跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 18:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃瑋
研究生(外文):Wei Huang
論文名稱:探討荷蘭型β-類澱粉蛋白在LMPG微胞中之結構與聚集行為
論文名稱(外文):Study of the structure and aggregative behavior of Dutch-type β-amyloid in LMPG micelles
指導教授:林達顯
指導教授(外文):Ta-Hsien Lin
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生命科學系暨基因體科學研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:64
中文關鍵詞:探討荷蘭型β-類澱粉蛋白在LMPG微胞中之 結構與聚集行為核磁共振光譜學結構生物學note
外文關鍵詞:Study of the structure and aggregative behavior of Dutch-type β-amyloid in LMPG micellesNuclear Magnetic Resonance spectroscopystructural biology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:216
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
阿茲海默症為一種最常見的慢性神經退化疾病,主要影響著老年族群。先前研究發現β-類澱粉胜肽為類澱粉斑塊(amyloid plaque)的主要成分,而類澱粉斑塊是現在病理解剖確認為阿茲海默症的一個重要指標。β-類澱粉蛋白(Aβ)是由39-42個胺基酸所組成的短肽鏈,由類澱粉前驅蛋白水解代謝後產生。造成阿茲海默症的假說有很多種,而現今最被廣為接受的的假說為"類澱粉蛋白鏈鎖聚合假說(Amyloid cascade hypothesis)。此假說認為Aβ聚集堆積使腦神經細胞死亡為造成阿茲海默症主要的原因。有研究發現
β-類澱粉胜肽的聚集堆積與細胞膜的交互作用有關,然而β-類澱粉胜肽聚集之機制到現在並不清楚。從結構的觀點推測,β-類澱粉胜肽與細胞膜的交互作用可能會改變β-類澱粉胜肽的結構,進而影響其聚集特性。本研究之主要目的是探討細胞膜在β-類澱粉胜肽聚集所扮演的角色,以溶血-肉豆蔻醯磷脂甘油(lyso-myristoylphosphatidylglycerol; LMPG)微胞(micelle)模擬細胞膜的環境及造成家族性阿茲海默症(familial Alzheimer’s disease)的荷蘭突變種β-類澱粉胜肽(Aβ40(E22Q))為模型,利用硫代黄素-T螢光光譜 (thioflavine-T fluorometric assay)、圓二色光譜學(circular dichroism spectroscopy)、電子顯微鏡(TEM)與核磁共振光譜學(nuclear magnetic resonance spectroscopy)等方法觀察細胞膜對β-類澱粉胜肽結構特性與聚集行為的影響。比較Aβ40(E22Q)在水與LMPG微胞環境下之結構與聚集行為得知,Aβ40(E22Q)在LMPG微胞環境下具有較高的α-螺旋成分(α-helical content)且其聚集速率被變慢。此現象意味了Aβ40(E22Q)與LMPG微胞的交互作用可增加其結構穩定度導致其不易聚集,這些結果可讓我們更進一步了解脂質與
β-類澱粉胜肽的交互作用在聚集過程可能所扮演的角色。

Alzheimer's disease (AD) a chronic neurodegenerative disease. It is the main cause of dementia in the elderly people. β-amyloid peptide (Aβ) is the main component of neuritic plaques which are a pathological hallmark of AD. β-amyloid peptide (Aβ) contains 39~42 amino acid residues. It was a proteolytic product derived from β-amyloid precursor protein (βAPP). Currently, the leading theory for explaining the etiology and pathogenesis of AD is the “Amyloid cascade hypothesis” which stated that Aβ aggregation resulted in brain cell death and dementia. Studies have shown that the aggregation of Aβ was linked to its interaction with cellular membranes. However, the underlying mechanism remains unclear. From a structural perspective, the interaction might induce conformational changes of Aβ resulting in an alteration of it’s aggregation behavior. To understand the role of cellular membranes in Aβ aggregation, the effects of lipids on the structure and aggregation behavior of Aβ were characterized by using thioflavine-T (Th-T) fluorometric assay, nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopies. An anionic lipid, lyso-myristoylphosphatidylglycerol (LMPG) and a genetic Aβ mutant, Dutch-type Aβ40 (Aβ40(E22Q)), were used in the present study. Structural studies indicated that LMPG micelles increased the α-helical content of Dutch-type Aβ40. The results of aggregation kinetics showed that LMPG micelles inhibited the aggregation of Dutch-type Aβ40. These results suggested that the interaction of Dutch-type Aβ40 with anionic lipids would increase its conformational stability leading to a reduction of its aggregation rate. These findings may help us gain an insight into the possible role of Aβ-lipid interaction in the process of Aβ aggregation.
