跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/11/29 12:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾耀興
研究生(外文):Chung, Yao-Hsing
論文名稱:正交分頻多工多媒體行動通訊網路之服務品質保證無線資源分配機制
論文名稱(外文):QoS-guaranteed Radio Resource Allocation Schemes for Multimedia OFDMA Mobile Communication Networks
指導教授:張仲儒
學位類別:博士
校院名稱:國立交通大學
系所名稱:電信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:132
中文關鍵詞:正交分頻多工無線資源分配服務品質保證
外文關鍵詞:OFDMARadio resource allocationQoS guarantee
相關次數:
  • 被引用被引用:0
  • 點閱點閱:140
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要針對在正交分頻多工多媒體行動通訊網路的議題中,提出有效的資源分配機制。這些議題分別為:通道狀態訊息回報超額量之降低、最大化系統輸出與保證服務品質兩大效能取捨之平衡、以及多細胞環境中細胞間干擾影響之減輕。
我們首先提出可運作於部份通道狀態回報環境之資源分配機制,即通道狀態回報節約機會式排程機制;該機制包含服務品質保證排程演算法,與通道狀態回報超額量降低演算法。服務品質保證排程演算法依照緊急程度,給予用戶不同的優先權,並設定優先權臨界值,決定用戶需依據其優先權或通道狀態進行排程,以滿足用戶服務品質需求並最大化系統輸出量;通道狀態回報超額量降低演算法則依據用戶的緊急程度預測下一個訊框可能會被服務到之用戶,並僅允許這些用戶回報其通道狀態以減少回報超額量。與其他傳統資源分配機制比較,我們提出的通道狀態回報節約機會式排程法不但大量降低通道狀態回報超額量,還能達到較高的系統輸出並同時滿足用戶服務品質需求。
我們延續論文第一部份的成果,探討了如何將無線資源分配在最大化系統輸出量與保證服務品質兩者間取得平衡。這個議題主要是因為在提供服務品質保證考量下,資源則必須分配給較緊急之用戶而非通道狀態較好之用戶,因此會造成系統輸出量的損失。為了達到一個好的資源分配平衡,我們提出了動態優先權臨界值平衡資源排程機制,這個機制包含了優先權導向資源分配演算法與通道狀態導向資源分配演算法。首先,用戶會根據其優先權與相對應之優先權臨界值,依序被優先權導向資源分配演算法與通道狀態導向資源分配演算法所服務。藉由調整這兩種資源分配演算法所服務之用戶數,我們可以控制系統輸出量最大化與服務品質保證兩者間的平衡。其間最關鍵的是,我們所提出的乏晰推論型優先權臨界值產生器來動態地與智慧地產生優先權臨界值,以達成好的平衡。模擬結果顯示,藉由避免過度滿足用戶之服務品質需求,我們提出的平衡資源排程機制比傳統的利益函數型與其他資源分配機制,能有更高的系統輸出,同時也能保證用戶的服務品質。
最後,我們進一步探討在多細胞環境下細胞間干擾之資源分配問題。為了在細胞間干擾環境下提供高系統輸出並保證用戶服務品質,我們必需保證各用戶的服務機會,也就是說各用戶的通道狀態必需能夠支援最小資料傳輸量;因此我們提出了多重傳輸點部份頻率重用策略與多重傳輸點協調資源分配機制。多重傳輸點部份頻率重用策略藉由多重傳輸點佈置,來降低細胞邊界用戶的傳輸路徑損失,接著透過增強型部份頻率重用,來減輕細胞間干擾之影響並提升頻譜效率。雖然多重傳輸點解決路徑損失之影響,也帶來了細胞內傳輸點相互干擾之問題。藉由精心設計之利益函數,多重傳輸點協調資源分配機制以降低細胞內干擾、最大化系統輸出、與保證用戶服務品質為目標,將資源與傳輸點分配給用戶,同時考慮各傳輸點間採用聯合傳送或干擾必免之合作方式。模擬結果驗證了多重傳輸點部份頻率重用策略搭配多重傳輸點協調資源分配機制能有效降低傳輸路徑損失與細胞間干擾對邊界用戶之影響,保證各用戶之服務機會,因此能提供比其他傳統資源分配機制更高的系統輸出,並且在多細胞環境下提供服務品質保證。

This dissertation is aimed at resource allocation issues in multimedia orthogonal frequency division multiple access (OFDMA) mobile communication networks, where the issues include channel-state-information (CSI) overhead reduction, balance between system throughput maximization and quality-of-service (QoS) guarantee, and inter-cell interference (ICI) alleviation of multicell environment.
