跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/03 21:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王貿生
研究生(外文):Mao-Sheng, Wang
論文名稱:磷摻雜石墨型氮化碳應用於薄膜觸媒反應器之設計及應用
論文名稱(外文):Design and Application of Photocatalytic-Membrane Reactor using Phosphorus-Doped Graphitic Carbon Nitride as Photocatalyst
指導教授:胡哲嘉
指導教授(外文):Che-Chia, Hu
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:90
中文關鍵詞:光觸媒薄膜反應器磷摻雜石墨型氮化碳甲基藍可見光
外文關鍵詞:Photocatalytic-Membrane Reactorphosphorus dopinggraphite carbon nitridemethyl bluevisible light
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
如何有效的解決廢水問題是目前備受矚目的議題,其中光觸媒薄膜反應器(Photocatalytic-Membrane Reactor, PMR)是近年來嶄新處理廢水的系統。相較於傳統批次光催化反應,光觸媒薄膜反應器具有以下優點,限制光觸媒在反應環境內、控制分子在反應器內的滯留時間,並可在連續操作過程中將產物與光觸媒分離。因此本實驗將設計一個薄膜觸媒反應混和系統,利用光化學氧化法以及薄膜過濾處理有機廢水。
本實驗以三聚氯化磷腈(HCCP)與三聚氰胺(melamine)作為前驅物,經固相法高溫鍛燒後得到磷離子摻雜石墨型氮化碳(PCN),並改變反應物之重量百分比來檢測對晶體結構與型態之影響。XRD結果顯示,透過重量百分比5、10、15的磷離子摻雜後,PCN仍保持著13.1與27.1度的石墨型氮化碳(100)與(002)結晶面繞射峰; PL中則可發現,經由磷摻雜後之PCN其放光特性皆比石墨型氮化碳小,表示磷摻雜有助於減少電子電洞對再結合。接著利用可見光照射進行光催化降解反應,其中以重量百分比10的磷離子摻雜石墨型氮化碳(10PCN)具有最佳的光催化反應,利用一階動力模型計算後可得速率常數k值為 0.019 min-1。
而本研究選擇無機陶瓷膜做為薄膜觸媒混和系統之薄膜,因其機械強度相對於高分子聚合物薄膜高,亦可長時間操作,中空纖維膜之膜孔直徑約為1.2 mm,膜厚約為200 μm。
並透過結合高催化活性的磷摻雜氮化碳(PCN)光觸媒與薄膜過濾設置一光觸媒薄膜反應器,於金屬鹵素燈照射下對於有機染劑甲基藍(Methyl Blue, MB)進行移除,其效率相對於批次光催化系統和薄膜系統分別提升了1.63和1.22倍,並且具有良好的穩定性;在移除甲基橙(Methyl Orange, MO)時,PMR系統能有效減緩薄膜結垢的問題;在移除苯酚(phenol)時,PMR系統能將有毒物質礦化成小分子化合物。並且經由模擬工廠廢水,PMR系統能有效降解3種不同有機廢水。經上述實驗測試,證明PMR系統能夠有效的處理不同種類的有機廢水。
KEYWORDS: 光觸媒薄膜反應器、磷摻雜、石墨型氮化碳、甲基藍、可見光
Photocatalytic-Membrane Reactor (PMR) has been widely used in wastewater removal in recent years. Compared to batch photodegradation system, not only photocatalyst can be separated from liquid phase in PMR, but also the removal efficiency can be increased significantly. In this study, we design a PMR system to remove wastewater containing methyl blue, methyl orange, phenol, and mixed organic dyes.
In this study, phosphorus-doped graphite-type carbon nitride (PCN) was prepared in an attempt to coat on the substrate. XRD patterns show the diffraction peaks of PCN are located at 13.1° and 27.1°, which can be confirm as the (100) and (002) crystal plane of graphite-type carbon nitride(C3N4). In PL analysis, the emission peak of PCN is lower than C3N4, which can be contributed to the phosphorus doping. In photodegradation reactions, 10 wt% of phosphorus-doped C3N4 (10PCN) showed the highest degradation activity under visible light irradiation among the samples.
