跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/25 14:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林和寬
研究生(外文):He-Kuan Lin
論文名稱:針對腹部超音波影像利用巢式ResNet方法建立脂肪肝分類模型
論文名稱(外文):Classified Fatty Livers of Abdominal Ultrasound Tomography by Using Nested ResNet Method
指導教授:陳泰賓陳泰賓引用關係
指導教授(外文):Tai-Been Chen
學位類別:碩士
校院名稱:義守大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:49
中文關鍵詞:超音波脂肪肝影像巢式模型
外文關鍵詞:Fatty liver image of ultrasoundNested ModelResNet
相關次數:
  • 被引用被引用:0
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
臨床診斷超音波脂肪肝影像具主觀性診斷,目前電腦輔助診斷系統(Computer-Aided Diagnosis, CAD)分析脂肪肝影像分類需要手動預處理分割並進行特徵萃取。近年利用人工智慧辨識影像類別,已證實具有合理性及前瞻性。因此本研究採用小樣本下具有良好表現之ResNet進行脂肪肝影像分類。
本研究採用回顧性分組實驗設計,蒐集2016/01/01至2017/11/30腹部B-mode超音波肝臟影像,共計416筆正常肝臟案例及311筆脂肪肝案例;脂肪肝分成三類包括輕度(n=108)、中度(n=101)、重度(n=102)。採用ResNe 演算法建立正常與非正常、輕度與非輕度(即,中度與重度脂肪肝影像)、中度與重度共三組狀模型(Nested Model);其中訓練組、驗證組及測試組各佔比為70%、20%、10%;模型評估採用測試組之分類準確度、特異性、靈敏度及Kappa一致性統計量。
測試組結果顯示正常與非正常超音波肝臟影像分類結果最佳準確度為91.7%;輕度與非輕度脂肪肝影像分類結果最佳準確度為90.3%;中度與重度脂肪肝影像分類最佳結果準確度為95%,三組ResNet分類都具有趨近90%的準確度;巢狀模型對四種分類準確度為70%;四組分類結果之Kappa一致性統計量為0.6,表示分類結果具有中度一致性。
本研究針對正常、輕度、中度與重度分類表現準確度具有合理性;未來可以探討不同人工智慧影像辨識模型如DenseNet、NASNet-Mobile、NASNet-Large等,期能提升腹部B-mode超音波脂肪肝影像預測分類可靠性及穩定性。
In clinics, the diagnosis of fatty liver via ultrasound images is subjectively. Meanwhile, Computer-Aided Diagnosis (CAD) was adopted to classify stages of fatty liver through manually pre-processing and extracting features of images. Now a day, the artificial intelligent with deep learning algorithms are developed to identify or classify the categories of image. In this study, the ResNet, performed with small sample, was utilized to classify the stages of fatty liver.
A retrospective designed with multiple groups were enrolled in this study. The liver ultrasound images were collected from 2016/01/01 to 2017/12/31. Total of 416 and 311 cases were normal and fatty liver respectively. There were three categories of fatty liver, including mild (n=108), moderate (n=101) and severe (n=102) groups. The ResNet algorithm was used to construct a nested model which was combined three binary classification models. One was for classification between normal and abnormal. Second was for classification between mild and non-mild fatty liver. Third was for classification between moderate and severe fatty liver. The percentage of training, validation and testing set were 70%, 20% and 10% of overall samples. The classified performance was evaluated by the accuracy, specificity and sensitivity on testing set. The Kappa statistics was applied to exam the agreement of classified results with supervised diagnostic judgments.
The accuracy among three binary classified models were 91.7%, 90.3%, and 95% with respectively to normal and abnormal, mild and non-mild, and moderate and severe groups. The accuracy of classified 4 groups via presented nested model was 70%. Meanwhile, the Kappa statistics provided by presented nested model was 0.6 which was moderate agreement with clinical judgments.
The presented model was demonstrated feasibility for classified 4 groups. In the future, the DenseNet, NASNet-Mobile, and NASNet-Large might be adopted to create classified models for liver ultrasound tomography with expect to improve the reliability and stability.