First, we propose an economized-CSI opportunistic scheduling (ECOS) scheme. The ECOS scheme consists of a quality-of-service (QoS) guarantee scheduling (QGS) algorithm and a CSI overhead reduction (COR) algorithm. The QGS algorithm fulfills QoS requirements by dynamic priority value adjustment, while the COR algorithm reduces the amount of CSI overhead by limiting the number of feedback users. Simulation results show that the proposed ECOS scheme greatly reduces
the uplink bandwidth occupancy of CSI feedback. Also, it achieves high system throughput and maintains QoS guarantee at high traffic load.
Second, we propose a balanced resource scheduling (BRS) scheme to balance tradeoff between QoS requirement guarantee and system throughput maximization. Based on the adaptive priority threshold of each user, the BRS scheme schedules users by a priority-based resource allocation algorithm and a CSI-based resource allocation algorithm to guarantee QoS and enhance throughput, respectively. Most
important, we propose a fuzzy inference priority threshold generator (FIPG) to adaptively and intelligently adjust the priority thresholds to strike the excellent balance. Simulation results show that the proposed BRS scheme with adaptive priority threshold achieves higher system throughput than conventional resource allocation schemes under a QoS requirement guarantee.
Finally, we propose a multiple-point fractional frequency reuse (MFFR) strategy and a multiple-point coordination resource allocation (MCRA) scheme to improve system throughput and guarantee QoS in multicell environment. The MFFR strategy employs a multiple-point deployment and an enhanced FFR to effectively overcome the pathloss and alleviate the inter-cell interference (ICI), respectively,
while the MCRA scheme is developed to solve the intra-cell interference brought by the MFFR strategy, maximize system throughput, and fulfill QoS requirements by coordinating multiple transmission points. Simulation results show that the MCRA scheme can attain higher system throughput and cell edge user throughput than the
conventional resource allocation schemes. More important, by guaranteeing service opportunity of users, the MCRA scheme is capable to satisfy QoS requirements of real-time and non-real-time users in the multicell environment.

Mandarin Abstract i
English Abstract iii
Acknowledgements v
Contents vi
List of Figures x
List of Tables xii
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Paper Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . 10
2 An Economized-CSI Opportunistic Scheduling Scheme for OFDMA/
TDD Downlink Systems 13
2.1 Introduction . .. . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 System Configuration . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 QoS Requirements of Multimedia Traffics . . . . . . . . . . . 16
2.2.3 CSI Quantization . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Economized-CSI Opportunistic Scheduling (ECOS) Scheme . . . . . 18
2.3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 QoS Guaranteed Scheduling (QGS) Algorithm . . . . . . . . . 21
2.3.3 CSI Overhead Reduced (COR) Algorithm . . . . . . . . . . . 25
2.3.4 Feedback Channel Assignment . . . . . .. . . . . . .. . . . 29
2.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.1 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . .30
2.4.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3 A Balanced Resource Scheduling Scheme with Adaptive Priority
Thresholds for OFDMA Downlink Systems . . . . . . . . . . . . . . 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.1 System Configuration . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.2 Multimedia Service Traffic . . . . . . . . . . . . . . . . . . . . 42
3.2.3 Channel State Information . . . . . . . . . . . . . . . . . . . . 43
3.3 Balanced Resource Scheduling (BRS) Scheme . . . . . . . . . . . . . 45
