|
[1]Chadha, N.; Silakari, O., Indoles as therapeutics of interest in medicinal chemistry: Bird's eye view. Eur. J. Med. Chem. 2017, 134, 159-184. [2]Wikipedia contributors, Indole. https://en.wikipedia.org/w/index.php?title=Indole&oldid=894912923 (accessed 19 June 2019 04:04 UTC). [3](a) Sevrain, C. M.; Berchel, M.; Couthon, H.; Jaffres, P. A., Phosphonic acid: preparation and applications. Beilstein J. Org. Chem. 2017, 13, 2186-2213; (b) Lassalas, P.; Gay, B.; Lasfargeas, C.; James, M. J.; Tran, V.; Vijayendran, K. G.; Brunden, K. R.; Kozlowski, M. C.; Thomas, C. J.; Smith, A. B.; Huryn, D. M.; Ballatore, C., Structure Property Relationships of Carboxylic Acid Isosteres. J. Med. Chem. 2016, 59 (7), 3183-3203; (c) Ballatore, C.; Huryn, D. M.; Smith, A. B., Carboxylic Acid (Bio)Isosteres in Drug Design. ChemMedChem 2013, 8 (3), 385-395. [4]Kerr, D. I. B.; Ong, J.; Prager, R. H.; Gynther, B. D.; Curtis, D. R., Phaclofen: a peripheral and central baclofen antagonist. Brain Res. 1987, 405 (1), 150-154. [5]Froestl, W.; Mickel, S. J.; Hall, R. G.; von Sprecher, G.; Strub, D.; Baumann, P. A.; Brugger, F.; Gentsch, C.; Jaekel, J., Phosphinic Acid Analogs of GABA. 1. New Potent and Selective GABAB Agonists. J. Med. Chem. 1995, 38 (17), 3297-3312. [6]Watkins, J. C.; Korgsgaard-Larsen, P.; Honoré, T., Structure-activity relationships in the development of excitatory ammo acid receptor agonists and competitive antagonists. Trends Pharmacol. Sci. 1990, 11 (1), 25-33. [7]Alexandre, F.-R.; Amador, A.; Bot, S.; Caillet, C.; Convard, T.; Jakubik, J.; Musiu, C.; Poddesu, B.; Vargiu, L.; Liuzzi, M.; Roland, A.; Seifer, M.; Standring, D.; Storer, R.; Dousson, C. B., Synthesis and Biological Evaluation of Aryl-phospho-indole as Novel HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors. J. Med. Chem. 2011, 54 (1), 392-395. [8](a) Dousson, C.; Alexandre, F.-R.; Amador, A.; Bonaric, S.; Bot, S.; Caillet, C.; Convard, T.; da Costa, D.; Lioure, M.-P.; Roland, A.; Rosinovsky, E.; Maldonado, S.; Parsy, C.; Trochet, C.; Storer, R.; Stewart, A.; Wang, J.; Mayes, B. A.; Musiu, C.; Poddesu, B.; Vargiu, L.; Liuzzi, M.; Moussa, A.; Jakubik, J.; Hubbard, L.; Seifer, M.; Standring, D., Discovery of the Aryl-phospho-indole IDX899, a Highly Potent Anti-HIV Non-nucleoside Reverse Transcriptase Inhibitor. J. Med. Chem. 2016, 59 (5), 1891-1898; (b) Zhou, X.-J.; Garner, R. C.; Nicholson, S.; Kissling, C. J.; Mayers, D., Microdose pharmacokinetics of IDX899 and IDX989, candidate HIV-1 non-nucleoside reverse transcriptase inhibitors, following oral and intravenous administration in healthy male subjects. J. Clin. Pharmacol. 2009, 49 (12), 1408-1416. [9]Bisseret, P.; Thielges, S.; Bourg, S.; Miethke, M.; Marahiel, M. A.; Eustache, J., Synthesis of a 2-indolylphosphonamide derivative with inhibitory activity against yersiniabactin biosynthesis. Tetrahedron Lett. 2007, 48 (35), 6080-6083. [10]Wikipedia contributors, Yersiniabactin. https://en.wikipedia.org/w/index.php?title=Yersiniabactin&oldid=895730577 (accessed 19 June 2019 03:56 UTC). [11]Thielges, S.; Meddah, E.; Bisseret, P.; Eustache, J., New synthesis of benzo[b]furan and indole derivatives from 1,1-dibromo-1-alkenes using a tandem Pd-assisted cyclization–coupling reaction. Tetrahedron Lett. 2004, 45 (5), 907-910. [12](a) Wang, H.; Li, X.; Wu, F.; Wan, B., Direct Oxidative C-P Bond Formation of Indoles with Dialkyl Phosphites. Synthesis 2012, 44 (06), 941-945; (b) Su, F.; Lin, W.; Zhu, P.; He, D.; Lin, J.; Zhang, H.