|
[1]J.-M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group: World Scientific, 2011, pp. 171-179. [2]G. N. Lewis and F. G. Keyes, THE POTENTIAL OF THE LITHIUM ELECTRODE, Journal of the American Chemical Society, vol. 35, no. 4, pp. 340-344, 1913. [3]X. B. Cheng, R. Zhang, C. Z. Zhao, F. Wei, J. G. Zhang, and Q. Zhang, A review of solid electrolyte interphases on lithium metal anode, Advanced Science, vol. 3, no. 3, p. 1500213, 2016. [4]M. D. Tikekar, S. Choudhury, Z. Tu, and L. A. Archer, Design principles for electrolytes and interfaces for stable lithium-metal batteries, Nature Energy, vol. 1, no. 9, p. 16114, 2016. [5]M. N. Office, Doubling Battery Power of Consumer Electronics, in MIT News Office ed, 2016. [6]工業技術研究院, 鋰電池材料分析發展, ed, 2009. [7]L.-I. B. Market, (By Material Type: Cathode, Electrolytic Solution, Anode, and Others; By Industry Vertical: Electronics, Automotive, Industrial, and Others; By Geography: North America, Europe, Asia-Pacific, and Row) Global Scenario, Market Size, Outlook, Trend and Forecast, , ed, 2017, pp. 2015-2024. [8]N. Nitta, F. Wu, J. T. Lee, and G. Yushin, Li-ion battery materials: present and future, Materials today, vol. 18, no. 5, pp. 252-264, 2015. [9]A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries, Journal of the electrochemical society, vol. 144, no. 4, pp. 1188-1194, 1997. [10]T. Satyavani, A. S. Kumar, and P. S. Rao, Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: a review, Engineering Science and Technology, an International Journal, vol. 19, no. 1, pp. 178-188, 2016. [11]L.-H. Hu, F.-Y. Wu, C.-T. Lin, A. N. Khlobystov, and L.-J. Li, Graphene-modified LiFePO 4 cathode for lithium ion battery beyond theoretical capacity, Nature communications, vol. 4, p. 1687, 2013. [12]Y. Xia, M. Yoshio, and H. Noguchi, Improved electrochemical performance of LiFePO4 by increasing its specific surface area, Electrochimica acta, vol. 52, no. 1, pp. 240-245, 2006. [13]S.-Y. Chung, J. T. Bloking, and Y.-M. Chiang, Electronically conductive phospho-olivines as lithium storage electrodes, Nature materials, vol. 1, no. 2, p. 123, 2002. [14]C. Julien, A. Mauger, K. Zaghib, and H. Groult, Comparative issues of cathode materials for Li-ion batteries, Inorganics, vol. 2, no. 1, pp. 132-154, 2014. [15]F. Schipper, E. M. Erickson, C. Erk, J.-Y. Shin, F. F. Chesneau, and D. Aurbach, Recent advances and remaining challenges for lithium ion battery cathodes I. Nickel-Rich, LiNixCoyMnzO2, Journal of The Electrochemical Society, vol. 164, no. 1, pp. A6220-A6228, 2017. [16]Y.-M. Choi, S.-I. Pyun, and S.-I. Moon, Effects of cation mixing on the electrochemical lithium intercalation reaction into porous Li1− δNi1− yCoyO2 electrodes, Solid State Ionics, vol. 89, no. 1-2, pp. 43-52, 1996. [17]Z. Chen et al., Hierarchical porous LiNi 1/3 Co 1/3 Mn 1/3 O 2 nano-/micro spherical cathode material: Minimized cation mixing and improved Li+ mobility for enhanced electrochemical performance, Scientific reports, vol. 6, p. 25771, 2016. [18]J. C. Bachman et al., Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction, Chemical reviews, vol. 116, no. 1, pp. 140-162, 2015. [19]H. Y. P. Hong, Crystal structures and crystal chemistry in the system Na/sub 1+ x/Zr/sub 2/Si/sub x/P/sub 3-x/O/sub 12, Mater. Res. Bull.;(United States), vol. 11, no. 2, 1976. [20]J. Goodenough, H.-P. Hong, and J. Kafalas, Fast Na+-ion transport in skeleton structures, Materials Research Bulletin, vol. 11, no. 2, pp. 203-220, 1976. [21]F. Sudreau, D. Petit, and J. Boilot, Dimorphism, phase transitions, and transport properties in LiZr2 (PO4) 3, Journal of Solid State Chemistry, vol. 83, no. 1, pp. 78-90, 1989. [22]H. Aono, N. Imanaka, and G.