跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/16 00:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳品辰
研究生(外文):Chen, Pin Chen
論文名稱:應用於豬心肌監測之酸鹼/鉀離子/溫度微型感測探針開發與動物實驗
論文名稱(外文):The Development of pH, Potassium ion and Temperature Micro Sensing Probe for Swine Heart Monitoring and Corresponding Animal Experiments
指導教授:鄭裕庭
指導教授(外文):Cheng, Yu-Ting
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:中文
論文頁數:46
中文關鍵詞:酸鹼值鉀離子溫度探針
外文關鍵詞:pHpotassiumtemperatureprobe
相關次數:
  • 被引用被引用:1
  • 點閱點閱:319
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
酸鹼值在生理訊號中扮演著重要的指標,可從組織液中量測到的酸鹼值進而輔助判別細胞組織的健康情形,而若能同時了解組織液中鉀離子濃度的變化,對於心臟手術的保護液灌注時機更能有所幫助。
本論文開發以酸鹼感測功能之氧化銥/氯化銀結構、銅/金電阻式溫度感測計與含有纈氨黴素離子載體的PVC薄膜作為測量鉀離子濃度的工作電極整合製程,並整合製作於長度與寬度分別為20 mm與290 μm的軟性-Kapton®HN聚醯亞胺薄膜上,再將此軟性薄膜置入經過雷射切割的23G注射針臂內形成一多重生理訊號檢測探針;23G注射針頭外徑直徑為0.641mm、內徑直徑0.337mm、壁厚0.152mm,此微小之口徑能使實際穿刺時產生最輕微之生物體傷害。此多功能微型探針具有-51.9mV/pH酸鹼值靈敏度,37.4 mV/decade鉀離子濃度量測靈敏度與0.0436 Ω/ ℃溫度感測靈敏度。
本研究亦藉由豬隻動物實驗來驗證探針的可行性,並透過ECMO及箝制主動脈血液流動的動物模型設計讓心肌缺血,以模擬實際心臟手術心肌缺氧的情形。從探針於動物實驗中量測之訊號與各項血檢及病理切片做驗證後,得出其可即時反應心肌細胞受損酸壞之情形,並能提供適當時機點以做心肌保護液的再灌注。期望未來能將此探針實際應用於人體手術中,以提高手術成功率。
Tissue fluidic pH value is an important physiological signal, which can help physicians to diagnose whether the tissue is healthy or not. Meanwhile, extracellular pH value and potassium ion concentration could be indicators to determine the proper timing for the reperfusion of cardioplegic solution during cardiac surgery. As a result, in this thesis work, we successfully develop the fabrication processes of IrOx/AgCl-based pH sensor, Cu/Au-based resistive temperature detector, and PVC-based valinomycin ionophore as working electrode for potassium ion sensor and then integrate these sensors onto a single flexible Kapton® HN polyimide film, which can be fully embedded inside a laser-carved 23G needle for swine heart monitoring. The probe with an outer diameter of 0.641mm can result in the puncture wounds with minimal damage to the heart and exhibit the sensitivities of 51.9mV/pH, 37.4 mV/decade and 0.0436 Ω/℃ for pH, potassium concentration and temperature sensing, respectively. The clinical feasibility of the probe is validated by the animal models utilizing ECMO or clamping the aorta of the swine to mimic myocardial ischemia during actual cardiac surgery. Comparing the detected signals with the results of blood test and anatomic pathology, it has been found that the probe can effectively provide a real-time information regarding the process of myocardial cell damage and necrosis with pH reduction and even the possible timing for the reperfusion of cardioplegic solution. The experimental results have shown the potential of the probe for human cardiac surgery monitoring.
