|
【1】經濟部水利署中區水資源局., 2010. 【2】黃馨儀 環境資訊中心 “紡織業背後滲出大量毒素”. 【3】K. Sahel, N. Perol, H. Chermette, C. Bordes, Z. Derriche, C. Guillard, Photocatalytic decolorization of Remazol Black 5 (RB5) and Procion Red MX-5B—Isotherm of adsorption, kinetic of decolorization and mineralization, Appl. Catal. B:Environ. 2007, 77, 100. 【4】N. Guettai, H. A. Amar, Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part II: kinetics study, Desalination 2005, 185, 439. 【5】張家源 汙水工程 嘉南藥理科技大學環境工程與科學系 【6】J.C. Kotz, P.M. Treichel, J. Townsend, Chemistry and chemical reactivity 2011,695. 【7】M. Grätzel, Photoelectrochemical cells, Nature 2001, 414, 338. 【8】M. Pelaez et al., A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B: Environmental 2012, 125, 331. 【9】A. Fujishima, K. Honda, Nature 1972, 238, 37. 【10】J. Liebig, Uber einige Stickstoff ‐ Verbindungen, Annalen 1834, 10, 10. 【11】A.Y. Liu, M.L. Cohen, Prediction of New Low Compressibility Solids, Science 1989, 245, 841. 【12】G. Dong, Y. Zhang, Q. Pan, J. Qiu, A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties, J. Photoch. Photobio. C 2014, 20, 33. 【13】A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev. 2009, 38, 253. 【14】P. Niu, L. Zhang, G. Liu, H.M. Cheng, Graphene‐like carbon nitride nanosheets for improved photocatalytic activities, Adv. Funct. Mater. 2012, 22, 4763. 【15】J. Xu, L.W. Zhang, R. Shi, Y.F. Zhu, Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis, J. Mater. Chem. A 2013, 1, 14766. 【16】X. Rong, F. Qiu, J. Rong, X. Zhu, J. Yan, D. Yang, Enhanced visible light photocatalytic activity of W-doped porous g-C3N4 and effect of H2O2, Mater. Lett. 2016, 164, 127. 【17】Y. Zhou, L. Zhang, J. Liu, X. Fan, B. Wang, M. Wang, W. Ren, J. Wang, M. Li, J. Shi, Brand new P-doped g-C3N4: enhanced photocatalytic activity for H2 evolution and Rhodamine B degradation under visible light, J. Mater. Chem. A 2015, 3, 3862. 【18】G. Zhang, M. Zhang, X. Ye, X. Qiu, S. Lin, X. Wang, Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution, Adv. Mater. 2014, 26, 805. 【19】G. Henkelman, A. Arnaldsson, H. Jonsson, A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci. 2006, 36, 254. 【20】M. Chong, B. Jin, C. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: A review, Water Res. 2010, 44, 2997. 【21】P. Fernández-Ibáñez, J. Blanco, S. Malato, F.J.de las Nieves, Application of the colloidal stability of TiO2 particles for recovery and reuse in solar photocatalysis, Water Res. 2003, 37, 3180. 【22】S. Kagayaa, K. Shimizua, R. Araib, K. Hasegawaa, Separation of titanium dioxide photocatalyst in its aqueous suspensions by coagulation with basic aluminium chloride, Water Res. 1999, 33, 1753. 【23】Y. Zhao, W. Xing, N. Xu, S.F. Wong, Effects of inorganic salt on ceramic membrane microfiltration of titanium dioxide suspension, J. Membrane Sci., 2005, 254, 81. 【24】S.O. Ganiyu, E.D. van Hullebusch, M. Cretin, G. Esposito, M.A. Oturan, Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: A critical review, Sep. Purif. Technol. 2015, 156, 891. 【25】S.U. Geissen, W. Xi, A. Weidemeyer, A. Vogelpohl, L. Bousselmi, A. Ghrabi, A. Ennabli, Comparison of suspended and fixed photocatalytic reactor systems., Water Sci. Technol. 2001, 44, 245. 