-y. Adachi, High Li+ conducting ceramics, Accounts of chemical research, vol. 27, no. 9, pp. 265-270, 1994. [23]H. Aono, E. Sugimoto, Y. Sadaaka, N. Imanaka, and G. Adachi, Ionic conductivity of the lithium titanium phosphate (Li/sub 1+ x/M/sub x/Ti/sub 2-x/(PO/sub 4/)/sub 3/, M= Al, Sc, Y, and La) systems, Journal of the Electrochemical Society, vol. 136, no. 2, p. 590, 1989. [24]H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, and G. y. Adachi, Ionic conductivity of solid electrolytes based on lithium titanium phosphate, Journal of the electrochemical society, vol. 137, no. 4, pp. 1023-1027, 1990. [25]H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, and G.-y. Adachi, Ionic conductivity and sinterability of lithium titanium phosphate system, Solid State Ionics, vol. 40, pp. 38-42, 1990. [26]工業技術研究院, 無機固態電解質材料(上), ed, 2018. [27]B. Wu et al., The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries, Energy & Environmental Science, vol. 11, no. 7, pp. 1803-1810, 2018. [28]J. Feng, L. Lu, and M. Lai, Lithium storage capability of lithium ion conductor Li1. 5Al0. 5Ge1. 5 (PO4) 3, Journal of Alloys and Compounds, vol. 501, no. 2, pp. 255-258, 2010. [29]X. He, Y. Zhu, and Y. Mo, Origin of fast ion diffusion in super-ionic conductors, Nature communications, vol. 8, p. 15893, 2017. [30]H. Kasper, Series of rare earth garnets Ln3+ 3M2Li+ 3O12 (M= Te, W), Inorganic Chemistry, vol. 8, no. 4, pp. 1000-1002, 1969. [31]V. Thangadurai, H. Kaack, and W. J. Weppner, Novel fast lithium ion conduction in garnet‐type Li5La3M2O12 (M= Nb, Ta), Journal of the American Ceramic Society, vol. 86, no. 3, pp. 437-440, 2003. [32]V. Thangadurai and W. Weppner, Effect of sintering on the ionic conductivity of garnet-related structure Li5La3Nb2O12 and In-and K-doped Li5La3Nb2O12, Journal of Solid State Chemistry, vol. 179, no. 4, pp. 974-984, 2006. [33]R. Murugan, V. Thangadurai, and W. Weppner, Fast lithium ion conduction in garnet‐type Li7La3Zr2O12, Angewandte Chemie International Edition, vol. 46, no. 41, pp. 7778-7781, 2007. [34]S. Ohta, T. Kobayashi, and T. Asaoka, High lithium ionic conductivity in the garnet-type oxide Li7− X La3 (Zr2− X, NbX) O12 (X= 0–2), Journal of Power Sources, vol. 196, no. 6, pp. 3342-3345, 2011. [35]C. Bernuy-Lopez, W. Manalastas Jr, J. M. Lopez del Amo, A. Aguadero, F. Aguesse, and J. A. Kilner, Atmosphere controlled processing of Ga-substituted garnets for high Li-ion conductivity ceramics, Chemistry of materials, vol. 26, no. 12, pp. 3610-3617, 2014. [36]J. Awaka, N. Kijima, H. Hayakawa, and J. Akimoto, Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure, Journal of solid state chemistry, vol. 182, no. 8, pp. 2046-2052, 2009. [37]Y. Inaguma et al., High ionic conductivity in lithium lanthanum titanate, Solid State Communications, vol. 86, no. 10, pp. 689-693, 1993. [38]Y. Inaguma, L. Chen, M. Itoh, and T. Nakamura, Candidate compounds with perovskite structure for high lithium ionic conductivity, Solid State Ionics, vol. 70, pp. 196-202, 1994. [39]A. Mei et al., Role of amorphous boundary layer in enhancing ionic conductivity of lithium–lanthanum–titanate electrolyte, Electrochimica Acta, vol. 55, no. 8, pp. 2958-2963, 2010. [40]V. Thangadurai, A. Shukla, and J. Gopalakrishnan, LiSr1. 65 (large hallow square bullet) 0.35 B1. 3 B'1.7 O9 (B= Ti, Zr; B'= Nb, Ta): New Lithium Ion Conductors Based on the Perovskite Structure, Chemistry of Materials, vol. 11, no. 3, pp. 835-839, 1999. [41]C. Chen, S. Xie, E. Sperling, A. Yang, G. Henriksen, and K. Amine, Stable lithium-ion conducting perovskite lithium–strontium–tantalum–zirconium–oxide system, Solid State Ionics, vol. 167, no. 3-4, pp. 263-272, 2004. [42]V. Thangadurai, S. Adams, and W. Weppner, Crystal structure revision and identification of Li+-ion migration pathways in the garnet-like Li5La3M2O12 (M= Nb, Ta) oxides, Chemistry of materials, vol. 16, no. 16, pp. 2998-3006, 2004. [43]H.