摘  要 i
Abstract ii
誌謝 iii
目錄 iv
圖章節 v
表章節 vii
壹、 緒論 1
1.1 pH值、鉀離子及溫度的恆定對人體的重要性 1
1.2研究動機 2
1.3針狀結構感測器比較 4
1.4感測器簡介 5
1.4.1酸鹼感測器 5
1.4.2酸鹼感測器歷史文獻 6
1.4.3鉀離子感測器 8
1.4.4溫度感測器簡介 9
1.4.5溫度感測器歷史文獻 10
1.5本實驗室歷代感測器回顧 12
貳、 感測探針設計原理與製作暨動物模型設計 14
2.1微型探針之設計原理 14
2.2微型探針之製程步驟 18
2.3感測探針與注射針頭之整合 23
2.4動物模型設計 25
參、 探針量測與動物實驗結果 27
3.1感測探針元件量測結果 27
3.1.1酸鹼值對應開路電位量測 27
3.1.2鉀離子濃度對應開路電位量測 29
3.1.3酸鹼值與鉀離子濃度相互干擾量測 30
3.1.4 RTD對應電阻量測 31
3.2動物模型實驗量測 32
3.2.1實驗量測:動物模型(I) 32
3.2.2實驗量測:動物模型(II) 34
3.2.3實驗量測:動物模型(III) 38
3.2.4 動物實驗總結 40
肆、 結論 41
參考資料 42
[1] R. W. Jeremy, Y. Koretsune, E. Marban, and L. C. Becker, "Relation between glycolysis and calcium homeostasis in postischemic myocardium," Circulation Research, vol. 70, no. 6, pp. 1180-1190, 1992.
[2] S. Grinstein, M. Woodside, C. Sardet, J. Pouyssegur, and D. Rotin, "Activation of the Na+/H+ antiporter during cell volume regulation. Evidence for a phosphorylation-independent mechanism," Journal of Biological Chemistry, vol. 267, no. 33, pp. 23823-23828, 1992.
[3] D. Allen and C. Orchard, "Myocardial contractile function during ischemia and hypoxia," Circulation Research, vol. 60, no. 2, pp. 153-168, 1987.
[4] D. Allen, H. Westerblad, and J. Lännergren, "The role of intracellular acidosis in muscle fatigue," In Fatigue, 1995: Springer, pp. 57-68.
[5] W. E. Cascio, G.-X. Yan, and A. G. Kleber, "Early changes in extracellular potassium in ischemic rabbit myocardium. The role of extracellular carbon dioxide accumulation and diffusion," Circulation Research, vol. 70, no. 2, pp. 409-422, 1992.
[6] W. Gaskell, "On the tonicity of the heart and blood vessels 1," The Journal of Physiology, vol. 3, no. 1, pp. 48-92, 1880.
[7] A. Mowlavi, M. W. Neumeister, B. J. Wilhelmi, Y.-H. Song, H. Suchy, and R. C. Russell, "Local hypothermia during early reperfusion protects skeletal muscle from ischemia-reperfusion injury," Plastic and Reconstructive Surgery, vol. 111, no. 1, pp. 242-250, 2003.
[8] W. C. Sealy, I. W. Brown Jr, W. G. Young, W. W. Smith, and A. M. Lesage, "Hypothermia and extracorporeal circulation for open heart surgery: its simplification with a heat exchanger for rapid cooling and rewarming," Annals of Surgery, vol. 150, no. 4, p. 627, 1959.
[9] H. Endo et al., "A needle-type optical enzyme sensor system for determining glucose levels in fish blood," Analytica Chimica Acta, vol. 573, pp. 117-124, 2006.
[10] J. Yun et al., "Electrical impedance spectroscopy for biotissue differentiation using bipolar electrodes positioned at the end of a hypodermic needle," in 2015 Transducers-2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2015: IEEE, pp. 1533-1536.
[11] L. N. Q. Hoa, H. R. Chen, and T. T. C. Tseng, "An Arrayed Micro‐glutamate Sensor Probe Integrated with On‐probe Ag/AgCl Reference and Counter Electrodes," Electroanalysis, vol. 30, no. 3, pp. 561-570, 2018.
[12] A. Weltin et al., "Continuous lactate monitoring by microsensors in spheroid 3D tumor cell cultures," in 2015 Transducers-2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2015: IEEE, pp. 1695-1698.
[13] J.-H. Lee, T.-S. Lim, Y. Seo, P. L. Bishop, and I. Papautsky, "Needle-type dissolved oxygen microelectrode array sensors for in situ measurements," Sensors and Actuators B: Chemical, vol. 128, no. 1, pp. 179-185, 2007.
