跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/03 06:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林漢忠
研究生(外文):Han-Chung Lin
論文名稱:互補式金氧半算術運算電路之分析及設計
論文名稱(外文):Analysis and Design of CMOS Arithmetic Circuits
指導教授:張原豪張原豪引用關係
指導教授(外文):Yuen-Haw Chang
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:資訊工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:78
中文關鍵詞:比較器乘法器加法器優先編碼器矽智財增量器/減量器
外文關鍵詞:comparatoraddermultipliersilicon intellectual propertypriority encoderincrementer/decrementer
相關次數:
  • 被引用被引用:4
  • 點閱點閱:604
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
隨著半導體製程技術的快速發展,以及電子產品往系統單晶片(System on Chip, SoC)的趨勢發展,使得晶片設計的工作日益複雜。因此,透過設計及重複的使用矽智財(Silicon Intellectual Property, SIP)來完成晶片設計,將有效加速設計時程及節省成本。
本論文的製程技術是使用台積電0.35μm CMOS 2P4M來完成電路模擬及晶片的實體佈局。論文中首先完成優先編碼器IP,基於優先編碼器IP完成了二個適用於高速度操作的互補式算術運算電路,分別是比較器及增量器 / 減量器。在加法器的電路設計上,主要是採用「多階層摺疊」及「對角線前傳」等兩種設計技巧。在乘法器的部分,設計一個具有自動補數偵測功能的串-並乘法器。經由Hspice的電路模擬及晶片的量測結果,顯示優先編碼器、加法器、乘法器、比較器及增量器 / 減量器,在性能的表現上均優於傳統式電路。
Due to the rapid development of semiconductor fabrication technique and the trends of System-on-chip-based (SoC-based) electronic products, the integrated circuit design becomes more and more complicated. Therefore, the reusable Silicon-intellectual-property (SIP) is desired, because it could shorten a great deal of design time and cost.
This thesis is considered in Cadence environment for achieving pre- layout / post-layout simulation based on 0.35μm CMOS 2P4M process of TSMC. First, the priority encoder IP design is performed, then based on this encoder IP, both high-speed comparator and incrementer/decrementer are realized. Besides, the pre-layout / post-layout design of an adder is implemented by the use of multilevel folding and diagonal forwarding techniques. Finally, the serial-parallel multiplier with automatic complement detection is proposed. From the results of Hspice simulation and chip testing, the suggested priority encoder, adder, multiplier, comparator, and incrementer/ decrementer show the pretty better performance than that of traditional circuit scheme.
第一章 緒論 1
1.1 研究動機 1
1.2 數位訊號處理器的特性及應用 2
1.3 論文簡介 3
第二章 互補式金氧半的功率消耗及特性分析介紹 4
2.1 功率消耗 4
2.1.1 動態功率消耗( Dynamic Power Dissipation ) 4
2.1.2 漏電流( Leakage Current ) 5
2.1.3 短路電流( Short Circuit Current ) 7
2.2 動態CMOS電路及靜態CMOS電路的特性分析比較 11
2.2.1 雜訊邊界( Noise Margin ) 12
2.2.2 電荷分享( Charge Sharing ) 14
第三章 互補式金氧半算術運算電路的分析設計 16
3.1 優先編碼器( Priority Encoder ) 16
3.1.1 簡介 16
3.1.2 雙層及三層前瞻式架構 18
3.1.3 優先編碼器模擬結果 23
3.2 加法器( Adder ) 27
3.2.1 簡介 27
3.2.2 靜態式架構 28
3.2.3 動態式架構 30
3.2.4 加法器模擬結果 33
3.3 乘法器( Multiplier ) 37
3.3.1 簡介 37
3.3.2 改良的乘法器架構 38
3.3.3 乘法器模擬結果 43
3.4 比較器( Comparator ) 47
3.4.1 簡介 47
3.4.2 以減法器為架構 48
3.4.3 以優先編碼器為架構 50
3.4.4 比較器模擬結果 55
3.5 增量器 / 減量器( Incrementer / Decrementer ) 59
3.5.1 簡介 59
3.5.2 以優先編碼器為架構 60
3.5.3 增量器 / 減量器模擬結果 64
第四章 晶片的設計流程及量測結果 68
4.1 設計流程 68
4.2 量測結果 69
第五章 結論 73
參考文獻 74
附錄: 口試委員意見修正 78
[1]Katsuhiro Shimohigashi, Koichi Seki.; “Low-voltage VLSI Design,” IEEE J. Solid-State Circuits, vol. 28, Pages. 408 – 413, Apr. 1993.
