|
[1] ITU-R M.2134, “Requirements related to technical performance for IMTAdvanced radio interface(s),“ International Telecommunication Union-Radio communication sector, Report, 2008. [2] IEEE Std. 802.16m, “Local and metropolitan area networks Part 16: Air Interface for Broadband Wireless Access Systems Amendment 3: Advanced Air Interface,“ IEEE Standard, May 2011. [3] 3GPP TR 36.913 V11.0.0, “Requirements for further advancements for Evolved Universal Terrestrial Radio Access (E-UTRA)(LTE-Advanced),“ 3rd Generation Partnership Project, Tech. Rep., Sept. 2012. [4] C. Y. Wong, R. S. Cheng, K. B. Letaief, and R. D. Murch, “Multiuser OFDM with adaptive subcarrier, bit, and power allocation,“ IEEE J. Sel. Areas Commun., vol. 17, pp. 1747-1758, Oct. 1999. [5] J. Jang and K. B. Lee, “Transmit power adaptation for multiuser OFDM systems,“ IEEE J. Sel. Areas Commun., vol. 21, no. 2, pp. 171-178, Feb. 2003. [6] J. Tang and X. Zhang, “QoS-driven adaptive power and rate allocation for multichannel communications in mobile wireless networks,“ in Proc. IEEE International Symposium on Information Theory, July 2006, pp. 2516-2520. [7] Z. Kong, J. Wang, and Y. K. Kwok, “A new cross layer approach to QoSaware proportional fairness packet scheduling in the downlink of OFDM wireless systems,“ in Proc. IEEE ICC 2007, pp.5695-5700. [8] C. Lengoumbi, P. Martins, and P. Godlewski, “An opportunist extension of wireless fair service for packet scheduling in OFDMA,“ in Proc. IEEE VTCSpring 2007, pp. 3001-3005. [9] P. Xia, S. Zhou, and G.B. Giannakis, “Adaptive MIMO-OFDM based on partial channel state information,“ IEEE Trans. Signal Processing, vol. 52, no. 1, pp. 202-213, Jan. 2004. [10] Y. Yao and G.B. Giannakis, “Rate-maximizing power allocation in OFDM based on partial channel knowledge,“ IEEE Trans. Wireless Commun., vol. 4, no. 3, pp.1073-1083, May. 2005. [11] A. G. Marqu´es, F. F. Digham, and G. B. Giannakis, “Optimizing power efficiency of OFDM using quantized channel state information,“ IEEE J. Sel. Areas in Commun., vol. 24, no. 8, pp.1581-1592, Aug. 2006. [12] A. G. Marqu´es, F. F. Digham, and G. B. Giannakis, “Power-efficient OFDM with reduced complexity and feedback overhead,“ in Proc. IEEE ICASSP 2006, vol. 4, pp. 653-656. [13] Z. H. Han and Y. H. Lee, “Opportunistic scheduling with partial channel information in OFDMA/FDD systems,“ in Proc. IEEE VTC-Fall 2004, pp.511-514. [14] J. H. Kwon, D. Rhee, I.M. Byun, Y. Whang, and K.S. Kim, “Adaptive modulation technique with partial CQI for multiuser OFDMA systems,“ in Proc. IEEE ICACT 2006, vol. 2, pp. 1283-1286. [15] D. Kim and I. H. Lee, “On capacity of quality-based channel-state reporting in mobile systems with greedy transmission scheduling,“ IEEE Trans. Commun., vol. 54, no. 6, pp. 975-979, June 2006. [16] Y.-J. Choi and S. Bahk, “Partial channel feedback schemes maximizing overall efficiency in wireless networks,“ IEEE Trans. Wireless Commun., vol. 7, no. 4, pp. 1306-1314, April 2008. [17] Y. Rong, S. A. Vorobyov, and A. B. Gershman, “Adaptive OFDM techniques with one-bit-per-subcarrier channel-state feedback,“ IEEE Trans. Commun., vol. 54, no. 11, pp. 1993-2003, Nov. 2006. [18] Y. Xue and T. Kaiser, “Exploiting multiuser diversity with imperfect one-bit channel state feedback,“ IEEE Trans. Vehicular Technol., vol. 56, no. 1, pp.183- 193, Jan. 2007. [19] S. Sanayei and A. Nosratinia, “Opportunistic downlink transmission with limited feedback,“ IEEE Trans. Information Theory, vol. 53, no. 11, pp. 4363-4372, Nov. 2007. [20] R. Agarwal, V. R. Majjigi, Z. Han, R. Vannithamby, and J. M. Cioffi, “Low complexity resource allocation with opportunistic feedback over downlink OFDMA networks,“ IEEE J. Sel. Area Commun., vol. 26, no. 8, pp. 1462-1472, Oct. 2008. [21] Y.