目錄
誌謝 I
中文摘要 II
ABSTRACT III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1-1 阿茲海默症(ALZHEIMER'S DISEASE) 2
1-1-1 阿茲海默症的病理特徵 2
1-1-2 類澱粉斑塊(Amyloid plaques) 2
1-1-3 神經纖維糾結物(Neurofibrillary tangles) 3
1-2 阿茲海默症的分類 (Classificaton of Alzheimer’s disease) 3
1-2-1 偶發型阿茲海默症(Sporadic Alzheimer’s disease;SAD) 4
1-2-2 家族型阿茲海默症(Familial Alzheimer’s disease;FAD) 4
1-3 類澱粉胜肽連鎖反應假說(AMYLOID CASCADE HYPOTHESIS) 6
1-4 -類澱粉胜肽之聚集 7
1-4-1 Aβ 7
1-4-2野生型Aβ 7
1-4-2 突變型Aβ 8
1-5利用細胞與小鼠模型研究類澱粉蛋白的影響 9
1-6以結構的觀點探討類澱粉蛋白之聚集 10
1-7阿茲海默症之診斷 11
1-7-1阿茲海默症之治療 11
1-8研究目的與計設 12
第二章 實驗材料與方法 14
2-1 實驗藥品 14
2-1-1 實驗儀器 15
2-2 樣品製備 16
2-2-1 質體建構(Plasmid construction)與轉型作用(Transformation) 16
2-2-2 Yeast ubiquitin hydrolase-1(YUH-1)的製備 18
2-2-3 A40(E22Q)的製備 19
2-3 圓二色光譜分析 21
2-4 TH-T螢光光譜分析 (THIOFLAVIN T FLUORESCENCE SPECTROSCOPY) 22
2-5 穿透式電子顯微鏡 (TRANSMISSION ELECTRON MICROSCOPY, TEM) 23
2-6 核磁共振光譜 (NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY) 24
第三章 結果 26
3-1 樣品的製備 26
3-1-1 YUH-1的製備 26
3-1-2突變型H6Ub-A40(E22Q)β-類澱粉胜肽的製備 28
3-1-3 Lyso-myristoylphosphatidylglycerol與Lyso-myristoylphosphatidylcholine微胞的製備 33
3-2 探討AΒ40(E22Q)與LMPG的交互作用 34
3-3探討LMPG對於A40(E22Q)的二級結構影響 41
3-3-1比較 A40(E22Q)在有無LMPG環境時二級結構之差異性 41
3-4探討A40(E22Q)的聚集機制在有無LMPG環境下有何差異 43
3-4-1利用Th-T螢光光譜分析A40(E22Q)的聚集機制在有無LMPG環境下有何差異 43
3-4-2利用圓二色光譜探討A40(E22Q)的聚集機制在有無LMPG環境下有何差異 46
3-4-3利用穿透式電子顯微鏡觀察A40(E22Q)的聚集機制在水與LMPG環境下比較形成纖維之速率 49
3-4-2 利用核磁共振光譜圖探討A40(E22Q)與LMPG脂質的交互作用機制 50
第四章 結論與討論 53
4-1 LMPG脂質與A40(E22Q)的交互作用 53
4-2 L17A/F19A突變能否增加A40(E22Q)在LMPG與LMPC環境下之結構穩定度 54
參考文獻 60


圖目錄
圖 1-1-1 β-類澱粉前驅蛋白(APP)水解途徑及家族性阿茲海默症突變位置……………P5
圖 2-2-1 His6-ubiquitin表現載體之建立…………………….…………………………..P17
圖 2-2-2酵母菌泛素水解酶(YUH-1)之純化流程……………………………………….P18
圖 2-2-3融合蛋白A40(E22Q)純化流程圖………………………………………………P20
圖3-1-1表達酵母菌泛素水解酶(Yeast Ubiquitin Hydrolase;YUH-1)之SDS-PAGZ...P26
圖 3-1-2 YUH-1經鎳親和性管柱層析(Immobilized Metal Affinity Chromatography)純化後以15% SDS-PAGE分析之電泳圖…………………………………………………..P27
圖 3-1-3表達β-類澱粉胜肽融合蛋白His6-ubiquitin- A40(E22Q)之SDS-PAGE ……P28
圖 3-1-4 His6-ubiquitin-A40(E22Q)合蛋白經鎳親和性管柱層析純化後以15% SDS-PAGE分析之電泳圖………………………………………………………………...P29