3.3.1 Priority Value . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.2 Assigned Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.3 Priority-based and CSI-based RA Algorithms . . . . . . . . . 50
3.4 Fuzzy Inference Priority-Threshold Generator (FIPG) . . . . . . . . . 53
3.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5.1 Simulation Environment . . . . . . . . . . . . . . . . . . . . . 59
3.5.2 Traffic Model and QoS Requirement . . . . . . . . . . . . . 59
3.5.3 Compared Resource Allocation Schemes . . . . . . . . . . . . 61
3.5.4 Performance Evaluation of Case I . . . . . . . . . . . . . . . . 63
3.5.5 Performance Evaluation of Case II . . . . . . . . . . . . . . 68
3.5.6 Computation Complexity Analysis . . . . . . . . . . . . . . . 73
3.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4 A Multiple-Point FFR Strategy with Multiple-Point Coordination
Resource Allocation Scheme for Multicell OFDMA Downlink Systems
75
4.1 Introduction . . . . . . . . .. . . . . . . . . . . . . . . . 75
4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.1 System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.2 Multimedia Services and Traffics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3 Multiple-Point Fractional Frequency Reuse
(MFFR) Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4 Utility Function Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
4.4.1 QoS Status Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
4.4.2 Subchannel Allocation Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
4.4.3 Efficient Assignment Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.4.4 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.5 Multiple-Point Coordination Resource Allocation (MCRA) Scheme . 92
4.5.1 Expected Resource Amount . . . . . . . . . . . . . . . . . . 93
4.5.2 Coordinated Point Selection (CPS) Algorithm . . . . . . . . . 96
4.5.3 Maximum Utility Allocation (MUA) Algorithm . . . . . . . . 97
4.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.6.1 Simulation Environment . . . . . . . . . . . . . . . . . . . . . 98
4.6.2 Traffic Model and QoS Requirement . . . . . . . . . . . . . 101
4.6.3 Compared Schemes . . . . . . . . . . . . . . . . . . . . . . . . 102
4.6.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 104
4.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5 Conclusions and Future Works . . . . . . . . . . . . . . . .117
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . .121
Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132

[1] ITU-R M.2134, “Requirements related to technical performance for IMTAdvanced
radio interface(s),“ International Telecommunication Union-Radio
communication sector, Report, 2008.
[2] IEEE Std. 802.16m, “Local and metropolitan area networks Part 16: Air Interface
for Broadband Wireless Access Systems Amendment 3: Advanced Air
Interface,“ IEEE Standard, May 2011.
[3] 3GPP TR 36.913 V11.0.0, “Requirements for further advancements for Evolved
Universal Terrestrial Radio Access (E-UTRA)(LTE-Advanced),“ 3rd Generation
Partnership Project, Tech. Rep., Sept. 2012.
[4] C. Y. Wong, R. S. Cheng, K. B. Letaief, and R. D. Murch, “Multiuser OFDM
with adaptive subcarrier, bit, and power allocation,“ IEEE J. Sel. Areas Commun.,
vol. 17, pp. 1747-1758, Oct. 1999.
[5] J. Jang and K. B. Lee, “Transmit power adaptation for multiuser OFDM systems,“
IEEE J. Sel. Areas Commun., vol. 21, no. 2, pp. 171-178, Feb. 2003.
[6] J. Tang and X. Zhang, “QoS-driven adaptive power and rate allocation for
multichannel communications in mobile wireless networks,“ in Proc. IEEE International
Symposium on Information Theory, July 2006, pp. 2516-2520.
[7] Z. Kong, J. Wang, and Y. K. Kwok, “A new cross layer approach to QoSaware
proportional fairness packet scheduling in the downlink of OFDM wireless
systems,“ in Proc. IEEE ICC 2007, pp.5695-5700.
[8] C. Lengoumbi, P. Martins, and P. Godlewski, “An opportunist extension of
wireless fair service for packet scheduling in OFDMA,“ in Proc. IEEE VTCSpring
2007, pp. 3001-3005.
