|
[1]Adams LA, Harmsen S, St Sauver JL, Charatcharoenwitthaya P, Enders FB,Therneau T, Angulo P. Nonalcoholic fatty liver disease increases risk of death among patients with diabetes: a community-based cohort study. Am J Gastroenterol. 2010;105(7):1567-73. [2]Adams LA, Anstee QM, Tilg H, Targher G. Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases.Gut. 2017;66(6):1138-1153. [3]Byra M, Styczynski G, Szmigielski C, Kalinowski P, Michałowski Ł, Paluszkiewicz R, Ziarkiewicz-Wróblewska B, Zieniewicz K, Sobieraj P, Nowicki A. Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images. Int J Comput Assist Radiol Surg. 2018;13(12):1895-1903 [4]Sharma P, Malik S, Sehgal S, Pruthi J. Computer aided diagnosis based on medical image processing and artificial intelligence methods. Int. J. Inf. Comput. Technol. 2013;3(9):887-892. [5]Tang J, Agaian S, Thompson I. Guest editorial: computer-aided detection or diagnosis (CAD) systems. IEEE Syst. 2014;8(3):907-909. [6]Litjens G, Debats O, Barentsz J, Karssemeijer N, Huisman H. Computer-aided detection of prostate cancer in MRI. IEEE Trans. 2014;33(5):1083-1092. [7]Deng L. A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA Trans. Signal Inf. Process. 2014;3(2):1-29. [8]Deng L, Yu D. Deep learning: methods and applications. Found. Trends Signal Process. 2014;7(3-4):197-387. [9]Bengio Y. Learning deep architectures for AI. Found. Trends Mach. Learn. 2009;2(1):1-127. [10]Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2013;35(8):1798-1828. [11]Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw. 2015;61:85-117. [12]LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436-444. [13]Song H, Lee S. Hierarchical representation using NMF. Neural Information Processing. 2013;8226:466-473. [14]He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition. 2016;770-778. [15]Yao J, Li J, Summers RM. Employing topographical height map in colonic polyp measurement and false positive reduction. Pattern Recognit. 2009;42(6):1029-1040. [16]Bai C, Huang L, Pan X, Zheng J, Chen S. Optimization of deep convolutional neural network for large scale image retrieval. Neurocomputing 2018;303:60-67 [17]Gutierrez PA, Hervas-Martinez C, Martinez-Estudillo FJ. Logistic regression by means of evolutionary radial basis function neural networks. IEEE Trans Neural Netw. 2011;22(2):246-63. [18]Li H, Li C. Note on deep architecture and deep learning algorithms. Hebei Univ. 2012;32:538-544. [19]Matthew DZ, Rob F. Visualizing and understanding convolutional networks. ECCV. 2014;LNCS 8689:818-833. [20]Christian S, Liu W, Yang Q, Pierre S, Scott R, Dragomir A, Dumitru E, Vincent V, Andrew R. Going deeper with convolutions. IEEE Conference on Computer Vision and Pattern Recognition, 2015;1-9 [21]Sepp H, Jurgen S. Long short-term memory. Neural Computation. 1997;9(8):1735-1780. [22]Li J, Zhang T, Luo W, Yang J, Yuan XT, Zhang J. Sparseness analysis in the pretraining of deep neural networks. IEEE Trans Neural Netw Learn Syst. 2017;28(6):1425-1438. [23]Xiao T, Liu L, Li K, Qin W, Yu S, Li Z. Comparison of transferred deep neural networks in ultrasonic breast masses discrimination. Biomed Res Int. 2018;2018:4605191. [24]He K, Zhang X, Ren S, Sun J. Identity mappings in deep residual networks. IEEE Conference on Computer Vision and Pattern Recognition. 2016;630-645. [25]Tarek M. Diagnosis of Focal Liver Diseases Based on Deep Learning Technique for Ultrasound Images. Arabian Journal for Science and Engineering. Arabian Journal for Science and Engineering. 2017;42(8):3127-3140.
|