圖3-1-5利用His6-YUH-1水解作用切除H6Ub-A40(E22Q)之Tricine PAGE………...P30
圖3-1-6鹼性溶液純化A40(E22Q)之HPLC層析圖…………………………………...P30
圖3-1-7酸性溶液純化A40(E22Q)之HPLC層析圖…………………………………….P31
圖3-2-8 H6Ub-A40(E22Q)水解後之15% Tricine-SDS-PAGE…………………………P32
圖3-1-9 A40(E22Q)之質譜……………………………………………………………….P32
圖3-2-1 Aβ40(E22Q)在水環境以及LMPG微胞環境下整體二級結構差異性 ………..P34
圖3-2-2 Aβ40(E22Q)在水環境以及LMPG微胞環境下整體二級結構差異性…………P35
圖3-2-3 Aβ40(E22Q)在水環境以及LMPC環境下整體二級結構差異性……………….P36
圖3-2-4 Aβ40(E22Q)在水環境以及LMPC微胞環境下整體二級結構差異性 ……...…P37
圖3-2-5 A40(E22Q)在水環境下與LMPG微胞環境下之1H-HSQC光譜圖…………..P38
圖3-2-6 A40(E22Q)在水環境下與LMPC微胞環境下之1H-HSQC光譜圖…………..P39
圖3-2-7 A40(E22Q)在LMPG微胞與LMPC微胞環境下之1H-HSQC光譜圖……….P40
圖3-4-1 A40(E22Q)在水與LMPG微胞環境下時ThT螢光光譜分析…………………P43
圖3-4-2 A40(E22Q)在水與LMPG微胞環境下時ThT螢光光譜分析…………………P44
圖3-4-3綜合比較A40(E22Q)在水、LMPG、LMPC環境ThT螢光光譜分析…………P45
圖3-4-4 A40(E22Q)在水環境中的二級結構變化……………………………………….P46
圖3-4-5 A40(E22Q)在LMPG微胞環境中的二級結構變化 …………………………..P47
圖3-4-6 A40(E22Q)在LMPC微胞環境中的二級結構變化……………………………P48
圖3-4-7 A40(E22Q)在水環境下與LMPG環境下纖維形成速率比較………………....P49
圖3-4-8比較A40(E22Q)在水環境與LMPG環境下時13C化學位移數值差異………P50
圖3-4-9推測A40(E22Q)與LMPG交互作用機制………………………………………P52
圖4-2-1圖4-2-1 A40(L17A/F19A/E22Q)在水、LMPG、LMPC環境下整體二級結構……….P55
圖4-2-2比較A40(E22Q)與A40(L17A/F19A/E22Q)在LMPG下整體二級結構……..P56
圖4-2-3比較A40(E22Q)與A40(L17A/F19A/E22Q)在LMPC下整體二級結構……..P57
圖4-2-4 A40(L17A/F19A/E22Q)在水與脂質環境下之ThT螢光光譜圖……………...P58
圖4-2-5 A40(E22Q)與 A40(L17A/F19A/E22Q)在水,LMPG與LMPC環境下之ThT螢光光譜…………………………………………………………………………………...P59

表目錄
表2-2-1高效液相層析(HPLC)移動相程式………………………………………………P21
表 2-3-1遠紫外光圓二色光譜之蛋白質二級結構之波長特徵…………………………P22
表 2-6-1二十種胺基酸之H、13C、13C與13C'二級結構傾向化學位移(chemical shift)參考值……………………………………………………………………………………...P25
表3-1-1 Lyso-myristoylphosphatidylglycerol(LMPG)相關數值……………………….P33
表3-1-2 Lyso-myristoylphosphatidylcholine(LMPC)相關數值………………………...P33
表 3-3-1 A40(E22Q)在50 mM LMPG與LMPC,298 K,pH 7.2下之二級結構分析...P41
表 3-3-2 A40(E22Q)在50 mM LMPG與LMPC,310K,pH7.2下之二級結構分析….P42
表 3-4-1 A40(E22Q)在200 mM LMPG 、pH 7.2、298 K、50 mM磷酸鉀緩衝溶液中骨架原子化學位移………………………………………………………………………...P51
表 4-2-1 A40(L17A/F19A/E22Q)在水、LMPG、LMPC環境下整體二級結構特性傾向…………………………………………………………………………………………...P55