In the hollow fiber membrane system, an inorganic hollow fiber membrane was prepared by spinning using an alumina solution. SEM images revealed the pore diameter of the membrane was approximately 1.2 mm and the membrane thickness was around 200 μm. To fabricate a PMR system, PCN was integrated with PMR system for wastewater treatment under irradiation of metal halide lamp. The removal efficiency of the PMR system is 1.63 and 1.22 times higher than the batch photodegradation system and the membrane system, respectively. The PMR system show high stability and can effectively removal different kinds of organic wastewater.
KEYWORDS: Photocatalytic-Membrane Reactor, phosphorus doping, graphite carbon nitride, methyl blue, visible light
目錄

摘要 I
Abstract III
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
第二章 文獻回顧 4
2-1 光觸媒原理及應用 4
2-2 石墨型氮化碳之物質特性 6
2-3 石墨型氮化碳活性之提升 8
2-3-1 奈米化結構 8
2-3-2 金屬或非金屬離子之摻雜 11
2-4 Photocatalytic membrane reactors(PMRs)系統 16
2-4-1 PMRs系統種類 16
2-4-2 Fouling的形成與控制 21
2-4-3影響PMR系統光催化之因素 26
第三章 研究動機 30
第四章 實驗裝置與步驟 31
4-1 實驗材料與儀器 31
4-2 實驗步驟 33
4-2-1 固相法製備磷摻雜石墨型氮化碳 33
4-2-2 固相法製備磷摻雜石墨型氮化碳於氧化鋁基板 33
4-2-3 光催化降解甲基藍 33
4-3 分析儀器原理 35
第五章 結果與討論 40
5-1 磷摻雜石墨型氮化碳特性分析 40
5-1-1 磷摻雜石墨型氮化碳於光催化降解之效果(BSP system) 43
5-1-2 摻雜10wt%磷於石墨型氮化碳(10PCN)特性分析 45
5-2 摻雜10wt%磷於石墨型氮化碳固定於氧化鋁基板(10PCN@Al2O3)特性分析 51
5-2-1 摻雜10wt%磷於石墨型氮化碳固定於氧化鋁基板(10PCN@Al2O3) 於光催化降解之效果(BIP system) 58
5-3 氧化鋁中空纖維膜於過濾甲基藍之效果 (CM system) 60
5-4 氧化鋁中空纖維膜與1-10PCN@Al2O3處理甲基藍之效果(PMR system) 61
5-5 氧化鋁中空纖維膜與1-10PCN@Al2O3處理不同有機廢水之效果(PMR system) 64
第六章 結論 70
參考文獻 71
附錄一 78
附錄二 79

圖目錄
圖1-1地球上水資源分布[1] 1
圖2-1反應過程加入觸媒之活化能變化示意圖[6] 4
圖2-2光觸媒經由光催化的反應機制圖[8] 5