[9] P. Xia, S. Zhou, and G.B. Giannakis, “Adaptive MIMO-OFDM based on partial
channel state information,“ IEEE Trans. Signal Processing, vol. 52, no. 1, pp.
202-213, Jan. 2004.
[10] Y. Yao and G.B. Giannakis, “Rate-maximizing power allocation in OFDM
based on partial channel knowledge,“ IEEE Trans. Wireless Commun., vol.
4, no. 3, pp.1073-1083, May. 2005.
[11] A. G. Marqu´es, F. F. Digham, and G. B. Giannakis, “Optimizing power efficiency
of OFDM using quantized channel state information,“ IEEE J. Sel.
Areas in Commun., vol. 24, no. 8, pp.1581-1592, Aug. 2006.
[12] A. G. Marqu´es, F. F. Digham, and G. B. Giannakis, “Power-efficient OFDM
with reduced complexity and feedback overhead,“ in Proc. IEEE ICASSP 2006,
vol. 4, pp. 653-656.
[13] Z. H. Han and Y. H. Lee, “Opportunistic scheduling with partial channel information
in OFDMA/FDD systems,“ in Proc. IEEE VTC-Fall 2004, pp.511-514.
[14] J. H. Kwon, D. Rhee, I.M. Byun, Y. Whang, and K.S. Kim, “Adaptive modulation
technique with partial CQI for multiuser OFDMA systems,“ in Proc.
IEEE ICACT 2006, vol. 2, pp. 1283-1286.
[15] D. Kim and I. H. Lee, “On capacity of quality-based channel-state reporting in
mobile systems with greedy transmission scheduling,“ IEEE Trans. Commun.,
vol. 54, no. 6, pp. 975-979, June 2006.
[16] Y.-J. Choi and S. Bahk, “Partial channel feedback schemes maximizing overall
efficiency in wireless networks,“ IEEE Trans. Wireless Commun., vol. 7, no. 4,
pp. 1306-1314, April 2008.
[17] Y. Rong, S. A. Vorobyov, and A. B. Gershman, “Adaptive OFDM techniques
with one-bit-per-subcarrier channel-state feedback,“ IEEE Trans. Commun.,
vol. 54, no. 11, pp. 1993-2003, Nov. 2006.
[18] Y. Xue and T. Kaiser, “Exploiting multiuser diversity with imperfect one-bit
channel state feedback,“ IEEE Trans. Vehicular Technol., vol. 56, no. 1, pp.183-
193, Jan. 2007.
[19] S. Sanayei and A. Nosratinia, “Opportunistic downlink transmission with limited
feedback,“ IEEE Trans. Information Theory, vol. 53, no. 11, pp. 4363-4372,
Nov. 2007.
[20] R. Agarwal, V. R. Majjigi, Z. Han, R. Vannithamby, and J. M. Cioffi, “Low complexity
resource allocation with opportunistic feedback over downlink OFDMA
networks,“ IEEE J. Sel. Area Commun., vol. 26, no. 8, pp. 1462-1472, Oct.
2008.
[21] Y.-H. Chung and C.-J. Chang, “Opportunistic scheduling with economized CSI
feedback for OFDMA/TDD downlink systems,“ in Proc. IEEE PIMRC 2009,
Tokyo, Japan, pp. 1391-1395.
[22] IEEE Standard Std. 802.16e, “Local and metropolitan area networks-part 16:
air interface for fixed and mobile broadband wireless access systems,“ 2005.
[23] A. J. Goldsmith and S. G. Chua, “Variable-rate variable-power MQAM for
fading channels,“ IEEE Trans. Commun., vol. 45, pp. 1218-1230, Oct. 1997.
[24] K. Kim, Y. Han, and S.-L. Kim, “Joint subcarrier and power allocation in
uplink OFDMA systems,“ IEEE Commun. Letters, vol. 9, no. 6, pp. 526-528,
June 2005.
[25] N. Benvenuto and D. Veronesi, “Sum power minimization under rate constraints
in multiuser OFDM systems,“ in Proc. IEEE WCNC 2007, pp. 1314-1318.