1. Heese, K. (2015) Ageing, dementia and society - an epistemological perspective. SpringerPlus 4, 135
2. Mitchell, S. L. (2015) CLINICAL PRACTICE. Advanced Dementia. N Engl J Med 372, 2533-2540
3. World Health Organization fact sheet April 2016.
4. Todd, S., Barr, S., Roberts, M., and Passmore, A. P. (2013) Survival in dementia and predictors of mortality: a review. Int J Geriatr Psychiatry 28, 1109-1124
5. 2015 Alzheimer's disease facts and figures. Alzheimer's & Dementia 11, 332-384
6. 2016 alzeimer's disease fact and figures. Alzheimer's & Dementia
7. Ramirez-Bermudez, J. (2012) Alzheimer's disease: critical notes on the history of a medical concept. Archives of medical research 43, 595-599
8. Lee, E. B. (2011) Obesity, leptin, and Alzheimer's disease. Ann N Y Acad Sci 1243, 15-29
9. Ramirez-Bermudez, J. (2012) Alzheimer's disease: critical notes on the history of a medical concept. Archives of medical research 43, 595-599
10. Glenner GG, W. C. (1984) Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 120, 885-890.
11. Zhang, Y. W., Thompson, R., Zhang, H., and Xu, H. (2011) APP processing in Alzheimer's disease. Molecular brain 4, 3
12. Bahmanyar, S., Higgins, G. A., Goldgaber, D., Lewis, D. A., Morrison, J. H., Wilson, M. C., Shankar, S. K., and Gajdusek, D. C. (1987) Localization of amyloid beta protein messenger RNA in brains from patients with Alzheimer's disease. Science 237, 77-80
13. Tanaka, S., Nakamura, S., Ueda, K., Kameyama, M., Shiojiri, S., Takahashi, Y., Kitaguchi, N., and Ito, H. (1988) Three types of amyloid protein precursor mRNA in human brain: their differential expression in Alzheimer's disease. Biochemical and biophysical research communications 157, 472-479
14. Schlossmacher, M. G., Ostaszewski, B. L., Hecker, L. I., Celi, A., Haass, C., Chin, D., Lieberburg, I., Furie, B. C., Furie, B., and Selkoe, D. J. (1992) Detection of distinct isoform patterns of the beta-amyloid precursor protein in human platelets and lymphocytes. . Neurobiology of aging 13, 421-434
15. De Strooper, B., Vassar, R., and Golde, T. (2010) The secretases: enzymes with therapeutic potential in Alzheimer disease. Nature reviews. Neurology 6, 99-107
16. Brunden, K. R., Trojanowski, J. Q., and Lee, V. M. (2009) Advances in tau-focused drug discovery for Alzheimer's disease and related tauopathies. Nat Rev Drug Discov 8, 783-793
17. Mokhtar, S. H., Bakhuraysah, M. M., Cram, D. S., and Petratos, S. (2013) The Beta-amyloid protein of Alzheimer's disease: communication breakdown by modifying the neuronal cytoskeleton. International journal of Alzheimer's disease 2013, 910502
18. Shinohara, M., Fujioka, S., Murray, M. E., Wojtas, A., Baker, M., Rovelet-Lecrux, A., Rademakers, R., Das, P., Parisi, J. E., Graff-Radford, N. R., Petersen, R. C., Dickson, D. W., and Bu, G. (2014) Regional distribution of synaptic markers and APP correlate with distinct clinicopathological features in sporadic and familial Alzheimer's disease. Brain 137, 1533-1549
19. A. Armstrong, R. (2013) Review article What causes alzheimer’s disease? Folia Neuropathologica 3, 169-188
20. Corder EH, S. A., Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. . (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261, 921-923
21. Science Translation Medicine 3(89), 2011
22. Bagyinszky, E., Youn, Y. C., An, S. S., and Kim, S. (2014) The genetics of Alzheimer's disease. Clinical interventions in aging 9, 535-551
23. Hardy, J. A., and Higgins, G. A. (1992) Alzheimer's disease: the amyloid cascade hypothesis. Science 256, 184-185
24. Selkoe, D. J. (2002) Deciphering the genesis and fate of amyloid β-protein yields novel therapies for Alzheimer disease. Journal of Clinical Investigation 110, 1375-1381