-J.; Wen, T.-B., Regioselective Direct C3-Phosphorylation of N-Sulfonylindoles under Mild Oxidative Conditions. Adv. Synth. Catal. 2017, 359 (6), 947-951; (c) Shaikh, R. S.; Ghosh, I.; König, B., Direct C−H Phosphonylation of Electron-Rich Arenes and Heteroarenes by Visible-Light Photoredox Catalysis. Chem. Eur. J. 2017, 23 (50), 12120-12124; (d) Sun, W.-B.; Xue, J.-F.; Zhang, G.-Y.; Zeng, R.-S.; An, L.-T.; Zhang, P.-Z.; Zou, J.-P., Silver-Catalyzed Direct Csp2-H Phosphorylation of Indoles Leading to Phosphoindoles. Adv. Synth. Catal. 2016, 358 (11), 1753-1758; (e) Yadav, M.; Dara, S.; Saikam, V.; Kumar, M.; Aithagani, S. K.; Paul, S.; Vishwakarma, R. A.; Singh, P. P., Regioselective Oxidative C–H Phosphonation of Imidazo[1,2-a]pyridines and Related Heteroarenes Mediated by Manganese(III) Acetate. Eur. J. Org. Chem. 2015, 2015 (29), 6526-6533; (f) Zhou, A.-X.; Mao, L.-L.; Wang, G.-W.; Yang, S.-D., A unique copper-catalyzed cross-coupling reaction by hydrogen (H2) removal for the stereoselective synthesis of 3-phosphoindoles. Chem. Commun. 2014, 50 (62), 8529-8532. [13]Kondoh, A.; Yorimitsu, H.; Oshima, K., Synthesis of 2-Indolylphosphines by Palladium-Catalyzed Annulation of 1-Alkynylphosphine Sulfides with 2-Iodoanilines. Org. Lett. 2010, 12 (7), 1476-1479. [14]Qiaolan Yang, C. W., Jianhui Zhou, Guoxue He, Hong Liu and Yu Zhou, Highly selective C–H bond activation of N-arylbenzimidamide and divergent couplings with diazophosphonate compounds: a catalyst-controlled selective synthetic strategy for 3-phosphorylindoles and 4-phosphorylisoquinolines. Org. Chem. Front. 2019, 393-398 [15]Wikipedia contributors, Diazo. https://en.wikipedia.org/w/index.php?title=Diazo&oldid=899971648 (accessed 19 June 2019 03:47 UTC). [16]Lien, H.-Y., A new method to synthesize alpha-diazoalkylphosphonates with Seyferth-Gilbert reagent under a mild environment. [17]Nicolle, S. M.; Moody, C. J., Potassium N-Iodo p-Toluenesulfonamide (TsNIK, Iodamine-T): A New Reagent for the Oxidation of Hydrazones to Diazo Compounds. Chem. Eur. J. 2014, 20 (15), 4420-4425. [18]Pramanik, M. M. D.; Chaturvedi, A. K.; Rastogi, N., Substituent controlled reactivity switch: selective synthesis of α-diazoalkylphosphonates or vinylphosphonates via nucleophilic substitution of alkyl bromides with Bestmann–Ohira reagent. Chem. Commun. 