圖2-3 Liebig利用硫氰酸汞加熱分解後所得含氮碳之材料 (a) melamine (b) melam (c) melem (d) melon 6
圖2-4以s-heptazine或tri-s-triazine結構組成之石墨型氮化碳結構圖 7
圖2-5不同前驅物以熱縮合法(thermal condensation)合成石墨型氮化碳示意圖 8
圖2-6 (A)塊狀石墨型氮化碳與(B)奈米片狀石墨型氮化碳之SEM圖 9
圖2-7 (a)塊狀石墨型氮化碳與(b)奈米片狀石墨型氮化碳之UV吸收圖譜 9
圖2-8在紫外光-可見光下,利用(a)塊狀石墨型氮化碳(b)奈米片狀石墨型氮化碳在水和三乙醇胺混和溶液中進行產氫反應 10
圖2-9 (a)利用硫酸插入塊狀g-C3N4層與層的間隔 (b)透過加熱和震盪得到單層的g-C3N4 10
圖2-10塊狀g-C3N4與單層g-C3N4之XRD圖譜 11
圖2-11塊狀g-C3N4與單層g-C3N4在可見光下分別做(a)產氫反應 (b)苯酚光降解反應 11
圖2-12不同比例的鎢摻雜石墨型氮化碳對於可見光光催化降解甲基橙 12
圖2-13有機染劑中加入過氧化氫後之光觸媒催化反應機制示意圖 12
圖2-14不同比例磷摻雜石墨型氮化碳 (a)產氫效率圖 (b)P10-550重複性測試 13
圖2-15石墨型氮化氮摻雜磷結構示意圖 13
圖2-16不同比例碘摻雜石墨型氮化碳之(a) UV-vis (b) PL圖譜 14
圖2-17不同比例碘離子摻雜石墨型氮化碳之產氫效能 15
圖2-18 (a) CN與CN-I之XPS全譜(Survey)圖 (b) CN-I之XPS之I 3d電子能譜圖 15
圖2-19碘摻雜石墨型氮化碳側面與俯視結構示意圖(棕色:I 藍色:N 灰色:C) 15
圖2-20 (a) Slurry PMRs (光催化劑懸浮在液體中的光反應器)和(b) Immobilized PMRs (光催化劑固定在基板或是薄膜上的光反應器) 18
圖2-21 Slurry PMRs:光源放置薄膜上方 18
圖2-22 Slurry PMRs:光源放置進料槽上方 18
圖2-23 Slurry PMRs:光源放置光反應器上方 19
圖2-24 Immobilized PMRs:光源放置薄膜上方 19
圖2-25單純TiO2和HA與TiO2混和物引起薄膜結垢示意圖 21
圖2-26以TiO2/carbon/Al2O3薄膜作為陽極之光電催化膜示意圖 24
圖2-27使用後的膜過濾阻力和清洗薄膜阻力變化 26
圖2-28光觸媒原理示意圖和TiO2在紫外光下的光催化氧化反應式 29
圖4-1 500W氙燈光譜圖 34
圖4-2 250W金屬鹵素燈光譜圖 34
圖4-3 X光對晶體繞射圖 [X-ray diffraction-Bruker D8 Discover] 36
圖5-1不同比例磷離子摻雜之石墨型氮化碳(PCN)之XRD圖譜 40
圖5-2不同比例磷離子摻雜之石墨型氮化碳(PCN)之FTIR圖譜 41
圖5-3不同比例磷離子摻雜之石墨型氮化碳(PCN)之UV圖譜 42
圖5-4不同比例磷離子摻雜之石墨型氮化碳(PCN)之PL圖譜 43
圖5-5 以氙燈為光源,在BSP系統下,不同比例磷離子摻雜石墨型氮化碳(PCN)對甲基藍(6.25*10-6M)之可見光光催化降解效能圖與其動力學一階反應模型 44
圖5-6不同比例磷離子摻雜之石墨型氮化碳(PCN)之光催化降解反應速率常數對照圖 45
圖5-7 石墨型氮化碳(CN)與10wt%磷摻雜於於石墨型氮化碳(10PCN)之SEM圖 46
圖5-8 CN與10PCN之XPS全譜(survey)圖 47
圖5-9 CN與10PCN之XPS之C 1s電子能譜圖 48
圖5-10 CN與10PCN之XPS之N 1s電子能譜圖 48
圖5-11 CN與10PCN之XPS之O 1s電子能譜圖 49
