跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/03 13:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹義勝
研究生(外文):Yi-Sheng Chan
論文名稱:一個適用於社群網路分散式資料儲存之防合謀節點選擇方法
論文名稱(外文):A Collusion Avoidance Node Selection Scheme for Social network-based distributed data storage
指導教授:蔡曉萍蔡曉萍引用關係
口試委員:王志宇鄧洪聲
口試日期:2018-07-26
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:英文
論文頁數:34
中文關鍵詞:Peer-to-Peer隱私保護湧泉碼遊戲理論合謀分散式儲存
外文關鍵詞:Peer-to-PeerPrivacy PreservingFountain CodeGame TheoryCollusionDistributed StorageEmergency Rescue System
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這資訊爆炸的時代,人們普遍開始使用雲端或是P2P (Peer-to-Peer) 分散式儲存技術解決資料共享和資料儲存的問題,但這兩者在資料的隱私和安全上卻還是不盡完善;雲端儲存技術是把資料存放在一個分散式的系統中,由於系統管理的可信任度或保護資料的技術能力是否充足等問題,集中式的儲存方式難免有資料安全、隱私外洩、被監控的疑慮。而P2P儲存系統則是把資料分散存放在多個獨立的資料儲存節點,然陌生的資料保管者普遍是不可信的,且P2P的儲存節點是不穩定的,因此仍舊存在資料安全或隱私外洩的疑慮。在本研究中,我們先用Fountain Code對資料進行編碼,並將編碼後的碼(code symbol)分別儲存在不同的節點,同時解決了資料隱私和儲存節點不穩定的問題,再者,我們結合社群網路的概念,對分散式的儲存節點進行評估,計算其信任分數來選擇可信任的節點,進一步地,由於社群網路中受委託的朋友彼此可能也是朋友,因此我們提出了一個適用於社群網路分散式資料儲存之防合謀節點選擇方法,並導入遊戲理論,設計節點的信任分數計算方式法,避免互為好友的節點,合謀竊取使用者資料的情況。根據實驗結果顯示,與隨機選擇和傳統最高信任分數優先的選擇方法相比,我們提出的方法可以有效地挑選較不會合謀的儲存節點,有效改善資料安全和隱私保護的問題。
In an era of information explosion, cloud storage or P2P (Peer-to-Peer) distributed storage techniques are used to solve the problem of data storage and sharing. However, the distributed storages techniques still face the privacy issues. Although cloud storage stores data in a distributed manner, the administration and management are still centralized and thus poses the problem of trustworthy and being monitored. In addition, whether the administrator has the data protection capabilities is another problem. On the other hand, P2P distributed storage systems are vulnerable to privacy leakage because data are stored in multiple independent nodes that are not trustworthy nor stable. In this thesis, motivated by the privacy protection requirement of a traffic accident emergency rescue system, we propose a Collusion Avoidance Node Selection Scheme for Social Network-based Distributed Data Storage to protect privacy in a distributed and unstable environment. Specifically, we use Fountain Code to encode data and generate sufficient amount of coding symbols and store them distributed. By this approach, we solve the problems of privacy preserving and node unstable problem simultaneously. To improve the reliability, we propose to select node from one’s social network as the data keepers and design a trust score function to evaluate the nodes in the node selection algorithm. Besides, we further consider the concept of gamming theory to prevent the collusion between data-keepers. In the experiments, we use real datasets to study the performance of our proposed approach. The experimental results show that our approach outperforms the Best Score Selection and Random Selection methods and our approach can avoid collusion effectively and improve the data privacy.