[26] G. Zheng, K.-K. Wong, and T.-S. Ng, “Throughput maximization in linear
multiuser MIMO-OFDM downlink systems,“ IEEE Trans. Vehicular Technol.,
vol. 57, no. 3, pp. 1993-1998, May 2008.
[27] G. Kulkarni, A. Adlakha, and M. Srivastava, “Subcarrier allocation and bit
loading algorithms for OFDMA-based wireless networks,“ IEEE Trans. Mobile
Computing, vol. 4, no. 6, pp. 652-662, Nov. 2005.
[28] J. Y. Kim, T. S. Kwon, and D. H. Cho, “Resource allocation scheme for minimizing
power consumption in OFDM multicast systems,“ IEEE Commun. Letters,
vol. 11, no. 6, June 2007.
[29] Z. Mao and X. Wang, “Efficient optimal and suboptimal radio resource allocation
in OFDMA system,“ IEEE Trans. Wireless Commun., vol. 7, no. 2, pp.
440-445, Feb. 2008.
[30] H.-W. Lee and S. Chong, “Downlink resource allocation in multi-carrier systems:
frequency-selective vs. equal power allocation,“ IEEE Trans. Wireless
Commun., vol. 7, no. 10, pp. 3738-3747 , Oct. 2008.
[31] Y. Peng, B. H. Soong, and L. Wang, “Broadcast scheduling in packe radio
networks using mixed tabu-greedy algorithm,“ Electronics Letters, vol. 40, no.
6, March 2004.
[32] L. Yang, M. Kang, and M.-S. Alouini, “On the capacity-fairness tradeoff in
multiuser diversity systems,“ IEEE Trans. Vehicular Technol., vol. 56, no. 4,
pp. 1901-1907, July 2007.
[33] C. Suh and J. Mo, “Resource allocation for multicast services in multicarrier
wireless communications,“ IEEE Trans. Wireless Commun., vol. 7, no. 1, pp.
27-31, Jan. 2008.
[34] Y. Che, J. Chen, W. Tang, and S. Li, “A two-step channel and power allocation
scheme in centralized cognitive networks based on fairness,“ IEEE VTC-Spring
2008, pp. 1589-1593.
[35] J. Dai, Z. Ye, and X. Xu, “Power allocation for maximizing the minimum rate
with QoS constraints,“ IEEE Trans. Vehicular Technol., vol. 58, no. 9, pp.
4989-4996, Nov. 2009.
[36] Y. Zhang and C. Leung, “Resource allocation for non-real-time serivces in
OFDM-based cognitive radio systems,“ IEEE Commun. Letters, vol. 13, no.
1, Jan. 2009.
[37] L.-C.Wang and A. Chen, “Optimal radio resource partition for joint contentionand
connection-oriented multichannel access in OFDMA systems,“ IEEE Trans.
Mobile Computing, vol. 8, no. 2, pp. 162-172, Feb. 2009.
[38] C.-F. Tsai, C.-J. Chang, F.-C. Ren, and C.-M. Yen, “Adaptive radio resource allocation
for downlink OFDMA/SDMA systems with multimedia traffic,“ IEEE
Trans. Wireless Commun., vol. 7, no. 5, May 2008.
[39] D. Bartolome, A. I. Perez-Neira, and C. Ibars, “Practical bit loading schemes
for multi-antenna multi-user wireless OFDM systems,“ in Proc. Asilomar Conference
on Signals, Systems and Computers, vol. 1, Nov. 2004, pp. 1030-1034.
[40] J. Cai, X. Shen, and J. W. Mark, “Downlink resource management for packet
transmission in OFDM wireless communication systems,“ IEEE Trans. Wireless
Commun., vol. 4, pp. 2726-2737, July 2005.
[41] H. Wang, L. Dittmann, “Downlink resource management for QoS scheduling
in IEEE 802.16 WiMAX networks,“ Computer Communications, vol. 33, pp.
940-953, Jan. 2010.