2014, 50 (85), 12896-12898. [19]Pramanik, M. M. D.; Rastogi, N., Synthesis of α-diazo-β-keto esters, phosphonates and sulfones via acylbenzotriazole-mediated acylation of a diazomethyl anion. Org. Biomol. Chem. 2016, 14 (4), 1239-1243. [20]Seyferth, D.; Marmor, R. S.; Hilbert, P., Reactions of dimethylphosphono-substituted diazoalkanes. (MeO)2P(O)CR transfer to olefins and 1,3-dipolar additions of (MeO)2P(O)C(N2)R. J. Org. Chem. 1971, 36 (10), 1379-1386. [21]Gilbert, J. C.; Weerasooriya, U., Diazoethenes: their attempted synthesis from aldehydes and aromatic ketones by way of the Horner-Emmons modification of the Wittig reaction. A facile synthesis of alkynes. J. Org. Chem. 1982, 47 (10), 1837-1845. [22]Dickson, H. D.; Smith, S. C.; Hinkle, K. W., A convenient scalable one-pot conversion of esters and Weinreb amides to terminal alkynes. Tetrahedron Lett. 2004, 45 (29), 5597-5599. [23]Muruganantham, R.; Mobin, S. M.; Namboothiri, I. N. N., Base-Mediated Reaction of the Bestmann−Ohira Reagent with Nitroalkenes for the Regioselective Synthesis of Phosphonylpyrazoles. Org. Lett. 2007, 9 (6), 1125-1128. [24]Graphical Abstracts. Synth. Commun. 2004, 34 (18), ix-xvi. [25](a) Wikipedia contributors, Carbene. https://en.wikipedia.org/w/index.php?title=Carbene&oldid=901904337 (accessed 19 June 2019 04:04 UTC); (b) Takasu, N., Diazo-mediated Metal Carbenoid Chemistry ~Recent Developments of Variety Bond Formation Methods~. http://www.f.u-tokyo.ac.jp/~kanai/seminar/pdf/Lit_Takasu_D2.pdf. [26](a) Rowlands, G., Carbenes and Carbene Complexes II. http://www.massey.ac.nz/~gjrowlan/adv/lct7.pdf; (b) Rowlands, G., Carbenes and Carbene Complexes I. http://www.massey.ac.nz/~gjrowlan/adv/lct6.pdf; (c) Wikipedia contributors, Transition metal carbene complex. https://en.wikipedia.org/w/index.php?title=Transition_metal_carbene_complex&oldid=896876149 (accessed 19 June 2019 04:05 UTC). [27]Davies, H. M.; Beckwith, R. E., Catalytic enantioselective C-H activation by means of metal-carbenoid-induced C-H insertion. Chem. Rev. 2003, 103 (8), 2861-904. [28]Zhu, S.-F.; Zhou, Q.-L., Transition-Metal-Catalyzed Enantioselective Heteroatom–Hydrogen Bond Insertion Reactions. Acc. Chem. Res. 2012, 45 (8), 1365-1377. [29](a) Davis, F. A.; Wu, Y.; Xu, H.; Zhang, J., Asymmetric synthesis of cis-5-substituted pyrrolidine 2-phosphonates using metal carbenoid NH insertion and delta-amino beta-ketophosphonates. Org. Lett. 2004, 6 (24), 4523-5; (b) Wang, Y.; Zhu, S., Convenient Synthesis of Polyfunctionalized β-Fluoropyrroles from Rhodium(II)-Catalyzed Intramolecular N−H Insertion Reactions. Org. Lett. 2003, 5 (5), 745-748; (c) Aller, E.; Buck, R. T.; Drysdale, M. J.; Ferris, L.; Haigh, D.; Moody, C. J.; Pearson, N. D.; Sanghera, J. B., N–H insertion reactions of rhodium carbenoids. Part 1. Preparation of α-amino acid and α-aminophosphonic acid derivatives. J. Chem. Soc., Perkin Trans. 1 1996, (24), 2879-2884. [30](a) Song, X.-G.; Ren, Y.-Y.; Zhu, S.-F.; Zhou, Q.-L., Enantioselective Copper-Catalyzed Intramolecular N−H Bond Insertion: Synthesis of Chiral 2-Carboxytetrahydroquinolines. Adv. Synth. Catal. 