【26】S. Mozia, Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review, Sep. Purif. Technol. 2010, 73, 71. 【27】X. Zhang, J. Pan, A. Du, W. Fu, D. Sun, J.O. Leckie, Combination of one-dimensional TiO2 nanowire photocatalytic oxidation with microfiltration for water treatment, Water Res. 2009, 43, 1179. 【28】J. Zhang, L. Wang, G. Zhang, Z. Wang, L. Xu, Z. Fan, Influence of azo dye-TiO2 interactions on the filtration performance in a hybrid photocatalysis/ultrafiltration process, J. Colloid Interface Sci. 2013, 389, 273. 【29】M. Pidou, S.A. Parsons, G. Raymond, P. Jeffrey, T. Stephenson, B. Jefferson, Fouling control of a membrane coupled photocatalytic process treating greywater, Water Res. 2009, 43, 3932. 【30】P. Wang, A.G. Fane, T.T. Lim, Evaluation of a submerged membrane vis-LED photoreactor (sMPR) for carbamazepine degradation and TiO2 separation, Chem. Eng. J. 2013, 215, 240. 【31】X. Huang, M. Leal, Q. Li, Degradation of natural organic matter by TiO2 photocatalytic oxidation and its effect on fouling of low-pressure membranes, Water Res. 2008, 42, 1142. 【32】X. Zhang, A. Du, P. Lee, D. Sun, J. Leckie, TiO2 nanowire membrane for concurrent filtration and photocatalytic oxidation of humic acid in water, J. Membr. Sci. 2008, 313, 44. 【33】R.A. Damodar, S.J. You, G.W. Chiou, Investigation on the conditions mitigating membrane fouling caused by TiO2 deposition in a membrane photocatalytic reactor (MPR) used for dye wastewater treatment, J. Hazard. Mater. 2012, 203, 348. 【34】L. Erdei, N. Arecrachakul, S. Vigneswaran, A combined photocatalytic slurry reactor–immersed membrane module system for advanced wastewater treatment, Sep. Purif. Technol. 2008, 62, 382. 【35】W. Zhang, J. Luo, L. Ding, M.Y. Jaffrin, A review on flux decline control strategies in pressure-driven membrane processes, Ind. Eng. Chem. Res. 2015, 54, 2843. 【36】Y. Gao, M. Hu, B. Mi, Membrane surface modification with TiO2–graphene oxide for enhanced photocatalytic performance, J. Membr. Sci. 2014, 455, 349. 【37】Y. Meng, X. Huang, Q. Yang, Y. Qian, N. Kubota, S. Fukunaga, Treatment of polluted river water with a photocatalytic slurry reactor using low-pressure mercury lamps coupled with a membrane, Desalination 2005, 181, 121. 【38】X. Huang, Y. Meng, P. Liang, Y. Qian, Operational conditions of a membrane filtration reactor coupled with photocatalytic oxidation, Sep. Purif. Technol. 2007, 55, 165. 【39】R. Molinari, A. Caruso, P. Argurio, T. Poerio, Degradation of the drugs Gemfibrozil and Tamoxifen in pressurized and de-pressurized membrane photoreactors using suspended polycrystalline TiO2 as catalyst, J. Membr. Sci. 2008, 319, 54. 【40】M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 1995, 95, 69. 【41】R. Goei, T.T. Lim, Ag-decorated TiO2 photocatalytic membrane with hierarchical architecture: Photocatalytic and anti-bacterial activities, Water Res. 2014, 59, 207. 【42】G. Wang, S. Chen, H. Yu, X. Quan, Integration of membrane filtration and photoelectrocatalysis using a TiO2/carbon/Al2O3 membrane for enhanced water treatment,J. Hazard. Mater. 2015, 299, 34. 【43】S. Mozia, D. Darowna, K. Szyman´ ski, S. Grondzewska, K. Borchert, R. Wróbel, A. W. Morawski, Performance of two photocatalytic membrane reactors for treatment of primary and secondary effluents, Catal. Today 2014, 236, 135. 