[42] M. Katoozian, K. Navaie, and H. Yanikomeroglu, “Utility-based adaptive radio
resource allocation in OFDM wireless networks with traffic prioritization,“
IEEE Trans. Wireless Commun., vol. 8, no. 1, pp. 66-71, Jan. 2009.
[43] C.-M. Yen, C.-J. Chang, and L.-C. Wang, “A Utility-based TMCR scheduling
scheme for downlink MIMO/OFDMA systems,“ IEEE Trans. Vehicular
Techno., vol. 59, no. 8, pp. 4150-4115, Oct. 2010.
[44] Y.-H. Chung, C.-J. Chang, and Z. Zhang, “A user-differentiation-based resource
allocation scheme for OFDMA downlink systems,“ in Proc. IEEE ICC 2012,
Ottawa, Canada, pp. 4658-4662.
[45] Y.-H. Chung and C.-J. Chang, “A balanced resource scheduling scheme with
adaptive priority thresholds for OFDMA downlink systems,“ IEEE Trans. Vehicular
Technol., vol. 61, no. 3, pp. 1276-1286, March 2012.
[46] C. T. Lin and C. S. George Lee, Nueral Fuzzy Systems, Prentice-Hall, 1996.
[47] K.-R. Lo, C.-J. Chang, C. Chang, and C. B. Shung, “A QoS-guaranteed fuzzy
channel allocation controller for hierachical cellular systems,“ IEEE Trans. Vehicular
Technol., vol. 49, no. 5, pp. 1588-1598, Sept. 2000.
[48] J. Ye, X. Shen, and J. W. Mark, “Call admission control in wideband CDMA
cellular networks by using fuzzy logic,“ IEEE Trans. Mobile Computing, vol. 4,
no. 2, pp. 129-141, 2005.
[49] M. K. Tsay, Z. S. Lee, and C. H. Liao, “Fuzzy power control for downlink
CDMA-based LMDS network,“ IEEE Trans. Vehicular Technol., vol. 57, no. 6,
pp. 3917-3921, Nov. 2008.
[50] C. L. Chen, J. W. Lee, C. Y. Wu, and Y. H. Kuo, “Fairness and QoS guarantees
of WiMAX OFDMA scheduling with fuzzy controls,“ EURASIP Journal on
Wireless Communications and Networking, 2009.
[51] N. S. Jayant and P. Noll, Digital Coding for Waveforms: Principles and Applications
to Speech and Video, Prentice-Hall, 1984.
[52] K. Begain, G.I. R´ozsa, A. Pfening, and M. Telek, “Performance analysis of
GSM networks with intelligent underlay-overlay,“ in Proc. IEEE ISCC 2002,
pp. 135-141.
[53] 3GPP R1-050507, “Soft frequncy reuse scheme for UTRAN LTE,“ 3rd Generation
Partnership Project, RAN 1 Document, May 2005.
[54] H. Jia, Z. Zhang, G. Yu, P. Cheng, and S. Li, “On the performance of IEEE
802.16 OFDMA system under different frequency reuse and subcarrier permutation
patterns,“ in Proc. IEEE ICC 2007, pp. 5720-5725.
[55] S. E. Elayoubi, O. B. Haddada, and B. Fouresti´e, “Performance evaluation of
frequency planning schemes in OFDMA-based networks,“ IEEE Trans. Wireless
Commun., vol. 7, no. 5, pp. 1623-1633, May 2008.
[56] D. L´opez-P´erez, A. J¨uttner, and J. Zhang, “Dynamic frequency planning versus
frequency reuse schemes in OFDMA networks,“ in Proc. IEEE VTC-Spring
2009.
[57] S. H. Ali and V. C. M. Leung, “Dynamic frequency allocation in fractional
frequency reused OFDMA networks,“ IEEE Trans. Wireless Commun., vol. 8,
pp. 4286-4295, Aug. 2009.
[58] V. R. Cadambe and S. A. Jafar, “Interference alignment and degrees of freedom
of the K-user interference channel,“ IEEE Trans. Inf. Theory, vol. 54, no. 8,
pp. 3425-3441, Aug. 2008.