圖5-12 CN與10PCN之XPS之P 2p電子能譜圖 49
圖5-13透過固相法將磷摻雜於石墨型氮化碳示意圖 50
圖5-14在室溫下CN與10PCN之EPR譜圖(a)全譜圖(b)範圍在3480-3560 G 51
圖5-15 氧化鋁基板(Al2O3)和10wt%磷摻雜於石墨型氮化碳固定於氧化鋁基板(10PCN@Al2O3)之XRD圖譜 52
圖5-16 Al2O3基板、10PCN@Al2O3和粉體10PCN之FTIR圖譜 53
圖5-17 10PCN@Al2O3之XPS全譜圖 54
圖5-18 10PCN@Al2O3之XPS C 1s圖 54
圖5-19 10PCN@Al2O3之XPS N 1s圖 55
圖5-20 10PCN@Al2O3之XPS O 1s圖 55
圖5-21 10PCN@Al2O3之XPS P 2p圖 56
圖5-22 Al2O3和10PCN@Al2O3之SEM圖(Top view) 57
圖5-23 (a) Al2O3 (b) 1-10PCN@ Al2O3 (c) 2-10PCN@ Al2O3 之SEM圖(Side view) 57
圖5-24 以金屬鹵素燈為燈源,在BIP系統下,10PCN@Al2O3之光催化降解甲基藍(6.25*10-6M)效能圖 59
圖5-25 以金屬鹵素燈為燈源,在BIP系統下,不同塗佈次數10PCN@Al2O3之光催化降解甲基藍(6.25*10-6M)效能圖 59
圖5-26在CM系統下,氧化鋁中空纖維膜過濾甲基藍(6.25*10-6M)之效率與滲透通量圖 60
圖5-27以金屬鹵素燈為光源,在BIP、CM和PMR三個不同系統下對甲基藍(6.25*10-6M)之光催化效率圖 61
圖5-28在PMR與CM系統下處理甲基藍(6.25*10-6M)之滲透通量比較圖 62
圖5-29 以金屬鹵素燈為光源,在PMR系統下, 1片1-10PCN@Al2O3與4片1-10PCN@Al2O3於反應槽內對甲基藍(6.25*10-6M)之效率圖 63
圖5-30 以金屬鹵素燈為光源,在PMR系統下, 1片1-10PCN@Al2O3與4片1-10PCN@Al2O3於反應槽內處理甲基藍(6.25*10-6M)之滲透通量比較圖 63
圖5-31 以金屬鹵素燈為光源,PMR系統中, 4片1-10PCN@Al2O3於反應槽內對甲基藍(6.25*10-6M)之穩定性測試 64
圖5-32 以金屬鹵素燈為光源,在BIP、CM和PMR三個不同系統下對甲基橙(2.5*10-5M)之光催化效率圖 66
圖5-33 以金屬鹵素燈為光源,在CM和PMR兩個不同系統下對甲基橙(2.5*10-5M)之滲透通量圖 66
圖5-34 在壓力為1 bar下,CM系統與PMR系統之純水滲透通量比較圖 67
圖5-35 以金屬鹵素燈為光源,在PMR系統下苯酚(3.5*10-5M)隨時間之UV-vis圖 67
圖5-36 以UV光做為燈源,利用TiO2光催化苯酚的可能機制圖[62] 68
圖5-37 以金屬鹵素燈為光源,經過PMR系統處理苯酚(3.5*10-5M)前後之總有機碳含量比較圖 68
圖5-38 在(a) CM (b) BIP系統下,苯酚(3.5*10-5M)隨時間之UV-vis圖 69
圖5-39 以金屬鹵素燈為光源,在PMR系統下混和有機廢水(甲基藍5ppm, 甲基橙8.18ppm, 苯酚3.3ppm)隨時間之UV-vis圖 69



表目錄
表2-1 Slurry PMRs and immobilized PMRs 優缺點[25] 20
表4-1實驗材料 31
表4-2實驗器材 32
表5-1不同比例磷離子摻雜之石墨型氮化碳(PCN)之能隙 42
表5-2 CN與10PCN之EDS分析 47
表5-3不同塗佈次數的10 PCN@Al2O3重量表 57
【1】經濟部水利署中區水資源局., 2010.