25. Swomley, A. M., Forster, S., Keeney, J. T., Triplett, J., Zhang, Z., Sultana, R., and Butterfield, D. A. (2014) Abeta, oxidative stress in Alzheimer disease: evidence based on proteomics studies. Biochim Biophys Acta 1842, 1248-1257
26. Lichtenthaler, S. F. (2012) Alpha-secretase cleavage of the amyloid precursor protein: proteolysis regulated by signaling pathways and protein trafficking. Curr. Alzheimer Res. 9, 165-177
27. Lee, K. F., Soares, C., and Beique, J. C. (2012) Examining form and function of dendritic spines. Neural plasticity 2012, 704103
28. Reitz, C. (2012) Alzheimer's disease and the amyloid cascade hypothesis: a critical review. International journal of Alzheimer's disease 2012, 369808
29. Yu Kitago, Masamichi Nagae, Zenzaburo Nakata, Maho Yagi-Utsumi, Shizuka Takagi-Niidome, Emiko Mihara, Terukazu Nogi, Koichi Kato & Junichi Takagi(2015)Structural basis for amyloidogenic peptide recognition by sorLA Nature Structural & Molecular Biology 22, 199–206
30. Lam FC, L. R., Lu P, et al. (2001) β-Amyloid efflux mediated by P-glycoprotein. 76, 1121-1128

31. Sadigh-Eteghad, S., Sabermarouf, B., Majdi, A., Talebi, M., Farhoudi, M., and Mahmoudi, J. (2015) Amyloid-beta: a crucial factor in Alzheimer's disease. Medical principles and practice : international journal of the Kuwait University, Health Science Centre 24, 1-10
32. Paul R Turner, Kate O’Connor, Warren P Tate, Wickliffe C Abraham.(2003) Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory Progress in Neurobiology 70, 1–32
33. Roychaudhuri, R., Yang, M., Deshpande, A., Cole, G. M., Frautschy, S., Lomakin, A., Benedek, G. B., and Teplow, D. B. (2013) C-terminal turn stability determines assembly differences between Abeta40 and Abeta42. J Mol Biol 425, 292-308
34. Weggen S, E. J., Das P, Sagi SA, Wang R, Pietrzik CU, Findlay KA, Smith TE, Murphy MP, Bulter T, Kang DE, Marquez-Sterling N, Golde TE, Koo EH. (2001) A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature 414, 212-216
35. Lomakin A, T. D., Benedek GB. (2005) Quasielastic light scattering for protein assembly studies. Methods Mol Biol. 299, 153-174
36. Leissring, M. A. (2008) The AbetaCs of Abeta-cleaving proteases. J Biol Chem 283, 29645-29649
37. Krone, M. G., Baumketner, A., Bernstein, S. L., Wyttenbach, T., Lazo, N. D., Teplow, D. B., Bowers, M. T., and Shea, J. E. (2008) Effects of familial Alzheimer's disease mutations on the folding nucleation of the amyloid beta-protein. J Mol Biol 381, 221-228
38. Kumar-Singh, S., Julliams, A., Nuydens, R., Ceuterick, C., Labeur, C., Serneels, S., Vennekens, K. l., Van Osta, P., Geerts, H., De Strooper, B., and Van Broeckhoven, C. (2002) In Vitro Studies of Flemish, Dutch, and Wild-Type β-Amyloid Provide Evidence for Two-Staged Neurotoxicity. Neurobiology of Disease 11, 330-340
39. Lam, A. R., Teplow, D. B., Stanley, H. E., and Urbanc, B. (2008) Effects of the Arctic (E22-->G) mutation on amyloid beta-protein folding: discrete molecular dynamics study. . Journal of the American Chemical Society 130, 17413-17422
40. Mortilla, M., Amaducci, L., Bruni, A., Montesi, M. P., Trubnikov, A., De Cataldo, S., Pallanti, S., Pazzagli, A., Grecu, L., Servi, P., and et al. (1994) Absence of APP713 mutation in Italian and Russian families with schizophrenia. Neuroscience letters 165, 45-47
41. Bice Fubini and Andrea Hubbard Free Radical Biology & Medicine, Vol. 34, No. 12, pp. 1507–1516(2003)
42. Morley JE, Farr SA. Hormesis and amyloid-b protein: physiology or pathology?
J Alzheimers Dis 2012;29:487–92.

43. Puzzo D, Privitera L, Fa M, Staniszewski A, Hashimoto G, Aziz F, et al.
Endogenous amyloid-b is necessary for hippocampal synaptic plasticity
and memory. Ann Neurol 2011;69:819–30.