-H. Chung and C.-J. Chang, “Opportunistic scheduling with economized CSI feedback for OFDMA/TDD downlink systems,“ in Proc. IEEE PIMRC 2009, Tokyo, Japan, pp. 1391-1395. [22] IEEE Standard Std. 802.16e, “Local and metropolitan area networks-part 16: air interface for fixed and mobile broadband wireless access systems,“ 2005. [23] A. J. Goldsmith and S. G. Chua, “Variable-rate variable-power MQAM for fading channels,“ IEEE Trans. Commun., vol. 45, pp. 1218-1230, Oct. 1997. [24] K. Kim, Y. Han, and S.-L. Kim, “Joint subcarrier and power allocation in uplink OFDMA systems,“ IEEE Commun. Letters, vol. 9, no. 6, pp. 526-528, June 2005. [25] N. Benvenuto and D. Veronesi, “Sum power minimization under rate constraints in multiuser OFDM systems,“ in Proc. IEEE WCNC 2007, pp. 1314-1318. [26] G. Zheng, K.-K. Wong, and T.-S. Ng, “Throughput maximization in linear multiuser MIMO-OFDM downlink systems,“ IEEE Trans. Vehicular Technol., vol. 57, no. 3, pp. 1993-1998, May 2008. [27] G. Kulkarni, A. Adlakha, and M. Srivastava, “Subcarrier allocation and bit loading algorithms for OFDMA-based wireless networks,“ IEEE Trans. Mobile Computing, vol. 4, no. 6, pp. 652-662, Nov. 2005. [28] J. Y. Kim, T. S. Kwon, and D. H. Cho, “Resource allocation scheme for minimizing power consumption in OFDM multicast systems,“ IEEE Commun. Letters, vol. 11, no. 6, June 2007. [29] Z. Mao and X. Wang, “Efficient optimal and suboptimal radio resource allocation in OFDMA system,“ IEEE Trans. Wireless Commun., vol. 7, no. 2, pp. 440-445, Feb. 2008. [30] H.-W. Lee and S. Chong, “Downlink resource allocation in multi-carrier systems: frequency-selective vs. equal power allocation,“ IEEE Trans. Wireless Commun., vol. 7, no. 10, pp. 3738-3747 , Oct. 2008. [31] Y. Peng, B. H. Soong, and L. Wang, “Broadcast scheduling in packe radio networks using mixed tabu-greedy algorithm,“ Electronics Letters, vol. 40, no. 6, March 2004. [32] L. Yang, M. Kang, and M.-S. Alouini, “On the capacity-fairness tradeoff in multiuser diversity systems,“ IEEE Trans. Vehicular Technol., vol. 56, no. 4, pp. 1901-1907, July 2007. [33] C. Suh and J. Mo, “Resource allocation for multicast services in multicarrier wireless communications,“ IEEE Trans. Wireless Commun., vol. 7, no. 1, pp. 27-31, Jan. 2008. [34] Y. Che, J. Chen, W. Tang, and S. Li, “A two-step channel and power allocation scheme in centralized cognitive networks based on fairness,“ IEEE VTC-Spring 2008, pp. 1589-1593. [35] J. Dai, Z. Ye, and X. Xu, “Power allocation for maximizing the minimum rate with QoS constraints,“ IEEE Trans. Vehicular Technol., vol. 58, no. 9, pp. 4989-4996, Nov. 2009. [36] Y. Zhang and C. Leung, “Resource allocation for non-real-time serivces in OFDM-based cognitive radio systems,“ IEEE Commun. Letters, vol. 13, no. 1, Jan. 2009. [37] L.-C.Wang and A. Chen, “Optimal radio resource partition for joint contentionand connection-oriented multichannel access in OFDMA systems,“ IEEE Trans. Mobile Computing, vol. 8, no. 2, pp. 162-172, Feb. 2009. [38] C.