摘要 i
Abstract ii
Content iii
List of Figures v
List of Tables viii
Chapter 1 Introduction 1
Chapter 2 Preliminary 5
2.1 Fountain Code 5
2.2 Gamming Theory 6
2.3 System architecture 7
2.4 Social Network and Trust Score 9
Chapter 3 System Modeling 13
Chapter 4 The Keeper Selection Methods 17
4.1 Method 1: Random Choosing 17
4.2 Method 2: Exploiting Trust Network (Best Score Selection) 17
4.3 Method 3: Exploiting Trust Network with Collusion Avoidance (Greedy Keepers Selection) 18
Chapter 5 Experimental Results 19
5.1 Standard of Different K 20
5.2 Adjust delta to 80 22
5.3 Adjust alpha to 2 25
5.4 Adjust beta to 2 27
5.5 Same K in Different Iterations 29
Chapter 6 Conclusion 32
References 33
[1]FC code, https://en.wikipedia.org/wiki/Fountain_code
[2]M. Luby, "LT codes," The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings., Vancouver, BC, 2002, pp. 271-280.
[3]E. Kurniawan, S. Sun and K. Yen, "Transmission strategy of fountain code in cooperative networks with multiple relay nodes," 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, Tokyo, 2009, pp. 1108-1112.
[4]H. Kushwaha, Y. Xing, R. Chandramouli and H. Heffes, "Reliable Multimedia Transmission Over Cognitive Radio Networks Using Fountain Codes," in Proceedings of the IEEE, vol. 96, no. 1, pp. 155-165, Jan. 2008.
[5]Zhang Yan, Feng Xin, Jia Zhicheng, Tang Hongmei, “The Application of Fountain Code in Image Wireless Transmission,” Procedia Engineering, Vol. 29, PP. 3322-3326, 2012
[6]A. G. Dimakis, V. Prabhakaran and K. Ramchandran, "Distributed Fountain Codes for Networked Storage," 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, Toulouse, 2006, pp. V-V.
[7]S. A. Aly, Z. Kong and E. Soljanin, "Fountain Codes Based Distributed Storage Algorithms for Large-Scale Wireless Sensor Networks," 2008 International Conference on Information Processing in Sensor Networks (ipsn 2008), St. Louis, MO, 2008, pp. 171-182.
[8]J. Janet, S. Balakrishnan and K. Somasekhara, "Fountain code based cloud storage mechanism for optimal file retrieval delay," 2016 International Conference on Information Communication and Embedded Systems (ICICES), Chennai, 2016, pp. 1-4.
[9]Suayb S. Arslan, “Incremental redundancy, fountain codes and advanced topics,” arXiv:1402.6016, 2014.
[10]Z. Zhiliang, L. Sha, Z. Jiawei, Z. Yuli and Y. Hai, "Performance Analysis of LT Codes with Different Degree Distribution," 2012 Fifth International Workshop on Chaos-fractals Theories and Applications, Dalian, 2012, pp. 142-146.
[11]H. Zhu, G. Zhang and Guangxia Li, "A novel degree distribution algorithm of LT codes," 2008 11th IEEE International Conference on Communication Technology, Hangzhou, 2008, pp. 221-224.
[12]Yuli Zhao, Francis C. M. Lau, “Scale-free Luby transform codes”, International Journal of Bifurcation and Chaos, Vol. 22, No. 4, 2012.
[13]J. Shen, T. Zhou, C. Lai, J. Li and X. Li, "Hierarchical Trust Level Evaluation for Pervasive Social Networking," in IEEE Access, vol. 5, pp. 1178-1187, 2017.
[14]OPEC, https://en.wikipedia.org/wiki/OPEC
[15]D. Niyato and E. Hossain, "Competitive Pricing for Spectrum Sharing in Cognitive Radio Networks: Dynamic Game, Inefficiency of Nash Equilibrium, and Collusion," in IEEE Journal on Selected Areas in Communications, vol. 26, no. 1, pp. 192-202, Jan. 2008.
[16]Lost Circles, https://lostcircles.com/
[17]Stanford Large Network Dataset Collection, https://snap.stanford.edu/index.html
[18]B. Zhang, R. Yong, M. Li, J. Pan and J. Huang, "A Hybrid Trust Evaluation Framework for E-Commerce in Online Social Network: A Factor Enrichment Perspective," in IEEE Access, vol. 5, pp. 7080-7096, 2017.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top