44. Luo Y, Sunderland T, Wolozin B. Physiologic levels of beta-amyloid activate
phosphatidylinositol 3-kinase with the involvement of tyrosine phosphorylation.
J Neurochem 1996;67:978–87.
45. Stefanova NA, Muraleva NA, Skulachev VP, Kolosova NG. Alzheimer’s diseaselike
pathology in senescence-accelerated OXYS rats can be partially retarded
with mitochondria-targeted antioxidant SkQ1. J Alzheimers Dis 2014;38:
681–694.
46. Armbrecht HJ, Siddiqui AM, Green M, Farr SA, Kumar VB, Banks WA, et al.
SAMP8 mice have altered hippocampal gene expression in long term potentiation,
phosphatidylinositol signaling, and endocytosis pathways. Neurobiol
Aging 2014;35:159–68.
47. Sato E, Kurokawea T, Oda N, Ishibashi S. Early appearance of abnormality of
microperoxisomal enzymes in the cerebral cortex of senescence-accelerated
mouse. Mech Ageing Dev (1996) 92:175–84.
48. Katrin Heinitz, Martin Beck,Reinhard Schliebs and J. Regino Perez-Polo.(2006)
Journal of Neurochemistry, 98, 1930–1945
49. H Kadowaki, H Nishitoh, F Urano4, C Sadamitsu, A Matsuzawa, K Takeda, H Masutani,
J Yodoi, Y Urano, T Nagano and H Ichijo Amyloid β induces neuronal cell death
through ROS-mediated ASK1 activation, Cell Death and Differentiation (2005) 12,
19–24.
50. Hou, L., Shao, H., Zhang, Y., Li, H., Menon, N. K., Neuhaus, E. B., Brewer, J. M., Byeon, I. J., Ray, D. G., Vitek, M. P., Iwashita, T., Makula, R. A., Przybyla, A. B., and Zagorski, M. G. (2004) Solution NMR studies of the A beta(1-40) and A beta(1-42) peptides establish that the Met35 oxidation state affects the mechanism of amyloid formation. J Am Chem Soc 126, 1992-2005
51. Aneta T. Petkova, Yoshitaka Ishii, John J. Balbach, Oleg N. Antzutkin, Richard D. Leapman, Frank Delaglio, and Robert Tycko. (2002) PNAS 99: 16742-16747
52. Jarvet, J., Danielsson, J., Damberg, P., Oleszczuk, M., and Graslund, A. (2007) Positioning of the Alzheimer Abeta(1-40) peptide in SDS micelles using NMR and paramagnetic probes. J Biomol NMR 39, 63-72
53. Alzheimer disease association;Alzheimer's disease information and resources
54. Tombaugh TN, McIntyre NJ. The mini-mental state examination: a comprehensive review. Journal of the American Geriatrics Society. 1992;40(9):922–35
55. Huang, H. C., and Klein, P. S. (2006) Multiple roles for glycogen synthase kinase-3 as a drug target in Alzheimer's disease. Current drug targets 7, 1389-1397
56.Heiland B, G. S. (1999) Rat Locomotion and Release of Acetylcholinesterase. Pharmacol Biochem Behav 62, 81-87
57. Lee, E. K., Hwang, J. H., Shin, D. Y., Kim, D. I., and Yoo, Y. J. (2005) Production of recombinant amyloid-beta peptide 42 as an ubiquitin extension. Protein Expr Purif 40, 183-189
58. Wallace, B. A. (2000) Conformational changes by synchrotron radiation circular dichroism spectroscopy. Nature structural biology 7, 708-709
59. Krebs, M. R., Bromley, E. H., and Donald, A. M. (2005) The binding of thioflavin-T to amyloid fibrils: localisation and implications. J Struct Biol 149, 30-37
60. Wishart, D. S., Bigam, C. G., Holm, A., Hodges, R. S., and Sykes, B. D. (1995) (1)H, (13)C and (15)N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. Journal of biomolecular NMR 5, 332
61. Neidig, K. P., Geyer, M., Gorler, A., Antz, C., Saffrich, R., Beneicke, W., and Kalbitzer, H. R. (1995) AURELIA, a program for computer-aided analysis of multidimensional NMR spectra. J Biomol NMR 6, 255-270
62. Wishart, D. S., Bigam, C. G., Holm, A., Hodges, R. S., and Sykes, B. D. (1995) (1)H, (13)C and (15)N random coil NMR chemical shifts of the common amino acids. I.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top