-F. Tsai, C.-J. Chang, F.-C. Ren, and C.-M. Yen, “Adaptive radio resource allocation for downlink OFDMA/SDMA systems with multimedia traffic,“ IEEE Trans. Wireless Commun., vol. 7, no. 5, May 2008. [39] D. Bartolome, A. I. Perez-Neira, and C. Ibars, “Practical bit loading schemes for multi-antenna multi-user wireless OFDM systems,“ in Proc. Asilomar Conference on Signals, Systems and Computers, vol. 1, Nov. 2004, pp. 1030-1034. [40] J. Cai, X. Shen, and J. W. Mark, “Downlink resource management for packet transmission in OFDM wireless communication systems,“ IEEE Trans. Wireless Commun., vol. 4, pp. 2726-2737, July 2005. [41] H. Wang, L. Dittmann, “Downlink resource management for QoS scheduling in IEEE 802.16 WiMAX networks,“ Computer Communications, vol. 33, pp. 940-953, Jan. 2010. [42] M. Katoozian, K. Navaie, and H. Yanikomeroglu, “Utility-based adaptive radio resource allocation in OFDM wireless networks with traffic prioritization,“ IEEE Trans. Wireless Commun., vol. 8, no. 1, pp. 66-71, Jan. 2009. [43] C.-M. Yen, C.-J. Chang, and L.-C. Wang, “A Utility-based TMCR scheduling scheme for downlink MIMO/OFDMA systems,“ IEEE Trans. Vehicular Techno., vol. 59, no. 8, pp. 4150-4115, Oct. 2010. [44] Y.-H. Chung, C.-J. Chang, and Z. Zhang, “A user-differentiation-based resource allocation scheme for OFDMA downlink systems,“ in Proc. IEEE ICC 2012, Ottawa, Canada, pp. 4658-4662. [45] Y.-H. Chung and C.-J. Chang, “A balanced resource scheduling scheme with adaptive priority thresholds for OFDMA downlink systems,“ IEEE Trans. Vehicular Technol., vol. 61, no. 3, pp. 1276-1286, March 2012. [46] C. T. Lin and C. S. George Lee, Nueral Fuzzy Systems, Prentice-Hall, 1996. [47] K.-R. Lo, C.-J. Chang, C. Chang, and C. B. Shung, “A QoS-guaranteed fuzzy channel allocation controller for hierachical cellular systems,“ IEEE Trans. Vehicular Technol., vol. 49, no. 5, pp. 1588-1598, Sept. 2000. [48] J. Ye, X. Shen, and J. W. Mark, “Call admission control in wideband CDMA cellular networks by using fuzzy logic,“ IEEE Trans. Mobile Computing, vol. 4, no. 2, pp. 129-141, 2005. [49] M. K. Tsay, Z. S. Lee, and C. H. Liao, “Fuzzy power control for downlink CDMA-based LMDS network,“ IEEE Trans. Vehicular Technol., vol. 57, no. 6, pp. 3917-3921, Nov. 2008. [50] C. L. Chen, J. W. Lee, C. Y. Wu, and Y. H. Kuo, “Fairness and QoS guarantees of WiMAX OFDMA scheduling with fuzzy controls,“ EURASIP Journal on Wireless Communications and Networking, 2009. [51] N. S. Jayant and P. Noll, Digital Coding for Waveforms: Principles and Applications to Speech and Video, Prentice-Hall, 1984. [52] K. Begain, G.I. R´ozsa, A. Pfening, and M. Telek, “Performance analysis of GSM networks with intelligent underlay-overlay,“ in Proc. IEEE ISCC 2002, pp. 135-141. [53] 3GPP R1-050507, “Soft frequncy reuse scheme for UTRAN LTE,“ 3rd Generation Partnership Project, RAN 1 Document, May 2005. [54] H. Jia, Z. Zhang, G. Yu, P. Cheng, and S. Li, “On the performance of IEEE 802.16 OFDMA system under different frequency reuse and subcarrier permutation patterns,“ in Proc. IEEE ICC 2007, pp. 5720-5725. [55] S. E. Elayoubi, O. B. Haddada, and B. Fouresti´e, “Performance evaluation of frequency planning schemes in OFDMA-based networks,“ IEEE Trans. Wireless