摘 要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
第一章 緒論 1
1.1前言 1
1.2超音波成像基礎原理 5
1.3脂肪肝 7
1.4臨床脂肪肝超音波影像的簡易判讀 9
1.5研究動機與目的 9
第二章 文獻探討 11
第三章 研究材料與方法 16
3.1研究資料來源 16
3.2造影儀器及條件 16
3.3研究方法與流程 18
3.4驗證方法 29
第四章 結果 32
第五章 結論與討論 35
5.1結論 35
5.2討論 35
5.3未來研究方向 36
5.4研究限制 36
參考文獻 37
附件: 附-1
附件1、人體研究計畫同意函 附件1
[1]Adams LA, Harmsen S, St Sauver JL, Charatcharoenwitthaya P, Enders FB,Therneau T, Angulo P. Nonalcoholic fatty liver disease increases risk of death among patients with diabetes: a community-based cohort study. Am J Gastroenterol. 2010;105(7):1567-73.
[2]Adams LA, Anstee QM, Tilg H, Targher G. Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases.Gut. 2017;66(6):1138-1153.
[3]Byra M, Styczynski G, Szmigielski C, Kalinowski P, Michałowski Ł, Paluszkiewicz R, Ziarkiewicz-Wróblewska B, Zieniewicz K, Sobieraj P, Nowicki A. Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images. Int J Comput Assist Radiol Surg. 2018;13(12):1895-1903
[4]Sharma P, Malik S, Sehgal S, Pruthi J. Computer aided diagnosis based on medical image processing and artificial intelligence methods. Int. J. Inf. Comput. Technol. 2013;3(9):887-892.
[5]Tang J, Agaian S, Thompson I. Guest editorial: computer-aided detection or diagnosis (CAD) systems. IEEE Syst. 2014;8(3):907-909.
[6]Litjens G, Debats O, Barentsz J, Karssemeijer N, Huisman H. Computer-aided detection of prostate cancer in MRI. IEEE Trans. 2014;33(5):1083-1092.
[7]Deng L. A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA Trans. Signal Inf. Process. 2014;3(2):1-29.
[8]Deng L, Yu D. Deep learning: methods and applications. Found. Trends Signal Process. 2014;7(3-4):197-387.
[9]Bengio Y. Learning deep architectures for AI. Found. Trends Mach. Learn. 2009;2(1):1-127.
[10]Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2013;35(8):1798-1828.
[11]Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw. 2015;61:85-117.
[12]LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436-444.
[13]Song H, Lee S. Hierarchical representation using NMF. Neural Information Processing. 2013;8226:466-473.
[14]He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition. 2016;770-778.
[15]Yao J, Li J, Summers RM. Employing topographical height map in colonic polyp measurement and false positive reduction. Pattern Recognit. 2009;42(6):1029-1040.
[16]Bai C, Huang L, Pan X, Zheng J, Chen S. Optimization of deep convolutional neural network for large scale image retrieval. Neurocomputing 2018;303:60-67
[17]Gutierrez PA, Hervas-Martinez C, Martinez-Estudillo FJ. Logistic regression by means of evolutionary radial basis function neural networks. IEEE Trans Neural Netw. 2011;22(2):246-63.
[18]Li H, Li C. Note on deep architecture and deep learning algorithms. Hebei Univ. 2012;32:538-544.
[19]Matthew DZ, Rob F. Visualizing and understanding convolutional networks. ECCV. 2014;LNCS 8689:818-833.
[20]Christian S, Liu W, Yang Q, Pierre S, Scott R, Dragomir A, Dumitru E, Vincent V, Andrew R. Going deeper with convolutions. IEEE Conference on Computer Vision and Pattern Recognition, 2015;1-9
[21]Sepp H, Jurgen S. Long short-term memory. Neural Computation. 1997;9(8):1735-1780.
[22]Li J, Zhang T, Luo W, Yang J, Yuan XT, Zhang J. Sparseness analysis in the pretraining of deep neural networks. IEEE Trans Neural Netw Learn Syst. 2017;28(6):1425-1438.
[23]Xiao T, Liu L, Li K, Qin W, Yu S, Li Z. Comparison of transferred deep neural networks in ultrasonic breast masses discrimination. Biomed Res Int. 2018;2018:4605191.
[24]He K, Zhang X, Ren S, Sun J. Identity mappings in deep residual networks. IEEE Conference on Computer Vision and Pattern Recognition. 2016;630-645.
[25]Tarek M. Diagnosis of Focal Liver Diseases Based on Deep Learning Technique for Ultrasound Images. Arabian Journal for Science and Engineering. Arabian Journal for Science and Engineering. 2017;42(8):3127-3140.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top