[59] V. Nagarajan and B. Ramamurthi, “Distributed cooperative precoder selection
for interference alignment“, IEEE Trans. Vehicular Technol., vol. 59, no. 9, pp.
4368-4376, Nov. 2010.
[60] W. Shin, N. Lee, J.-B. Lim, C. Shin, and K. Jang, “On the design of interference
alignment scheme for two-cell MIMO interfering broadcast channels“, IEEE
Trans. Wireless Commun., vol. 10, no 2, pp 437-442, Feb. 2011.
[61] C. Suh, M. Ho, and D. N. C. Tse, “Downlink interference alignment,“ IEEE
Trans. Commun., vol. 59, no. 9, pp. 2616-2626, Sept. 2011.
[62] M. C. Necker, “Interference coordination in cellular OFDMA networks,“ IEEE
Network, vol. 22, no. 6, pp. 12-19, Nov./Dec. 2008.
[63] G. Boudreau, J. Panicker, N. Guo, R. Chang, N. Wang, and S. Vrzic, “Interference
coordination and cancellation for 4G networks,“ IEEE Commun.
Magazine, vol. 47, no. 4, pp. 74-81, Apr. 2009.
[64] M. Sawahashi, Y. Kishiyama, A. Morimoto, D. Nishikawa, and M. Tanno,
“Coordinated multipoint transmission/reception techniques for LTE-advanced“
IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 26-34, Mar. 2010.
[65] H. Huang, M. Trivelloto, A. Hottinen, M. Shafi, P. J. Smith, and R. Valenzuela,
“Increasing downlink cellular throughput with limited network MIMO
coordination,“ IEEE Trans. Wireless Commun., vol. 8, no. 6, pp. 2983-2988,
June 2009.
[66] L.-C. Wang and C.-J. Yeh, “3-cell network MIMO architectures with sectorization
and fractional frequency reuse,“ IEEE J. Sel. Areas Commun., vol. 29, no.
6, pp. 1185-1199, June 2011.
[67] H, Li, J. Hajipour, A. Attar, and V. C. M. Leung, “Efficient HetNet implementation
using broadband wireless access with fiber-connected massively distributed
antennas architechure,“ IEEE Wireless Commun. Magazine, vol. 18,
no. 3, pp. 72-78, June 2011.
[68] U. Jang, H. Son, J. Park, and S. Lee, “CoMP-CSB for ICI nulling with user
selection,“ IEEE Trans. Wireless Commun., vol. 10, no. 9, pp. 2982-2993, Sept.
2011.
[69] T. Ahmad, R. H. Gohary, H. Yanikomeroglu, S. Al-Ahmadi, and G. Boudreau,
“Coordinated port selection and beam steering optimization in a multi-cell
distributed antenna system using semidefinite relaxation,“ IEEE trans. Wireless
Commun., vol. 11, no. 5, pp. 1861-1871, May 2012.
[70] X. Gao, A. Li, and H. Kayama, “Low-complexity downlink coordination scheme
for multi-user CoMP in LTE-advanced system,“ in Proc. IEEE PIMRC 2009
pp. 1-5.
[71] G. Foder, M. Johansson, and P. Soldati, “Near optimum power control under
fairness constraints in CoMP systems,“ in Proc. IEEE GLOBECOM 2009, pp.
1-5.
[72] M. Pischella and J.-C. Belfiore, “Resource allocation for QoS-aware OFDMA
using distributed network coordination,“ IEEE Trans. Vehicular Technol., vol.
58, no. 4, pp. 1766-1775, May 2009.
[73] J. Liu, Y. Chang, Q. Pan, X. Zhang, and D. Yang, “A novel transmission
scheme and scheduling algorithm for CoMP-SU-MIMO in LTE-A system,“ in
Proc. IEEE VTC-Spring 2010, pp. 1-5.
[74] B. Luo, Q. Cui, H. Wang, and X. Tao, “Optimal joint water-filling for coordinated
transmission over frequency-selective fading channels,“ IEEE Commun.
