys.,39 (1968)2166.
[52]D. P. Dautovich and G. R. Purdy, Can. Metal.Quart, 4 (1965) 129.
[53]G. D. Sandrock, A. J. Perkin and R. F. Hechemann, Met.Trans.,2 (1971)2769.
[54]Mercier, K. N. Melton, 1971, Acta Met., 27, pp.137-144.
[55]K. H. Eckelmeyer, Scripta Mater.,10(1976) 677.
[56]E. Goo and R. Siinclair, Acta Met. ,33 (1985) 1717.
[57]C. M. Hwang , M. Meichle, M. B. Salamon and C. M. Wayman, Phys.Mag.,A,47(1983)31.
[58]J. E. Hanlon, S. R. Butler and R. J. Wasilewski, Trans. Metall. Soc.AIME, 239(1967)1323.
[59]J. E. Hanlon, S. R. Butler and R. J. Wasilewski, Trans. Metall. Soc.AIME, 239(1967)1323.
[60]T. Saburi, T. Tastsumi and S. Nenno, J. de Phyique (Supp.) 43 (1982)C4-261.
[61]T. Tadaki, Y. Nakata and K. Shimizu, Trans. JIM.,28 (1987) 883.
[62]S. Miyazaki, Y. Igo and K. Otsuka, Acta Met., 34 (1986) 275.
[63]M. Nishida and C. M. Wayman, Metallography, 21 (1988) 275.
[64]H. S. Lin, S. K. Wu, T. S. Chou and H. P. Kuo. Acta Metall. Mater. ,39(1991) 2069.
[65]T. Honma, M. Matsumoto,Y. Shugo and I. Yamazaki, Proc. 4th intern .Conf.(1980)145570. E. Botts, V. Krasnkopf, J. Phys. Chem. 31 (1927) 1404.
[66]J.L. Delplancke, R. Winand, Electrochim. Acta 33 (11) (1988) 1551-1559.
[67]T. Shibata, Y.C. Zhu, Corros. Sci. 37 (1995) 133-144.
[68]M.P. Pedeferri, B. Del Curto, P. Pedeferri, Proceedings of Passivity-9,Paris 2005.
[69]M.V. Diamanti, M.P. Pedeferri, Corros. Sci. 49 (2007) 939-948.
[70]J.A. Bard, in: J. Straumanis (Eds.), Encyclopedia of electrochermistryof the elements, Titanium, Vol.5, New York, 1976 pp.309-395.
[71]J.L. Delplancke, M. Degrez, A. Fontana, R. Winand, Surf. Technol. 16(1982) 153-162.
[72]S. Van Gils, P. Mast, E. Stijns, H. Terryn, Surf. Coat. Technol. 185(2004) 303-310.
[73]S. Meyer, R. Gorges, G. Kreisel, Thin Solid Films 450 (2004) 276-2281.
[74]G.P. Wirtz, S.D. Brown, W.M. Kriven, Mater. Manufact. Process. 6 (1) (1991) 87.
[75]Xuanyong Liua, b ,Paul K. Chub,Chuanxian Dinga,” Surface modification of titanium, titanium alloys, and related materials for biomedical applications” Materials Science and Engineering: R, 47(2004) 49–121.
[76]A.L. Yerokhin, X. Nie, . Leyland, A. Matthew, S.J. Dowey, “Plasma electrolysis for surface engineering”, Surface and Coatings Technology 122(1999), 73-93.
[77]J. Zahavi, J. Yahalom, Electrochim. Acta, 16 (1971) 89-99.
[78]J. Yahalom, J. Zahavi, Electrochim. Acta, 15 (1970) 1429-1435.
[79]H. Habazaki, M. Uozumi, H. Konno, K. Shimizu, P. Skeldon, G.E. Thompson, “Crystallization of anodic titania on titanium and its alloys,” Corrosion Science, 45(2003), 2063-2073.
[80]J. Lausmma, “Surface spectroscopic characterization of titanium implant materials,” Journal of Electron Spectroscopy and Related phenomena, 81(1996), 343-361.
[81]T. Shibata and Y.C. Zhu, “The effect of film formation condition on the structure and composition of anodic oxide film on titanium,” Corrosion Science, 37(1995), 253-270.
[82]J.W. Schultze, M.M. Lohengel, “Stability, reactivity and breakdown of passive films. Problem of recent and future research,” E;ectrochimica Acta, 45(2000), 2499-2513.
[83]J.D. Bobyn, P.M. Pilliar, H.U. Cameron, G.C. Weatherly, Clin. Orthop. Rel. Res. 150 (1980) 263-270.
[84]R.M. Pilliar, Clin. Orthop. l76 (l983) 42-51.
[85]劉建宏,微弧氧化與水熱法於鈦板之氫氧基磷酸鈣披覆,國立台灣大學材料科學與工程學研究所 碩士論文,(2005)。
[86]A.L. Yerokhin, L.O. Snizhko , N.L. Gurevina , A. Leyland , A. Pilkington , A. Matthews, Surface and Coatings Technology 177-178 (2004) 779–783.
[87]G. Sundararajan, L. Rama Krishna, Surf. Coat. Technol. 167 (2003) 269-277.
[88]L. Savarino, D. Granchi, G. Ciapetti, E. Cenni, A Nardi Pantoli, C.A. Veronesi, Ion release in protients with Metal-on-Metal Hip Bearings in Total Joint Replacement:A comparision wi th Metal-on-Polyethe Bearings, J. Biomed. Mater. Res. (Appl. Biomater.), 63 (2002) 467-474.
[89]J. Pan, C. Leygraf, D. Thierry, and A.M. Ektessabi. Corrosion resistance for biomaterial applicat ions of TiO2 films deposited on titanium and stainless steel by ion-beam-asisted sputtering, J. Biomed. Mater. Res., 35(1997) 309-318.
[90]Y Kudoh, M Tokonami, S M iyazaki, K Otsuka . Crystal structure of the martensite in Ti-49.2 at.%Ni alloy analyzed by the single crystal X-ray diffraction method. Acta Metallurgica.vol 33, lssue 11,(1985) 2049-2056.
[91]R.H. Bricknell, K.H. Melton, O. Mercier Metall. The Structure of NiTiCu Shape Memory Alloys.Trans., 10A (1979), p. 693.
[92]SHI Xing-ling, WANG Qing-liang, WANG Fu-shun, and GE Shi-rong. Effects of electrolytic concentration on properties of micro-arc film on Ti6Al4V alloy. (2009) 0220-0224.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top