-P. Hong, Crystal structure and ionic conductivity of Li14Zn (GeO4) 4 and other new Li+ superionic conductors, Materials Research Bulletin, vol. 13, no. 2, pp. 117-124, 1978. [44]J. K. a. A. R. West, New Li+ ion conductors in the system, Li4GeO4-Li3VO4, Materials Research Bulletin. [45]Y. W. Hu, I. Raistrick, and R. A. Huggins, Ionic conductivity of lithium orthosilicate—lithium phosphate solid solutions, Journal of the Electrochemical society, vol. 124, no. 8, pp. 1240-1242, 1977. [46]S. Song, J. Lu, F. Zheng, H. M. Duong, and L. Lu, A facile strategy to achieve high conduction and excellent chemical stability of lithium solid electrolytes, RSC Advances, 10.1039/C4RA11287C vol. 5, no. 9, pp. 6588-6594, 2015. [47]N. Kamaya et al., A lithium superionic conductor, Nature materials, vol. 10, no. 9, p. 682, 2011. [48]L. Fan, S. Wei, S. Li, Q. Li, and Y. Lu, Recent progress of the solid‐state electrolytes for high‐energy metal‐based batteries, Advanced Energy Materials, vol. 8, no. 11, p. 1702657, 2018. [49]L. Chen, Y. Li, S.-P. Li, L.-Z. Fan, C.-W. Nan, and J. B. Goodenough, PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer to “polymer-in-ceramic, Nano Energy, vol. 46, pp. 176-184, 2018. [50]H. Huo, Y. Chen, J. Luo, X. Yang, X. Guo, and X. Sun, Rational Design of Hierarchical “Ceramic‐in‐Polymer and “Polymer‐in‐Ceramic Electrolytes for Dendrite‐Free Solid‐State Batteries, Advanced Energy Materials, p. 1804004, 2019. [51]C. Wang et al., Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries, ACS applied materials & interfaces, vol. 9, no. 15, pp. 13694-13702, 2017. [52]D. Li, L. Chen, T. Wang, and L.-Z. Fan, 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries, ACS applied materials & interfaces, vol. 10, no. 8, pp. 7069-7078, 2018. [53]W. Zha, F. Chen, D. Yang, Q. Shen, and L. Zhang, High-performance Li6. 4La3Zr1. 4Ta0. 6O12/Poly (ethylene oxide)/Succinonitrile composite electrolyte for solid-state lithium batteries, Journal of Power Sources, vol. 397, pp. 87-94, 2018. [54]W. Zhou, S. Wang, Y. Li, S. Xin, A. Manthiram, and J. B. Goodenough, Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte, Journal of the American Chemical Society, vol. 138, no. 30, pp. 9385-9388, 2016. [55]B. Liu et al., Garnet solid electrolyte protected Li-metal batteries, ACS applied materials & interfaces, vol. 9, no. 22, pp. 18809-18815, 2017. [56]秦家偉, 含親水基共聚高分子之合成鑑定與其於鋰電池正極黏著劑之應用, 2018. [57]Bruker, Quantitative Mechanical Property Mapping at the Nanoscale with PeakForce QNM. [58]T. Yang, J. Zheng, Q. Cheng, Y.-Y. Hu, and C. K. Chan, Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology, ACS applied materials & interfaces, vol. 9, no. 26, pp. 21773-21780, 2017. [59]J. Wolfenstine, J. L. Allen, J. Sakamoto, D. J. Siegel, and H. Choe, Mechanical behavior of Li-ion-conducting crystalline oxide-based solid electrolytes: A brief review, Ionics, vol. 24, no. 5, pp. 1271-1276, 2018. [60]Z. Wan et al., Low Resistance–Integrated All‐Solid‐State Battery Achieved by Li7La3Zr2O12 Nanowire Upgrading Polyethylene Oxide (PEO) Composite Electrolyte and PEO Cathode Binder, Advanced Functional Materials, vol. 29, no. 1, p. 1805301, 2019. [61]H. Li et al., A sandwich structure polymer/polymer-ceramics/polymer gel electrolytes for the safe, stable cycling of lithium metal batteries, Journal of membrane science, vol. 555, pp. 169-176, 2018. [62]Y. Tominaga, K. Yamazaki, and V. Nanthana, Effect of anions on lithium ion conduction in poly (ethylene carbonate)-based polymer electrolytes, Journal of the Electrochemical Society, vol. 162, no. 2, pp. A3133-A3136, 2015. [63]K. K. Fu et al., Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface, Science Advances, vol. 3, no. 4, p. e1601659, 2017. [64]Z. He, L. Chen, B. Zhang, Y. Liu, and L.-Z. Fan, Flexible poly (ethylene carbonate)/garnet composite solid electrolyte reinforced by poly (vinylidene fluoride-hexafluoropropylene) for lithium metal batteries, Journal of Power Sources, vol. 392, pp. 232-238, 2018.
|