Commun., vol. 7, no. 5, pp. 1623-1633, May 2008. [56] D. L´opez-P´erez, A. J¨uttner, and J. Zhang, “Dynamic frequency planning versus frequency reuse schemes in OFDMA networks,“ in Proc. IEEE VTC-Spring 2009. [57] S. H. Ali and V. C. M. Leung, “Dynamic frequency allocation in fractional frequency reused OFDMA networks,“ IEEE Trans. Wireless Commun., vol. 8, pp. 4286-4295, Aug. 2009. [58] V. R. Cadambe and S. A. Jafar, “Interference alignment and degrees of freedom of the K-user interference channel,“ IEEE Trans. Inf. Theory, vol. 54, no. 8, pp. 3425-3441, Aug. 2008. [59] V. Nagarajan and B. Ramamurthi, “Distributed cooperative precoder selection for interference alignment“, IEEE Trans. Vehicular Technol., vol. 59, no. 9, pp. 4368-4376, Nov. 2010. [60] W. Shin, N. Lee, J.-B. Lim, C. Shin, and K. Jang, “On the design of interference alignment scheme for two-cell MIMO interfering broadcast channels“, IEEE Trans. Wireless Commun., vol. 10, no 2, pp 437-442, Feb. 2011. [61] C. Suh, M. Ho, and D. N. C. Tse, “Downlink interference alignment,“ IEEE Trans. Commun., vol. 59, no. 9, pp. 2616-2626, Sept. 2011. [62] M. C. Necker, “Interference coordination in cellular OFDMA networks,“ IEEE Network, vol. 22, no. 6, pp. 12-19, Nov./Dec. 2008. [63] G. Boudreau, J. Panicker, N. Guo, R. Chang, N. Wang, and S. Vrzic, “Interference coordination and cancellation for 4G networks,“ IEEE Commun. Magazine, vol. 47, no. 4, pp. 74-81, Apr. 2009. [64] M. Sawahashi, Y. Kishiyama, A. Morimoto, D. Nishikawa, and M. Tanno, “Coordinated multipoint transmission/reception techniques for LTE-advanced“ IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 26-34, Mar. 2010. [65] H. Huang, M. Trivelloto, A. Hottinen, M. Shafi, P. J. Smith, and R. Valenzuela, “Increasing downlink cellular throughput with limited network MIMO coordination,“ IEEE Trans. Wireless Commun., vol. 8, no. 6, pp. 2983-2988, June 2009. [66] L.-C. Wang and C.-J. Yeh, “3-cell network MIMO architectures with sectorization and fractional frequency reuse,“ IEEE J. Sel. Areas Commun., vol. 29, no. 6, pp. 1185-1199, June 2011. [67] H, Li, J. Hajipour, A. Attar, and V. C. M. Leung, “Efficient HetNet implementation using broadband wireless access with fiber-connected massively distributed antennas architechure,“ IEEE Wireless Commun. Magazine, vol. 18, no. 3, pp. 72-78, June 2011. [68] U. Jang, H. Son, J. Park, and S. Lee, “CoMP-CSB for ICI nulling with user selection,“ IEEE Trans. Wireless Commun., vol. 10, no. 9, pp. 2982-2993, Sept. 2011. [69] T. Ahmad, R. H. Gohary, H. Yanikomeroglu, S. Al-Ahmadi, and G. Boudreau, “Coordinated port selection and beam steering optimization in a multi-cell distributed antenna system using semidefinite relaxation,“ IEEE trans. Wireless Commun., vol. 11, no. 5, pp. 1861-1871, May 2012. [70] X. Gao, A. Li, and H. Kayama, “Low-complexity downlink coordination scheme for multi-user CoMP in LTE-advanced system,“ in Proc. IEEE PIMRC 2009 pp. 1-5. [71] G. Foder, M. Johansson, and P. Soldati, “Near optimum power control under fairness constraints in CoMP systems,“ in Proc. IEEE GLOBECOM 2009, pp. 1-5. [72] M. Pischella and J.