【2】黃馨儀 環境資訊中心 “紡織業背後滲出大量毒素”.
【3】K. Sahel, N. Perol, H. Chermette, C. Bordes, Z. Derriche, C. Guillard, Photocatalytic decolorization of Remazol Black 5 (RB5) and Procion Red MX-5B—Isotherm of adsorption, kinetic of decolorization and mineralization, Appl. Catal. B:Environ. 2007, 77, 100.
【4】N. Guettai, H. A. Amar, Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part II: kinetics study, Desalination 2005, 185, 439.
【5】張家源 汙水工程 嘉南藥理科技大學環境工程與科學系
【6】J.C. Kotz, P.M. Treichel, J. Townsend, Chemistry and chemical reactivity 2011,695.
【7】M. Grätzel, Photoelectrochemical cells, Nature 2001, 414, 338.
【8】M. Pelaez et al., A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B: Environmental 2012, 125, 331.
【9】A. Fujishima, K. Honda, Nature 1972, 238, 37.
【10】J. Liebig, Uber einige Stickstoff ‐ Verbindungen, Annalen 1834, 10, 10.
【11】A.Y. Liu, M.L. Cohen, Prediction of New Low Compressibility Solids, Science 1989, 245, 841.
【12】G. Dong, Y. Zhang, Q. Pan, J. Qiu, A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties, J. Photoch. Photobio. C 2014, 20, 33.
【13】A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev. 2009, 38, 253.
【14】P. Niu, L. Zhang, G. Liu, H.M. Cheng, Graphene‐like carbon nitride nanosheets for improved photocatalytic activities, Adv. Funct. Mater. 2012, 22, 4763.
【15】J. Xu, L.W. Zhang, R. Shi, Y.F. Zhu, Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis, J. Mater. Chem. A 2013, 1, 14766.
【16】X. Rong, F. Qiu, J. Rong, X. Zhu, J. Yan, D. Yang, Enhanced visible light photocatalytic activity of W-doped porous g-C3N4 and effect of H2O2, Mater. Lett. 2016, 164, 127.
【17】Y. Zhou, L. Zhang, J. Liu, X. Fan, B. Wang, M. Wang, W. Ren, J. Wang, M. Li, J. Shi, Brand new P-doped g-C3N4: enhanced photocatalytic activity for H2 evolution and Rhodamine B degradation under visible light, J. Mater. Chem. A 2015, 3, 3862.
【18】G. Zhang, M. Zhang, X. Ye, X. Qiu, S. Lin, X. Wang, Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution, Adv. Mater. 2014, 26, 805.
【19】G. Henkelman, A. Arnaldsson, H. Jonsson, A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci. 2006, 36, 254.
【20】M. Chong, B. Jin, C. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: A review, Water Res. 2010, 44, 2997.
【21】P. Fernández-Ibáñez, J. Blanco, S. Malato, F.J.de las Nieves, Application of the colloidal stability of TiO2 particles for recovery and reuse in solar photocatalysis, Water Res. 2003, 37, 3180.
【22】S. Kagayaa, K. Shimizua, R. Araib, K. Hasegawaa, Separation of titanium dioxide photocatalyst in its aqueous suspensions by coagulation with basic aluminium chloride, Water Res. 1999, 33, 1753.
【23】Y. Zhao, W. Xing, N. Xu, S.F. Wong, Effects of inorganic salt on ceramic membrane microfiltration of titanium dioxide suspension, J. Membrane Sci., 2005, 254, 81.
【24】S.O. Ganiyu, E.D. van Hullebusch, M. Cretin, G. Esposito, M.A. Oturan, Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: A critical review, Sep. Purif. Technol. 2015, 156, 891.
【25】S.U. Geissen, W. Xi, A. Weidemeyer, A. Vogelpohl, L. Bousselmi, A. Ghrabi, A. Ennabli, Comparison of suspended and fixed photocatalytic reactor systems., Water Sci. Technol. 2001, 44, 245.