2016, 358 (15), 2366-2370; (b) Lee, E. C.; Fu, G. C., Copper-Catalyzed Asymmetric N−H Insertion Reactions: Couplings of Diazo Compounds with Carbamates to Generate α-Amino Acids. J. Am. Chem. Soc. 2007, 129 (40), 12066-12067. [31](a) Anding, B. J.; Dairo, T. O.; Woo, L. K., Reactivity Comparison of Primary Aromatic Amines and Thiols in E–H Insertion Reactions with Diazoacetates Catalyzed by Iridium(III) Tetratolylporphyrin. Organometallics 2017, 36 (9), 1842-1847; (b) Chen, L.; Cui, H.; Wang, Y.; Liang, X.; Zhang, L.; Su, C. Y., Carbene insertion into N-H bonds with size-selectivity induced by a microporous ruthenium-porphyrin metal-organic framework. Dalton Trans 2018, 47 (11), 3940-3946; (c) Zhou, M.; Zhang, H.; Xiong, L.; He, Z.; Wang, T.; Xu, Y.; Huang, K., Fe-Porphyrin functionalized microporous organic nanotube networks and their application for the catalytic olefination of aldehydes and carbene insertion into N–H bonds. Polym. Chem. 2017, 8 (24), 3721-3730. [32]Hechavarrı́a Fonseca, M. a.; Eibler, E.; Zabel, M.; König, B., Synthesis of novel nitrogen-containing ligands for the enantioselective addition of diethylzinc to aldehydes. Tetrahedron: Asymmetry 2003, 14 (14), 1989-1994. [33](a) Borrero, N. V.; DeRatt, L. G.; Ferreira Barbosa, L.; Abboud, K. A.; Aponick, A., Tandem gold-catalyzed dehydrative cyclization/diels-alder reactions: facile access to indolocarbazole alkaloids. Org. Lett. 2015, 17 (7), 1754-7; (b) Wagner, A. M.; Knezevic, C. E.; Wall, J. L.; Sun, V. L.; Buss, J. A.; Allen, L. T.; Wenzel, A. G., A copper(II)-catalyzed, sequential Michael–aldol reaction for the preparation of 1,2-dihydroquinolines. Tetrahedron Lett. 2012, 53 (7), 833-836. [34]Gilbert, J. C.; Weerasooriya, U., Elaboration of aldehydes and ketones to alkynes: improved methodology. J. Org. Chem. 1979, 44 (26), 4997-4998. [35](a) Li, P.; Huang, Y.; Hu, X.; Dong, X. Q.; Zhang, X., Access to Chiral Seven-Member Cyclic Amines via Rh-Catalyzed Asymmetric Hydrogenation. Org. Lett. 2017, 19 (14), 3855-3858; (b) Synthesis of 1-Acyl-3,4-dihydroquinazoline-2(1H)-thiones by Cyclization of N-[2-(Isothiocyanatomethyl)phenyl] Amides Generated in situ from N-[2-(Azidomethyl)phenyl] Amides. Helv. Chim. Acta 2014. [36]Zheng, T.; Tan, J.; Fan, R.; Su, S.; Liu, B.; Tan, C.; Xu, K., Diverse ring opening of thietanes and other cyclic sulfides: an electrophilic aryne activation approach. Chem. Commun. 2018, 54 (11), 1303-1306. [37]Zhang, S. L.; Yu, Z. L., Divergent synthesis of indoles, oxindoles, isocoumarins and isoquinolinones by general Pd-catalyzed retro-aldol/alpha-arylation. Org. Biomol. Chem. 2016, 14 (44), 10511-10515. [38]Brailsford, J. A.; Lauchli, R.; Shea, K. J., Synthesis of the bicyclic welwitindolinone core via an alkylation/cyclization cascade reaction. Org. Lett. 2009, 11 (22), 5330-3. [39](a) K.Moedritzer, THE STRUCTURE OF DIALYKL AND DIARYL PHOSPHONATES. J. Inorg. Nucl. Chem. 1961, 22 (1-2), 19-21; (b) https://archive.cnx.org/contents/306c4521-80e7-4b82-abe4-9b45b9b5f5c7@2/p-31-nmr-spectroscopy#import-auto-id1163653865485. [40]Quach, R.; Furkert, D. P.; Brimble, M. A., Synthesis of benzannulated spiroacetals using chiral gold–phosphine complexes and chiral anions. Tetrahedron Lett. 2013, 54 (44), 5865-5868. [41]O'Mahony, R. M.; Broderick, C. M.; Lynch, D.; Collins, S. G.; Maguire, A. R., Synthesis and use of a cost-effective, aqueous soluble diazo transfer reagent – m-carboxybenzenesulfonyl azide. Tetrahedron Lett. 2019, 60 (1), 35-39. [42]Maehr, H.; Uskokovic, M. R.; Schaffner, C. P., Concise Synthesis of Dimethyl (2-Oxopropyl)phosphonate and Homologation of Aldehydes to Alkynes in a Tandem Process. Synth. Commun. 