Letter, vol. 15, no. 2, pp. 190-192, Feb. 2011.
[75] G. Li and H. Liu, “Downlink radio resource allocation for multi-cell OFDMA
system,“ IEEE Trans. Wireless Commun., vol. 5, no. 12, pp. 3451-3459, Dec.
2006.
[76] K. Son, S. Chong, and G. de Veciana, “Dynamic association for load balancing
and interference avoidance in multi-cell networks,“ IEEE Trans. Wireless
Commun., vol. 8, no. 7, pp. 3566-3576, July 2009.
[77] R. Y. Chang, Z. Tao, J. Zhang, and C.-C. J. Kuo, “Multicell OFDMA downlink
resource allocation using a graphic framework,“ IEEE Trans. Vehicular
Techno., vol. 58, no. 7, pp. 3494-3507, Sept. 2009.
[78] M. Rahman and H. Yanikomeroglu, “Enhancing cell-edge performance: a downlink
dynamic interference avoidance scheme with inter-cell coordination,“ IEEE
Trans. Wireless Commun., vol. 9, no. 4, pp. 1414-1425, Apr. 2010.
[79] A. Morimoto, M. Tanno, Y. Kishiyama, K. Higuchi, and M. Sawahashi, “Investigation
on optimum radio link connection using remote radio equipment in
heterogeneous network for LTE-Advanced,“ in Proc. IEEE VTC-Spring 2009,
pp. 1-5.
[80] A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, “LTE-advanced: nextgeneration
wireless broadband technology,“ IEEE Wireless Commun. Magazine,
vol. 17, no. 3, pp. 10-22, June 2010.
[81] D. L´opez-P´erez, ˙I. G¨uven¸c, G. Roche, M. Kountouris, T. Q. S. Quek, and J.
Zhang, “Enhanced intercell interference coordination challenges in heterogeneous
networks,“ IEEE Wireless Commun. Magazine, vol. 18, no. 3, pp. 22-30,
June 2011.
[82] D. Lee, H. Seo, B. Clerckx, E. Hardouin, D, Mazzarese, S. Nagata, and K.
Sayana, “Coordinated multipoint transmission and reception in LTE-Advanced:
deployment scenarios and operational challenges,“ IEEE Wireless Commun.
Magazine, vol. 19, no. 1, pp. 148-155, Feb. 2012.
[83] Y.-H. Chung, W.-C. Chung, C.-J. Chang, and V. C. M. Leung, “A multiplepoint
FFR strategy with multiple-point coordination resource allocation scheme
for multicell OFDMA downlink systems,“ ready to be submitted.
[84] Y. Zhang and C. Leung, “Subchannel power-loading schemes in multiuser
OFDM systems,“ IEEE Trans. Vehicular Technol., vol. 58, no. 9, pp. 5341-
5347, Sept. 2009.
[85] H. Yaghoobi, “Scalable OFDMA physical layer in IEEE 802.16 WirelessMAN,“
Intel Techonol. J., vol. 8, no. 3, 2004.
[86] 3GPP TR 25.892, “Feasibility study for OFDM for UTRAN enhancement,“ 3rd
Generation Partnership Project, Tech. Rep., 2004-06.
[87] Universal Mobile Telecommunications System, “Selection procedures for the
choice of radio transmission technologies of the UMTS,“ UMTS Std. 30.03,
1998.
[88] CISCO Tech. Notes, “Voice over IP - per call bandwidth consumption,“ Document
ID 7934.
[89] Z. Diao, D. Shen, and V. O. K. Li, “An adaptive packet scheduling algorithm in
OFDM systems with smart antennas,“ in Proc. PIMRC 2005, pp. 2151-2155.
[90] WiMAX forum, “WiMAX system evaluation methodology,“ V.1.0, Tech. Rep.,
Jan. 2007.
[91] 3GPP TR 36.814 V9.0.0, “Further advancements for E-UTRA physical layer
aspects,“ 3rd Generation Partnership Project, Tech. Rep., March 2010.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top