|
Amiri, M., & Jensen, R. (2016). Missing data imputation using fuzzy-rough methods. Neurocomputing, 205(12), 152-164 Batista, G. E. A. P. A., & Monard, M. C. (2003). An analysis of four missing data treatment methods for supervised learning. Applied Artificial Intelligence, 17(5-6), 519-533. Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE transactions on information theory, 13(1), 21-27. Donders, R., Heijden, G. J. M. G. v. d., Stijnen, T., & Moons, K. G. M. (2006). Review: a gentle introduction to imputation of missing values. Journal of clinical epidemiology, 59(10), 1087-1091. Enders, C. K. (2017). Multiple imputation as a flexible tool for missing data handling in clinical research. Behaviour Research and Therapy, 98, 4-18. Galán, C. O., Lasheras, F. S., Juez, F. J. d. C., & Sánchez, A. B. (2017). Missing data imputation of questionnaires by means of genetic algorithms with different fitness functions. Journal of Computational and Applied Mathematics, 311, 704–717. Garciarena, U., & Santana, R. (2017). An extensive analysis of the interaction between missing data types, imputation methods, and supervised classifiers. Expert Systems With Applications, 89, 52-65. Lee, Y.-S., Hs, C.-C., Weng, S.-F., Lin, H.-J., Wang, J.-J., Su, S.-B., . . . How-Ran Guo. (2015). Cancer Incidence in Physicians: A Taiwan National Population-based Cohort Study. Medicine, 94. Mühlenbruch, K., Kuxhaus, O., Giuseppe, R. d., Boeing, H., Weikert, C., & Schulze, M. B. (2017). Multiple imputation was a valid approach to estimate absolute risk from a prediction model based on caseecohort data. Journal of clinical epidemiology, 84, 130-141. Mitra, S., & Pal, S. K. (1995). Fuzzy multi-layer perceptron, inferencing and rule generation. IEEE Transactions on Neural Networks, 6(1), 51-63. Ondeck, N. T., Fu, M. C., Skrip, L. A., McLynn, R. P., Su, E. P., & Grauer, J. N. (2017). Treatments of Missing Values in Large National Data Affects Conclusions: the Impact of Multiple Imputation on Arthroplasty Research. The Journal of Arthroplasty, 33(3), 661-667 Pedro J. García-Laencina , Pedro Henriques Abreu, Miguel Henriques Abreu, & Afonoso, N. (2015). Missing data imputation on the 5-year survival prediction of breast cancer patients with unknown discrete values. Computers in Biology and Medicine, 59, 125-133. Pombo, N., Rebelo, P., Araújo, P., & Viana, J. (2016). Design and evaluation of a decision support system for pain management based on data imputation and statistical models. Measurement, 83, 480-489. Quinlan, J. R. (1993). C4. 5: Programming for machine learning.San Francisco, CA, Morgan Kauffmann. Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3), 581-592. Sarkar, M. (2007). Fuzzy-rough nearest neighbor algorithms in classification. Fuzzy Sets and Systems, 158, 2134-2152. doi:10.1016/j.fss.2007.04.023 Sheu, Y.-J. (2017). Enhanced k Nearest Neighbors Method for Imputation in Financial Distress Application. (unpublished Master's thesis ), National Yunlin University of Science & Technology, Siegel, R., Ma, J., Zou, Z., & Jemal, A. (2014). Cancer statistics, 2014. CA:A Cancer Journal for Clinicians, 64, 9-29. Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Altman, R. B. (2001). Missing value estimation methods for DNA microarrays. Bioinformatics, 17(6), 520-525.
|