-C. Belfiore, “Resource allocation for QoS-aware OFDMA using distributed network coordination,“ IEEE Trans. Vehicular Technol., vol. 58, no. 4, pp. 1766-1775, May 2009. [73] J. Liu, Y. Chang, Q. Pan, X. Zhang, and D. Yang, “A novel transmission scheme and scheduling algorithm for CoMP-SU-MIMO in LTE-A system,“ in Proc. IEEE VTC-Spring 2010, pp. 1-5. [74] B. Luo, Q. Cui, H. Wang, and X. Tao, “Optimal joint water-filling for coordinated transmission over frequency-selective fading channels,“ IEEE Commun. Letter, vol. 15, no. 2, pp. 190-192, Feb. 2011. [75] G. Li and H. Liu, “Downlink radio resource allocation for multi-cell OFDMA system,“ IEEE Trans. Wireless Commun., vol. 5, no. 12, pp. 3451-3459, Dec. 2006. [76] K. Son, S. Chong, and G. de Veciana, “Dynamic association for load balancing and interference avoidance in multi-cell networks,“ IEEE Trans. Wireless Commun., vol. 8, no. 7, pp. 3566-3576, July 2009. [77] R. Y. Chang, Z. Tao, J. Zhang, and C.-C. J. Kuo, “Multicell OFDMA downlink resource allocation using a graphic framework,“ IEEE Trans. Vehicular Techno., vol. 58, no. 7, pp. 3494-3507, Sept. 2009. [78] M. Rahman and H. Yanikomeroglu, “Enhancing cell-edge performance: a downlink dynamic interference avoidance scheme with inter-cell coordination,“ IEEE Trans. Wireless Commun., vol. 9, no. 4, pp. 1414-1425, Apr. 2010. [79] A. Morimoto, M. Tanno, Y. Kishiyama, K. Higuchi, and M. Sawahashi, “Investigation on optimum radio link connection using remote radio equipment in heterogeneous network for LTE-Advanced,“ in Proc. IEEE VTC-Spring 2009, pp. 1-5. [80] A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, “LTE-advanced: nextgeneration wireless broadband technology,“ IEEE Wireless Commun. Magazine, vol. 17, no. 3, pp. 10-22, June 2010. [81] D. L´opez-P´erez, ˙I. G¨uven¸c, G. Roche, M. Kountouris, T. Q. S. Quek, and J. Zhang, “Enhanced intercell interference coordination challenges in heterogeneous networks,“ IEEE Wireless Commun. Magazine, vol. 18, no. 3, pp. 22-30, June 2011. [82] D. Lee, H. Seo, B. Clerckx, E. Hardouin, D, Mazzarese, S. Nagata, and K. Sayana, “Coordinated multipoint transmission and reception in LTE-Advanced: deployment scenarios and operational challenges,“ IEEE Wireless Commun. Magazine, vol. 19, no. 1, pp. 148-155, Feb. 2012. [83] Y.-H. Chung, W.-C. Chung, C.-J. Chang, and V. C. M. Leung, “A multiplepoint FFR strategy with multiple-point coordination resource allocation scheme for multicell OFDMA downlink systems,“ ready to be submitted. [84] Y. Zhang and C. Leung, “Subchannel power-loading schemes in multiuser OFDM systems,“ IEEE Trans. Vehicular Technol., vol. 58, no. 9, pp. 5341- 5347, Sept. 2009. [85] H. Yaghoobi, “Scalable OFDMA physical layer in IEEE 802.16 WirelessMAN,“ Intel Techonol. J., vol. 8, no. 3, 2004. [86] 3GPP TR 25.892, “Feasibility study for OFDM for UTRAN enhancement,“ 3rd Generation Partnership Project, Tech. Rep., 2004-06. [87] Universal Mobile Telecommunications System, “Selection procedures for the choice of radio transmission technologies of the UMTS,“ UMTS Std. 30.03, 1998. [88] CISCO Tech. Notes, “Voice over IP - per call bandwidth consumption,“ Document ID 7934. [89] Z. Diao, D. Shen, and V. O. K. Li, “An adaptive packet scheduling algorithm in OFDM systems with smart antennas,“ in Proc. PIMRC 2005, pp. 2151-2155. [90] WiMAX forum, “WiMAX system evaluation methodology,“ V.1.0, Tech. Rep., Jan. 2007. [91] 3GPP TR 36.814 V9.0.0, “Further advancements for E-UTRA physical layer aspects,“ 3rd Generation Partnership Project, Tech. Rep., March 2010.
|