【26】S. Mozia, Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review, Sep. Purif. Technol. 2010, 73, 71.
【27】X. Zhang, J. Pan, A. Du, W. Fu, D. Sun, J.O. Leckie, Combination of one-dimensional TiO2 nanowire photocatalytic oxidation with microfiltration for water treatment, Water Res. 2009, 43, 1179.
【28】J. Zhang, L. Wang, G. Zhang, Z. Wang, L. Xu, Z. Fan, Influence of azo dye-TiO2 interactions on the filtration performance in a hybrid photocatalysis/ultrafiltration process, J. Colloid Interface Sci. 2013, 389, 273.
【29】M. Pidou, S.A. Parsons, G. Raymond, P. Jeffrey, T. Stephenson, B. Jefferson, Fouling control of a membrane coupled photocatalytic process treating greywater, Water Res. 2009, 43, 3932.
【30】P. Wang, A.G. Fane, T.T. Lim, Evaluation of a submerged membrane vis-LED photoreactor (sMPR) for carbamazepine degradation and TiO2 separation, Chem. Eng. J. 2013, 215, 240.
【31】X. Huang, M. Leal, Q. Li, Degradation of natural organic matter by TiO2 photocatalytic oxidation and its effect on fouling of low-pressure membranes, Water Res. 2008, 42, 1142.
【32】X. Zhang, A. Du, P. Lee, D. Sun, J. Leckie, TiO2 nanowire membrane for concurrent filtration and photocatalytic oxidation of humic acid in water, J. Membr. Sci. 2008, 313, 44.
【33】R.A. Damodar, S.J. You, G.W. Chiou, Investigation on the conditions mitigating membrane fouling caused by TiO2 deposition in a membrane photocatalytic reactor (MPR) used for dye wastewater treatment, J. Hazard. Mater. 2012, 203, 348.
【34】L. Erdei, N. Arecrachakul, S. Vigneswaran, A combined photocatalytic slurry reactor–immersed membrane module system for advanced wastewater treatment, Sep. Purif. Technol. 2008, 62, 382.
【35】W. Zhang, J. Luo, L. Ding, M.Y. Jaffrin, A review on flux decline control strategies in pressure-driven membrane processes, Ind. Eng. Chem. Res. 2015, 54, 2843.
【36】Y. Gao, M. Hu, B. Mi, Membrane surface modification with TiO2–graphene oxide for enhanced photocatalytic performance, J. Membr. Sci. 2014, 455, 349.
【37】Y. Meng, X. Huang, Q. Yang, Y. Qian, N. Kubota, S. Fukunaga, Treatment of polluted river water with a photocatalytic slurry reactor using low-pressure mercury lamps coupled with a membrane, Desalination 2005, 181, 121.
【38】X. Huang, Y. Meng, P. Liang, Y. Qian, Operational conditions of a membrane filtration reactor coupled with photocatalytic oxidation, Sep. Purif. Technol. 2007, 55, 165.
【39】R. Molinari, A. Caruso, P. Argurio, T. Poerio, Degradation of the drugs Gemfibrozil and Tamoxifen in pressurized and de-pressurized membrane photoreactors using suspended polycrystalline TiO2 as catalyst, J. Membr. Sci. 2008, 319, 54.
【40】M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev. 1995, 95, 69.
【41】R. Goei, T.T. Lim, Ag-decorated TiO2 photocatalytic membrane with hierarchical architecture: Photocatalytic and anti-bacterial activities, Water Res. 2014, 59, 207.
【42】G. Wang, S. Chen, H. Yu, X. Quan, Integration of membrane filtration and photoelectrocatalysis using a TiO2/carbon/Al2O3 membrane for enhanced water treatment,J. Hazard. Mater. 2015, 299, 34.
【43】S. Mozia, D. Darowna, K. Szyman´ ski, S. Grondzewska, K. Borchert, R. Wróbel, A. W. Morawski, Performance of two photocatalytic membrane reactors for treatment of primary and secondary effluents, Catal. Today 2014, 236, 135.
