跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.31) 您好!臺灣時間:2025/12/02 18:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃柏豪
研究生(外文):HUANG, PO-HAO
論文名稱:氮摻雜二氧化鈦金氧半場效應濕度感測元件之研究
論文名稱(外文):Study of Metal Oxide Semiconductor Field Effect Humidity Sensing Device Using Titanium Dioxide Sensing Film with Nitrogen Doping
指導教授:楊誌欽楊誌欽引用關係
指導教授(外文):YANG, CHIH-CHIN
口試委員:楊誌欽卜一宇高宗達
口試委員(外文):YANG, CHIH-CHINBU, YI-YUKAO, TSUNG-TA
口試日期:2014-05-16
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:微電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:127
中文關鍵詞:濕度感測器二氧化鈦氮摻雜
外文關鍵詞:Relative humidity sensorTitanium dioxideNitrogen doping
相關次數:
  • 被引用被引用:1
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本研究是利用直流濺鍍系統成長氮摻雜二氧化鈦(TiO2:N2)感測薄膜,感測元件是一種多重架構的半導體溼度感測器。感測元件製程中有許多成長參數的變化,分別以四種不同的成長溫度製造出感測材料,並將感測材料進行材料結構特性分析、薄膜表面顆粒大小分析及霍爾(Hall)量測分析,經由材料特性分析,決定適合本研究中適合製造相對溼度感測元件的薄膜材料。經由霍爾效應(Hall effect)量測分析,本研究中的氮摻雜二氧化鈦(TiO2:N2)薄膜為n 型(n-type),載子濃度和載子飄移率分別為3.4×1018cm3與3.4cm2/Vs,電阻率和導電率分別為1.8Ω-cm與2.9/Ω-cm。經由材料分析結果顯示,當成長溫度為27℃之下的薄膜特性,為較佳的感測薄膜特性,適合應用於濕度感測元件。氮摻雜二氧化鈦(TiO2:N2)濕度感測元件的電阻值量測,濕氣從30%RH升至90%RH的吸附時間為30sec,去吸附時間為65秒,這項結果和其他研究報導比較顯示,本研究的溼度感測器的吸附與去吸附能力相對較佳。而迴滯量測與I-V量測所得到的溼度感測器靈敏度分別為0.12與10.41,這代表本研究論文的溼度感測器有著良好的潛力與濕度感測效果。
The TiO2:N2 relative humidity sensing devices were accomplished in accordance with semiconductor structures. The optimum growth parameter of TiO2:N2 sensing film was decided to fabricate the well-defined relative humidity sensor. In this study, the optimum growth temperature of TiO2:N2 sensing film is at 27oC with well properties in the surface morphology, crystallization, and electronic transportation. By the Hall effect measurement, the TiO2:N2 sensing film is revealed the n-type in carrier type. The carrier concentration and mobility of TiO2:N2 sensing films are 3.4×1018 cm3 and 3.4 cm2/Vs respectively. The resistivity and conductivity of TiO2:N2 sensing films are also 1.8Ω-cm and 2.9/Ω-cm respectively. The TiO2:N2 relative humidity sensing devices were fabricated by using photo lithography and lift-off techniques. The adsorption time and desorption time of TiO2:N2 relative humidity sensing devices are respectively 30 seconds from 30% RH up to 90% RH and 65 seconds from 90% RH down to the 30% RH. The sensitivities of TiO2:N2 relative humidity sensing devices in hysteresis and I-V characteristics are respectively 0.12 and 10.41.
致謝
中文摘要
Abstract
目錄
圖目錄
表目錄
第一章 緒論
1-1研究動機
1-2研究目的
1-3論文架構
第二章 文獻探討
2-1二氧化鈦材料之探討
2-2氮化鈦材料之探討
2-3氮摻雜對二氧化鈦的影響
2-4阻抗式濕度感測元件之探討
2-5電容式濕度感測元件之探討
2-6金氧半濕度感測元件之探討
第三章 研究架構理論與實驗方法
3-1研究架構
3-2研究理論
3-2-1電漿理論
3-2-2物理氣相沈積
3-2-3濺鍍薄膜沉積原理
3-2-4熱蒸鍍薄膜沉積原理
3-2-5霍爾量測原理
3-2-6 X光繞射原理
3-2-7掃描式電子顯微鏡原理
3-2-8能量散射光譜儀原理
3-2-9原子力顯微鏡原理
3-2-10濕度感測原理
3-3 濕度感測材料與元件製作
3-3-1基板與薄膜材料
3-3-2實驗方法與步驟
3-3-3基板清洗與蝕刻
3-3-4濕度感測材料薄膜沉積
3-4 濕度感測元件製作方法
3-4-1六甲基二矽氮烷增強劑
3-4-2光阻
3-4-3旋轉塗佈技術
3-4-4微影技術
3-4-5濕度感測元件製造流程
第四章 研究結果與討論
4-1感測材料量測與分析
4-1-1感測材料霍爾量測分析
4-1-2感測材料X光繞射量測分析
4-1-3感測材料掃描式電子顯微鏡量測分析
4-1-3感測材料能量散射光譜儀量測分析
4-1-4感測材料原子力顯微鏡量測分析
4-2感測元件量測與分析
4-2-1濕度變化對感測元件影響
4-2-2感測元件濕度變化之電阻值時間飄移量測
4-2-3感測元件濕度變化之電感值時間飄移量測
4-2-4感測元件濕度變化之電容值時間飄移量測
4-2-5感測元件濕度變化之電阻值迴滯量測
4-2-6感測元件濕度變化之電感值迴滯量測
4-2-7感測元件濕度變化之電容值迴滯量測
4-2-8感測元件濕度變化之IV量測
第五章 研究結論與未來展望
5-1研究結論
5-2未來展望
參考文獻

[1]P.G.Su, L.N.Huang. Humidity sensors based on TiO2 nanoparticles polypyrrole composite thin films. Sensors and Actuators B, 123 (2007) 501-507.