2008, 39 (2), 299-310. [43]Kosobokov, M. D.; Titanyuk, I. D.; Beletskaya, I. P., An expedient synthesis of diethyl diazomethylphosphonate. Mendeleev Commun. 2011, 21 (3), 142-143. [44]Müller, S.; Sasse, F.; Maier, M. E., Synthesis of Pladienolide B and Its 7-Epimer with Insights into the Role of the Allylic Acetate. Eur. J. Org. Chem. 2014, 2014 (5), 1025-1036. [45]Selig, P.; Raven, W., A convenient allenoate-based synthesis of 2-quinolin-2-yl malonates and beta-ketoesters. Org. Lett. 2014, 16 (19), 5192-5. [46]Havlík, M.; Dolenský, B.; Jakubek, M.; Král, V., Synthesis of Unsymmetrical Tröger's Bases Bearing Groups Sensitive to Reduction. Eur. J. Org. Chem. 2014, 2014 (13), 2798-2805. [47]Jarrige, L.; Blanchard, F.; Masson, G., Enantioselective Organocatalytic Intramolecular Aza-Diels-Alder Reaction. Angew. Chem. Int. Ed. Engl. 2017, 56 (35), 10573-10576. [48]Zhao, Y.; Huang, B.; Yang, C.; Chen, Q.; Xia, W., Sunlight-Driven Forging of Amide/Ester Bonds from Three Independent Components: An Approach to Carbamates. Org. Lett. 2016, 18 (21), 5572-5575. [49]Cronk, W. C.; Mukhina, O. A.; Kutateladze, A. G., Intramolecular photoassisted cycloadditions of azaxylylenes and postphotochemical capstone modifications via Suzuki coupling provide access to complex polyheterocyclic biaryls. J. Org. Chem. 2014, 79 (3), 1235-46. [50]Aebly, A. H.; Rainey, T. J., Pd(II)-catalyzed enantioselective intramolecular oxidative amination utilizing (+)-camphorsulfonic acid. Tetrahedron Lett. 2017, 58 (40), 3795-3799. [51]Del Vecchio, A.; Caille, F.; Chevalier, A.; Loreau, O.; Horkka, K.; Halldin, C.; Schou, M.; Camus, N.; Kessler, P.; Kuhnast, B.; Taran, F.; Audisio, D., Late-Stage Isotopic Carbon Labeling of Pharmaceutically Relevant Cyclic Ureas Directly from CO2. Angew. Chem. Int. Ed. Engl. 2018, 57 (31), 9744-9748. [52]Popp, T. A.; Uhl, E.; Ong, D. N.; Dittrich, S.; Bracher, F., A new approach to monoprotected 1,4-benzodiazepines via a one-pot N-deprotection/reductive cyclization procedure. Tetrahedron 2016, 72 (13), 1668-1674. [53]Roper, K. A.; Lange, H.; Polyzos, A.; Berry, M. B.; Baxendale, I. R.; Ley, S. V., The application of a monolithic triphenylphosphine reagent for conducting Appel reactions in flow microreactors. Beilstein J. Org. Chem. 2011, 7, 1648-55. [54]Patel, P.; Borah, G., Synthesis of oxindole from acetanilide via Ir(iii)-catalyzed C-H carbenoid functionalization. Chem. Commun. 2016, 53 (2), 443-446. [55]Synthesis of 1,3-Di[alkoxy(aryloxy)carbonyl]-2oxo-2,3-dihydroindoles. Tetrahedron 2000. [56]Frost, J. R.; Huber, S. M.; Breitenlechner, S.; Bannwarth, C.; Bach, T., Enantiotopos-selective C-H oxygenation catalyzed by a supramolecular ruthenium complex. Angew. Chem. Int. Ed. Engl. 2015, 54 (2), 691-5. [57]Izquierdo, J.; Orue, A.; Scheidt, K. A., A dual Lewis base activation strategy for enantioselective carbene-catalyzed annulations. J. Am. Chem. Soc. 2013, 135 (29), 10634-7.
|