【44】R. Thiruvenkatachari, S. Vigneswaran, I.S. Moon, A review on UV/TiO2 photocatalytic oxidation process, J. Chem. Eng. 2008, 25, 64.
【45】K. Sopajaree, S. Qasim, S. Basak, K. Rajeshwar, An integrated flow reactor-membrane filtration system for heterogeneous photocatalysis. Part II: Experiments on the ultrafiltration unit and combined operation, J. Appl. Electrochem. 1999, 29, 1111.
【46】S.A. Lee, K.H. Choo, C.H. Lee, H.I. Lee, T. Hyeon, W. Choi, H.H. Kwon, Use of ultrafiltration membranes for the separation of TiO2 photocatalysts in drinking water treatment, Ind. Eng. Chem. Res. 2001, 40, 1712.
【47】S. Kertèsz, J. Cakl, H. Jiránková, Submerged hollow fiber microfiltration as a part of hybrid photocatalytic process for dye wastewater treatment, Desalination 2014, 43, 106.
【48】I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review, Appl. Catal. B 2004, 49, 1.
【49】D.F. Ollis, E. Pelizzetti, N. Serpone, Photocatalyzed destruction of water contaminants, Environ. Sci. Technol. 1991, 25, 1522.
【50】T.E. Doll, F.H. Frimmel, Cross-flow microfiltration with periodical back-washing for photocatalytic degradation of pharmaceutical and diagnostic residues–evaluation of the long-term stability of the photocatalytic activity of TiO2, Water Res. 2005, 39, 847.
【51】S.P. Kamble, S.B. Sawant, V.G. Pangarkar, Batch and continuous photocatalytic degradation of benzenesulfonic acid using concentrated solar radiation, Ind. Eng. Chem. Res. 2003, 42, 6705.
【52】S. Kaneco, M. Arifur Rahmana, T. Suzuki, H. Katsumata, K. Ohta, Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide, J. Photochem. Photobiol. A 2004, 163, 419.
【53】I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review, Appl. Catal. B 2004, 49, 1.
【54】J.P.S. Valente, P.M. Padilha, A.O. Florentino, Studies on the adsorption and kinetics of photodegradation of a model compound for heterogeneous photocatalysis onto TiO2, Chemosphere 2006, 64, 1128.
【55】J.-M. Herrmann, Heterogeneous photocatalysis: state of the art and present applications In honor of Pr. R.L. Burwell Jr. (1912–2003), Former Head of Ipatieff Laboratories, Northwestern University, Evanston (Ill), Top. Catal. 2005, 34, 49.
【56】P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions, Adv. Environ. Res. 2004, 8, 501.
【57】J.-M. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants, Catal. Today 1999, 53, 115.
【58】K. Wang, Q. Li, B. Liu, B. Cheng, W. Ho, J. Yu, Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance, Appl. Catal. B Environ. 2015, 176, 44.
【59】S. Hu, L. Ma, J. You, F. Li, Z. Fan, G. Lu, Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts co-doped with iron and phosphorus, Appl. Surf. Sci. 2014, 311, 164.
【60】C. C. Hu, W. Z. Hung, M. S. Wang, P. J. Lu, Phosphorus and sulfur codoped g-C3N4 as an efficient metal-free photocatalyst, Carbon 2018, 127, 374.
【61】Y. Cui, J. Huang, X. Fu, X. Wang, Metal-free photocatalytic degradation of 4-chlorophenol in water by mesoporous carbon nitride semiconductors, Catal. Sci. Technol. 2012, 2, 1396.
【62】G. Liu, P. Niu, C. Sun, S. C. Smith, Z. Chen, G. Q. Lu, H. M. Cheng, Unique Electronic Structure Induced High Photoreactivity of Sulfur-Doped Graphitic C3N4, J. Am. Chem. Soc. 2010, 132, 11642.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top