[14] J.-L. Chiang, S.-S. Jan, J.-C. Chou, and Y.-C. Chen, "Study on the temperature effect, hysteresis and drift of pH-ISFET devices based on amorphous tungsten oxide," Sensors and Actuators B: Chemical, vol. 76, no. 1-3, pp. 624-628, 2001.
[15] P. Bergveld, "Development of an ion-sensitive solid-state device for neurophysiological measurements," IEEE Transactions on Biomedical Engineering, no. 1, pp. 70-71, 1970.
[16] J. Goicoechea, C. R. Zamarreño, I. Matias, and F. Arregui, "Optical fiber pH sensors based on layer-by-layer electrostatic self-assembled Neutral Red," Sensors and Actuators B: Chemical, vol. 132, no. 1, pp. 305-311, 2008.
[17] B.-C. Deboux, E. Lewis, P. Scully, and R. Edwards, "A novel technique for optical fiber pH sensing based on methylene blue adsorption," Journal of Lightwave Technology, vol. 13, no. 7, pp. 1407-1414, 1995.
[18] L. W. Niedrach, "A new membrane‐type pH sensor for use in high temperature‐high pressure water," Journal of The Electrochemical Society, vol. 127, no. 10, pp. 2122-2130, 1980.
[19] L. Pocrifka, C. Goncalves, P. Grossi, P. Colpa, and E. Pereira, "Development of RuO2–TiO2 (70–30) mol% for pH measurements," Sensors and Actuators B: Chemical, vol. 113, no. 2, pp. 1012-1016, 2006.
[20] S. Yao, M. Wang, and M. Madou, "A pH electrode based on melt-oxidized iridium oxide," Journal of the Electrochemical Society, vol. 148, no. 4, pp. H29-H36, 2001.
[21] A. Fog and R. P. Buck, "Electronic semiconducting oxides as pH sensors," Sensors and Actuators, vol. 5, no. 2, pp. 137-146, 1984.
[22] T. Katsube, I. Lauks, and J. Zemel, "pH-sensitive sputtered iridium oxide films," Sensors and Actuators, vol. 2, pp. 399-410, 1981.
[23] W.-D. Huang, H. Cao, S. Deb, M. Chiao, and J.-C. Chiao, "A flexible pH sensor based on the iridium oxide sensing film," Sensors and Actuators A: Physical, vol. 169, no. 1, pp. 1-11, 2011.
[24] M. I. Khan, A. M. Khan, A. Nouman, M. I. Azhar, and M. K. Saleem, "pH sensing materials for MEMS sensors and detection techniques," in International Conference on Solid-State and Integrated Circuit, 2012, vol. 32.
[25] S. Goldstein, J. Peterson, and R. Fitzgerald, "A miniature fiber optic pH sensor for physiological use," Journal of Biomechanical Engineering, vol. 102, no. 2, pp. 141-146, 1980.
[26] G. A. Tait, R. B. Young, G. J. Wilson, D. Steward, and D. MacGregor, "Myocardial pH during regional ischemia: evaluation of a fiber-optic photometric probe," American Journal of Physiology-Heart and Circulatory Physiology, vol. 243, no. 6, pp. H1027-H1031, 1982.
[27] H. J. Chung et al., "Stretchable, multiplexed pH sensors with demonstrations on rabbit and human hearts undergoing ischemia," Advanced Healthcare Materials, vol. 3, no. 1, pp. 59-68, 2014.
[28] V. V. Cosofret, M. Erdosy, T. A. Johnson, R. P. Buck, R. B. Ash, and M. R. Neuman, "Microfabricated sensor arrays sensitive to pH and K+ for ionic distribution measurements in the beating heart," Analytical Chemistry, vol. 67, no. 10, pp. 1647-1653, 1995.
[29] S. A. Marzouk, R. P. Buck, L. A. Dunlap, T. A. Johnson, and W. E. Cascio, "Measurement of extracellular pH, K+, and lactate in ischemic heart," Analytical Biochemistry, vol. 308, no. 1, pp. 52-60, 2002.
[30] J. L. Hill, L. S. Gettes, M. R. Lynch, and N. C. Hebert, "Flexible valinomycin electrodes for on-line determination of intravascular and myocardial K+," American Journal of Physiology-Heart and Circulatory Physiology, vol. 235, no. 4, pp. H455-H459, 1978.