[2]Blair, G.M.; “Designing low-power digital CMOS,” Electronics & Communication Engineering Journal, Volume: 6, Issue: 5, Oct 1994, Pages: 229 - 236.
[3]Roy, K.; Krishnammthy, R.; “Design of low voltage CMOS circuits,” Circuits and Systems, 2001. Tutorial Guide: ISCAS 2001. The 2001 IEEE International Symposium on, Volume:1, 6–9 May 2001, Pages: 3.2.1 – 3.2.29.
[4]J. Yuan and C. Svensson.; “High speed CMOS circuit technique,” IEEE J. Solid-State Circuits, vol. 24, Pages. 62 – 70, Feb. 1989.
[5]Sakurai, T.; “Low power digital circuit design,” Solid-State Device Research conference, 2004. ESSDERC 2004. Proceeding of the 34th European, 21-23 Sep. 2004, Pages: 11 – 18.
[6]Ohkubo, N.; Suzuki, M.; Shinbo, T.; Yamanaka, T.; Shimizu, A.; Sasaki, K.; Nakagome, Y.; “A 4.4ns CMPS 54×54-b multiplier Using Pass-Transistor multiplexer,” Solid-State Circuits, IEEE Journal of, Volume: 30, Issue: 3, March 1995, Pages: 251 – 257.
[7]Cheng, D.L.; Kwang-Ting Cheng; Wang, D.C.; Marek-Sadowska, M.; “A hybrid methodology for switching activities estimation,” Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, Volume: 17, Issue: 4, April 1998.
[8]Sandy Wang, Yi-Wen Wu, O.T.-C, Ruey-Liang Ma.; “Low-power multipliers by minimizing inter-data switching activities,” Circuits and Systems, 2000. Proceedings of the 43rd IEEE Midwest Symposium on, vol. 1, 8-11 Aug. 2000, Pages. 88 – 92.
[9]Sunder, S.; El-Guibaly, F.; Antoniou, A.; “Two’s-complement fast serial-parallel multiplier,” Circuits, Devices and Systems, IEE Proceedings, Volume: 142, Issue: 1, Feb. 1995.
[10] E.D. Adamides.; “Cellular Logic Bus Arbitration,” IEE Proceedings. Part E, Computers and Digital Techniques, Volume: 140, No: 6, Pages: 289 – 296, November 1993.
[11] P.H. Garrett.; “Advanced Instrumentation and Computer I/O Design -Real-Time System Computer Interface Engineering,” IEEE Press, 1994.
[12] J.G. Delgado-Frias and J. Nyathi.; “A VLSI high performance encoder with priority lookahead,” in Proc. 8th IEEE Great Lakes Symp. VLSI, 1998, Pages: 59 – 64.
[13] N. West and K. Eshraghian.; “Principles of CMOS VLSI Design,” Reading, MA: Addison-Wesley, 2nd ed., 1993, ch5.
[14] J.S. Wang and C.H. Huang.; “High-speed and low-power CMOS priority encoders,” IEEE J. Solid-State Circuits, vol.35, Pages. 1511 – 1514, Oct. 2000.
[15] N.F. Goncalves and H.J. De Man.; “NORA: a racefree dynamic CMOS technique for pipelined logic structures,” IEEE J. Solid-State Circuits, volume: 18, no: 3, Pages: 261 – 266, june 1983.
[16] J.S. Wang and C.S. Huang.; “A High-speed single-phase-clocked CMOS priority encoder,” presented at the IEEE ISCAS’2000.
[17] Montalvo, LA.; Parhi, K.K.; Satyanarayana, J.H.; “Estimation of average energy consumption of ripple-carry adder based on average length carry chains,” VLSI Signal Processing, IX, 1996., [Workshop on], 30 Oct.-1 Nov. 1996 Pages: 189 – 198.
[18] H. Morinaka.; H. Makino.; Y. Nakase.; H. Suzuki.; K. Mashiko.; “A 64 bit carry look-ahead CMOS adder using modified carry select,” in Proc. IEEE Custom Integrated Circuits Conf., 1995, Pages: 585 – 588.
[19] Youngjoon Kim.; Lee-Sup Kim.; “64-bit carry-select adder with reduced area,” Electronics Letters, Volume: 37, Issue: 10, 10 May 2001, Pages: 614 – 615.