[2]F.Yakuphanoglu. Semiconducting and quartz microbalance (QCM) humidity sensor properties of TiO2 by sol gel calcination method. Solid State Sciences, 14 (2012) 673-676.
[3]A.Tuan, M.Yoon, V.Medvedev, Y.Ono, Y.Ma, J.W. Rogers Jr. Interface control in the chemical vapor deposition of titanium dioxide on silicon(100). Thin Solid Films, 377-78 (2000) 766-771.
[4]L.Chen, M.E.Graham, G.Li, K.A.Gray. Fabricating highly active mixed phase TiO2 photocatalysts by reactive DC magnetron sputter deposition. Thin Solid Films, 515 (2006) 1176-1181.
[5]L.Sirghi, Y.Hatanaka. Hydrophilicity of amorphous TiO2 ultra-thin films. Surface Science, 530 (2003) L323-L327.
[6]U.Diebold. The surface science of titanium dioxide. Surface Science Reports, 48 (2003) 53-229.
[7]A.G.Demir, B.Previtali, N.Lecis. Development of laser dimpling strategies on TiN coatings for tribological applications with a highly energetic Q-switched fibre laser. Optics & Laser Technology, 54 (2013) 53-61.
[8]L.P.B.Lima, J.A.Diniz, I.Doi, J.G.Fo. Titanium nitride as electrode for MOS technology and Schottky diode:Alternative extraction method of titanium nitride work function. Microelectronic Engineering, 92 (2012) 86-90.
[9]B.Deng, Y.Tao, Z.Hu. The microstructure, mechanical and tribological properties of TiN coatings after Nb and C ion implantation. Applied Surface Science, 284 (2013) 405-411.
[10]H.O, Pierson. Interstitial Nitrides: Properties and General Characteristics. Properties Characteristics Processing and Applications. (1996) 181-208.
[11]J.Wang, Z.Wang, H.Li, Y.Cui, Y.Du. Visible light-driven nitrogen doped TiO2 nanoarray films: Preparation and photocatalytic activity. Journal of Alloys and Compounds, 494 (2010) 372-377.
[12]H.L.Qin, G.B.Gu, S.Liu. Preparation of nitrogen-doped titania using sol–gel technique and its photocatalytic activity. Mmaterials Chemistry and Physics, 112 (2008) 346-352.
[13]H.Melhem, P.Simon, J.Wang, C.D.Bin, B.Ratier, Y.Leconte, N.H.Boime, M.M.Janusik, A.Kassiba, J.Boucle. Direct photocurrent generation from nitrogen doped TiO2 electrodes in solid-state dye-sensitized solar cells: Towards optically-active metal oxides for photovoltaic applications. Solar Energy Materials & Solar Cells, 117 (2013) 624-631.
[14]R.Apetrei, C.Catrinescu, D.Mardare, C.M.Teodorescu, D.Luca. Photo degradation activity of sputter deposited nitrogen doped titania thin films. Thin Solid Films, 518 (2009) 1040-1043.
[15]P.G.Su, C.S.Wang. Novel flexible resistive-type humidity sensor, Sensors and Actuators B, 123 (2007) 1071–1076.
[16]T.Zhang, Y.Hea, R.Wang, W.Geng, L.Wang, L.Niu, X.Li. Analysis of dc and ac properties of humidity sensor based on polypyrrole materials. Sensors and Actuators B, 131 (2008) 687-691.
[17]S.S.Batool, Z.Imran, M.I.Qadir, S.J.Rana, M.Usman, H.Jamil, M.A. Rafiq, M.M. Hasan, O.Nura, M.Willander. Silica nanofibers based impedance type humidity detector prepared on glass substrate. Vacuum 87 (2013) 1-6.
[18]P.M.Harrey, B.J.Ramsey, P.S.A.Evans, D.J.Harrison. Capacitive-type humidity sensors fabricated using the offset lithographic printing process. Sensors and Actuators B, 87 (2002) 226-232.
[19]S.H.Song, H.H.Yang, C.H.Han, S.D.Ko, S.H.Lee, J.B.Yoon. Metal oxide semiconductor field effect transistor humidity sensor using surface conductance. Applied Physics Letters, 100 (2012) 101603.
[20]M.Winter. Available at: http://www.webelements.com/aluminium/. Accessed 28 April, 2014.
[21]Y.Zhang, W.Fu, H.Yang, Q.Qi, Y.Zeng, T.Zhang. Synthesis and characterization of TiO2 nanotubes for humidity sensing. Applied Surface Science, 254 (2008) 5545-5547.
[22]D.I.Lim, J.R.Cha, M.S.Gong. Preparation of flexible resistive micro-humidity sensors and their humidity-sensing properties. Sensors and Actuators B, 183 (2013) 574-582.
[23]P.H.Huang, C.C.Yang, C.C.Wu, F.M.Wang, C.M.Hu. New type moisture sensing device of titanium dioxide doped nitrogen with buffer layer. Proceeding of 2013 Second International Conference on Advanced Materials, Energy and Environments (ICMEE'13) (2013) 95-99.
[24]L.Chen, J.Zhang. Capacitive humidity sensors based on the dielectrophoretically manipulated ZnO nanorods. Sensors and Actuators A, 178 (2012) 88-93.
[25]P.M. Harrey, B.J. Ramsey, P.S.A. Evans, D.J. Harrison. Capacitive-type humidity sensors fabricated using the offset lithographic printing process. Sensors and Actuators B, 87 (2002) 226-232.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