[31] W. E. Cascio, G.-X. Yan, and A. G. Kleber, "Early changes in extracellular potassium in ischemic rabbit myocardium. The role of extracellular carbon dioxide accumulation and diffusion," Circulation Research, vol. 70, no. 2, pp. 409-422, 1992.
[32] A. G. Kléber, C. B. Riegger, and M. J. Janse, "Extracellular K+ and H+ shifts in early ischemia: mechanisms and relation to changes in impulse propagation," Journal of Molecular and Cellular Cardiology, vol. 19, pp. 35-44, 1987.
[33] A. G. Kléber, "Resting membrane potential, extracellular potassium activity, and intracellular sodium activity during acute global ischemia in isolated perfused guinea pig hearts," Circulation Research, vol. 52, no. 4, pp. 442-450, 1983.
[34] I. Taurino et al., "Platinum nanopetal-based potassium sensors for acute cell death monitoring," Rsc Advances, vol. 6, no. 46, pp. 40517-40526, 2016.
[35] B. Baker, "Temperature sensing technologies," AN679, Microchip Technology Inc, 1998.
[36] E. J. Santos and I. B. Vasconcelos, "RTD-based smart temperature sensor: Process development and circuit design," in 2008 26th International Conference on Microelectronics, 2008: IEEE, pp. 333-336.
[37] M. D. Husain and T. Dias, "Development of Knitted Temperature Sensor (KTS)," SysTex Student Award, 2009.
[38] H.-S. Chuang and S. Wereley, "Design, fabrication and characterization of a conducting PDMS for microheaters and temperature sensors," Journal of Micromechanics and Microengineering, vol. 19, no. 4, p. 045010, 2009.
[39] Y. Chen, W. Hsu, S. Cheng, and Y. Cheng, "A flexible, non-intrusive power sensor tag for the electricity monitoring of two-wire household appliances," in 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), 2012: IEEE, pp. 620-623.
[40] C.-Y. Lee, C.-H. Lin, and Y.-M. Lo, "Fabrication of a flexible micro temperature sensor for micro reformer applications," Sensors, vol. 11, no. 4, pp. 3706-3716, 2011.
[41] T.-Y. Chao, C.-H. Li, Y. C. Chen, H.-Y. Chen, Y.-T. Cheng, and C.-N. Kuo, "An interconnecting technology for RF MEMS heterogeneous chip integration," IEEE Transactions on Electron Devices, vol. 57, no. 4, pp. 928-938, 2010.
[42] K.-S. Li, T.-Y. Chao, Y. Cheng, J.-K. Chen, and Y.-S. Chen, "Temperature sensing probe integrated with an SU-8 flexible ribbon cable for heart surgery application," in 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, 2011: IEEE, pp. 2180-2183.
[43] Y. Fan, Y. Chen, Y. Cheng, and Y. Chen, "Design and fabrication of a multipoint pH and temperature recording probe for real-time heart muscle monitoring," in 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 2013: IEEE, pp. 1263-1266.
[44] A. Cadogan, Z. Gao, A. Lewenstam, A. Ivaska, and D. Diamond, "All-solid-state sodium-selective electrode based on a calixarene ionophore in a poly (vinyl chloride) membrane with a polypyrrole solid contact," Analytical Chemistry, vol. 64, no. 21, pp. 2496-2501, 1992.
[45] J. Ha et al., "A polymeric junction membrane for solid-state reference electrodes," Analytica Chimica Acta, vol. 549, no. 1-2, pp. 59-66, 2005.
[46] Y.-C. Hsieh et al., "Development of IrO2 bio-ink for ink-jet printing application," Ceramics International, vol. 45, no. 13, pp. 16645-16650, 2019.
[47] B. J. Polk, A. Stelzenmuller, G. Mijares, W. MacCrehan, and M. Gaitan, "Ag/AgCl microelectrodes with improved stability for microfluidics," Sensors and Actuators B: Chemical, vol. 114, no. 1, pp. 239-247, 2006.
[48] 張光宇(2019)。應用於下肢肌肉監測之酸鹼/溫度/鉀/氨離子多重訊號感測探針開發與動物實驗。國立交通大學電子研究所碩士論文,新竹市。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