[20] C.H. Huang.; J.S. Wang.; Chingwei Yeh.; Chih-Jen Fang.; “The CMOS carry-forward adders,” Solid-State Circuits, IEEE Journal of, Volume: 39, Issue: 2, Feb. 2004, Pages: 327 – 336.
[21] C.H. Huang.;J.S.Wang.;Yan-Chao Huang.; “Design of High-Performance CMOS Priority Encoders and Incrementer/Decrementers Using Multilevel Lookahead and Multilevel Folding Techniques,” Solid-State Circuits, IEEE Journal of, Volume: 37, Issue: 1, Jan. 2002, Pages: 63 – 76.
[22] C.J. Fang.; C.H. Huang.; J.S. Wang.; C.W. Yeh.; “Fast and compact dynamic ripple carry adder design,” in Proc. 3rd IEEE Asia-Pacific Conf. ASIC, Aug. 2002, Pages: 25 – 28.
[23] Masato Nagamatsu.; Shigeru Tanaka.; Junji Mori.; Katsusi Hirano.; Tatsuo Noguchi.; Kazuhisa Hatanaka.; “A 15ns 32×32-bit CMOS Multiplier with an Improved Parallel Structure,” IEEE Journal of Solid-State Circuits, Volume: 25, No. 2, April 1990.
[24] S. G. Smith.; “Comments on a Signed Bit-Sequential Multiplier,” IEEE Transactions on Computer, Volume: 38, No. 9, September 1989.
[25] Yao, H.H.; Swartzlander, E.E.; “Serial-Parallel multipliers,” Signals, Systems and Computers, 1993. 1993 Conference Record of The Twenty-Seventh Asilomar Conference on, 1 – 3 November. 1993.
[26] Hong, S.J.; “The design of a testable parallel multiplier,” Computers, IEEE Transactions on, Volume: 39, Issue: 3, March 1990. Pages: 411 – 416.
[27] Oguz Ergin.; Kanad Ghose.; Gurhan Kucuk.; Dmitry Ponomarev.; “A Circuit-Level Implementation of Fast, Energy Efficient CMOS Comparators for High-Performance Microprocessors,” in Proc. of ICCD, 2002, Pages: 118 – 121.
[28] A. J. van de Goor.; “Testing semiconductor memories theory and practice,” Reading: John Wiley & Sons, 1996.
[29] Chua-Chin Wang.; Chi-Feng Wu.; Sheng-Hua Chen.; Chia-Hsiung Kao.; “In sawing lanes multilevel BIST for known good dies of LCD drivers,” Electronics. Letters., volume: 35, No. 84, 1999, Pages: 1543 – 1544.
[30] KRAMBECK, R.H.; LEE, C.M.; LAW, H. S.; “High-speed compact circuits with CMOS,” IEEE J. Solid-State Circuits, June. 1982, 17, Pages: 614 – 619.
[31] GU, R.X.; ELMASRY, M. I.; “All-N-logic high-speed true-single-phase dynamic CMOS logic,” IEEE J. Solid-State Circuits, Feb. 1996, 31, (2), Pages: 221 – 229.
[32] AFGHAHI, M.; “A robust single phase clocking for low power, high-speed VLSI applications,” IEEE J. Solid-State Circuits, Feb. 1996, 31, (2), Pages: 247 – 253.
[33] C.H. Huang.; J.S. Wang.; “High-Performance and Power-Efficient CMOS Comparators,” IEEE J. Solid-State Circuits, Feb. 2003, 38, (2), Pages: 254 – 262.
[34] Stan, Mircea R.; Tenca, Alexandre F.; Ercegovac, Milos D.; “Long and fast up / down counters,” IEEE Transactions on Computers, volume: 47, No. 7, July 1998, Pages: 722 – 735.
[35] M.W. Evans, “Minimal Logic Synchronous Up / Down Counter, Implementations for CMOS,” U.S. Patent no. 4,611,337. Sept. 1986.
[36] Lutz, D.R.; Jayasimha, D.N.; “Programmable modulo-k counters,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, volume: 43, No. 11, Nov. 1996, Pages: 939 – 941.
[37] C.-H. Huang.; J.-S. Wang, and Y.-C. Huang, “A high-speed CMOS incrementer / decrementer,” in Proc. IEEE Int. Symp. Circuit and Systems, volume: 4, May 2001, Pages: 88 – 91.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