【44】R. Thiruvenkatachari, S. Vigneswaran, I.S. Moon, A review on UV/TiO2 photocatalytic oxidation process, J. Chem. Eng. 2008, 25, 64. 【45】K. Sopajaree, S. Qasim, S. Basak, K. Rajeshwar, An integrated flow reactor-membrane filtration system for heterogeneous photocatalysis. Part II: Experiments on the ultrafiltration unit and combined operation, J. Appl. Electrochem. 1999, 29, 1111. 【46】S.A. Lee, K.H. Choo, C.H. Lee, H.I. Lee, T. Hyeon, W. Choi, H.H. Kwon, Use of ultrafiltration membranes for the separation of TiO2 photocatalysts in drinking water treatment, Ind. Eng. Chem. Res. 2001, 40, 1712. 【47】S. Kertèsz, J. Cakl, H. Jiránková, Submerged hollow fiber microfiltration as a part of hybrid photocatalytic process for dye wastewater treatment, Desalination 2014, 43, 106. 【48】I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review, Appl. Catal. B 2004, 49, 1. 【49】D.F. Ollis, E. Pelizzetti, N. Serpone, Photocatalyzed destruction of water contaminants, Environ. Sci. Technol. 1991, 25, 1522. 【50】T.E. Doll, F.H. Frimmel, Cross-flow microfiltration with periodical back-washing for photocatalytic degradation of pharmaceutical and diagnostic residues–evaluation of the long-term stability of the photocatalytic activity of TiO2, Water Res. 2005, 39, 847. 【51】S.P. Kamble, S.B. Sawant, V.G. Pangarkar, Batch and continuous photocatalytic degradation of benzenesulfonic acid using concentrated solar radiation, Ind. Eng. Chem. Res. 2003, 42, 6705. 【52】S. Kaneco, M. Arifur Rahmana, T. Suzuki, H. Katsumata, K. Ohta, Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide, J. Photochem. Photobiol. A 2004, 163, 419. 【53】I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review, Appl. Catal. B 2004, 49, 1. 【54】J.P.S. Valente, P.M. Padilha, A.O. Florentino, Studies on the adsorption and kinetics of photodegradation of a model compound for heterogeneous photocatalysis onto TiO2, Chemosphere 2006, 64, 1128. 【55】J.-M. Herrmann, Heterogeneous photocatalysis: state of the art and present applications In honor of Pr. R.L. Burwell Jr. (1912–2003), Former Head of Ipatieff Laboratories, Northwestern University, Evanston (Ill), Top. Catal. 2005, 34, 49. 【56】P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions, Adv. Environ. Res. 2004, 8, 501. 【57】J.-M. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants, Catal. Today 1999, 53, 115. 【58】K. Wang, Q. Li, B. Liu, B. Cheng, W. Ho, J. Yu, Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance, Appl. Catal. B Environ. 2015, 176, 44. 【59】S. Hu, L. Ma, J. You, F. Li, Z. Fan, G. Lu, Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts co-doped with iron and phosphorus, Appl. Surf. Sci. 2014, 311, 164. 【60】C. C. Hu, W. Z. Hung, M. S. Wang, P. J. Lu, Phosphorus and sulfur codoped g-C3N4 as an efficient metal-free photocatalyst, Carbon 2018, 127, 374. 【61】Y. Cui, J. Huang, X. Fu, X. Wang, Metal-free photocatalytic degradation of 4-chlorophenol in water by mesoporous carbon nitride semiconductors, Catal. Sci. Technol. 2012, 2, 1396. 【62】G. Liu, P. Niu, C. Sun, S. C. Smith, Z. Chen, G. Q. Lu, H. M. Cheng, Unique Electronic Structure Induced High Photoreactivity of Sulfur-Doped Graphitic C3N4, J. Am. Chem. Soc. 2010, 132, 11642.
|